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Postulate: We consider water resources polluted with
biochemical substances (glucose,sulfate,etc), called substrates.

Objective: Clean this water by using biological microorganisms
(bacteria,enzymes,etc), called biomasses, which develop by
substrate consumption.

How?: Connecting the water resource in a closed circuit with
a bioreactor.
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Bioreactors

The bioreactors operating continuously are also called chemostats.
The chemostat was studied by Jacques Monod, Aaron Novick and
Leo Szilard in 1950.

Water with substrate

Cleaned water

Biomass

Q

Q

The bioreactor is fed from the resource with a flow rate Q, and its
output returns the cleaned water with the same flow rate Q.
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Mathematical Model for a bioreactor: An ODE Approach

Homogeneous distribution of the contaminant in the bioreactor:































dSr

dt
(t) = −µ(Sr(t))Br(t) +

Q(t)
Vr

(Se(t) − Sr(t)) t > 0,

dBr

dt
(t) = µ(Sr(t))Br(t) − Q(t)

Vr
Br(t) t > 0,

Sr(0) = Se(0), Br(0) = Br,0,

(1)

-Q: flow rate (m3/s).
-Sr: substrate concentration inside the reactor (mol/m3).
-Br: biomass concentration inside the reactor (mol/m3).
-Se: substrate concentration that enters the bioreactor (mol/m3).
-Vr: reactor volume(m3).
-µ: growth rate function (s−1).
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Assumption:

1 Function µ(·) is increasing and µ(0) = 0.

2 Function µ(·) es concave.

An example of growth rate function is given by the Monod
Equation:

µ(S) = µmax
S

K+S

P. Gajardo, J. Harmand, H. Raḿırez C., and A. Rapaport.
Minimal time bioremediation of natural water
resources.Automatica, 47(8), 2011.
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Particular case: Se and Q are constant.
System (1) has two fixed points:

E1 = (Se, 0) ⇒ No decontamination (leaching)

E2 = (SQ
r ,Se − SQ

r ), where SQ
r fulfills Q = Vrµ(S

Q
r ).

Theorem (Stability analysis)

1 If Q < Vrµ(Se) ⇒ E1 unstable, E2 is asymptotically stable.

2 If Q > Vrµ(Se) ⇒ E1 asymptotically stable, E2 is unstable.

3 If Q = Vrµ(Se) ⇒ E1 = E2 asymptotically stable.

Proof.

For (1) and (2) we use Hartman-Grobman Theorem.
For (3) we use Poincare-Bendixson Theorem and Dulac’s Criterion.
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Nonlinear system:

{

x=́F (x)
x(0) = x0

(∗)

Let x∗ a critical point of (∗), i.e, F (x∗) = 0.

Linearization: z ′ = DF (x∗)z , where z = x − x∗.

Theorem (Hartman-Grobman)

Suppose x∗ is a hyperbolic critical point (i,.e the real part of the
eigenvalues of DF are not zero). Then the phase portrait of the
linearization and the nonlinear equations are locally homeomorphic.

Theorem

Real part of the eigenvalues of DF are negative ⇒ x∗ is
asymptotically stable.

At least one eigenvalue of DF is positive ⇒ x∗ is unstable.
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Theorem (Generalized Poincare Bendixson)

If the positive orbit γ+(x) in (∗) is contained in a compact set K,
where K only contains a finite number of critical points, then:

ω(x) critical point, or

ω(x) periodic orbit, or

ω(x) connected set composed of finite number of fixed points.

Theorem (Dulac Criterion - Only for F = (F1,F2))

Let D be a simply connected region in the phase plane. If there
exists C1 function ψ(x , y) such that

d

dx
(ψ(x , y)F1(x , y)) +

d

dy
(ψ(x , y)F2(x , y))

has constant sign in D, then (2) has no closed orbits lying in D.
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Nondimensionalization of the system

Definition

Partial or full removal of units from an equation involving physical
quantities by a suitable substitution of variables

1 List all of the variables, parameters, and their dimensions:

Variable Dimension Parameter Dimension

Br mol/m3 Vr m3

Sr mol/m3 Se(0) mol/m3

t s Br,0 mol/m3

Q m3/s

Se mol/m3

µ s−1
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2 Take each variable and create a new variable dividing by a
combination of parameters that has the same dimension:

se =
Se

Se(0)
, sr =

Sr

Se(0)
, br =

Br

Se(0)
, µ̃(sr) =

µ(Sr)

µ(Se(0))

q =
Q

Vrµ(Se(0))
, tr =

t
1

µ(Se(0))

3 Rewrite the differential equation in terms of the new variables:


























dsr

dtr
(tr) = −µ̃(sr(tr))br(tr) + q(tr)(se(tr) − sr(tr)), tr > 0,

dbr

dtr
(tr) = µ̃(sr(tr))br(tr) − q(tr)br(tr), tr > 0,

sr(0) = 1, br(0) = α,

where α =
Br,0

Se(0)
.
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Dynamics in the water resource and coupled system

Natural water resource polluted with a substrate concentration S1.
=⇒ Objective: Reduce the concentration of the pollutant to a
prescribed value Slim.

Settler: Collect the biomass ⇒ avoids new contamination.
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The dynamics in the water resource can be described










dS1

dt
(t) = Q(t)

V
(Sr(t) − S1(t)), t > 0,

S1(0) = Sl,0

(2)

• Dimensional Analysis

Variable Dimension Parameter Dimension

S1 mol/m3 V m3

t s Sl,0 mol/m3

Sr mol/m3

Q m3/s

s1 = S1

S1(0)
, sr =

Sr

S1(0)
, q = Q

Vrµ(S1(0))
, t1 = t

V
Vrµ(S1(0))











ds1

dt1
(t1) = −q(t1)(s1(t1) − sr(t1)),

s1(0) = 1.
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Quasi-Steady State Approximation

Hypothesis: V >> Vr ⇒ τ1 ∼ V
Vr

1
µ(S1(0))

>> τr ∼ 1
µ(S1(0))

Reasonable time scale for the bioreactor ⇒ S1, Q negligibly
changes.

Remember: When Q < Vrµ(S1), the equilibrium point
(SQ

r ,S1 − SQ
r ) is asymptotically stable.

Reasonable time scale for the water resource ⇒ the bioreactor
attains its equilibrium point.
Thus, System (2) can be approximated as:











dS1

dt
(t) = Q(t)

V
(SQ

r (t) − S1(t)), t > 0,

S1(0) = S1,0.

(3)

where SQ
r (t) ∈ [0,S1(t)).
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Q is constant in time , µ(·) Monod Equation.
(S∗

r ,B
∗

r ) = (SQ
r ,S1(t) − SQ

r ) where SQ
r fulfills Q = Vrµ(S

Q
r ).
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Mathematical Model for the Bioreactor: A PDE Approach

Spatial disparity of the contaminant in the bioreactor.

Ω∗
Substrate and Biomass concentrations ⇒
Convection-Diffusion-Reaction equation.

Fluid Flow ⇒ Vertical inflow:
u = (0, 0,−Q̄(t)) where Q̄ (m/s) is the flow
rate per unit of area.











dSr

dt
= ∇ · (DS∇Sr) − u∇Sr − µ(Sr)Br in Ω∗ , t > 0,

dBr

dt
= ∇ · (DB∇Br) − u∇Br + µ(Sr)Br in Ω∗ , t > 0.

(4)

DS,DB substrate and biomass diffusion coefficients (m2/s).
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We consider suitable initial conditions:

Sr(0, x) = S1(0), Br(0, x) = Binit ∀x ∈ Ω∗,

and boundary conditions:

Flux of the system: J = −D∇c + uc

D is the diffusion, u is the fluid flow and c is the concentration.










n · (−DS∇Sr + uSr) = −Q̄(t)Se(t)

n · (−DB∇Br + uBr) = 0
∀x ∈ Γ∗

in, t > 0,











n · (−DS∇Sr) = 0

n · (−DB∇Br) = 0
∀x ∈ Γ∗

wall ∪ Γ∗

out, t > 0.
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Simplification:

Γ
in

Γ
wall

Γ
out

Γ
sym

Ω

H

0 L

⇒ Change to cylindrical coordinates (r , z)
where r is the distance to the cylinder axis.

System (4) can be rewritten as:











dSr

dt
= 1

r
d
dr
(rDS

dSr

dr
) + d

dz
(DS

dSr

dz
) + Q̄(t)dSr

dz
− µ(Sr)Br in Ω, t > 0,

dBr

dt
= 1

r
d
dr
(rDB

dBr

dr
) + d

dz
(DB

dBr

dz
) + Q̄(t)dBr

dz
+ µ(Sr)Br in Ω, t > 0,

(5)
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We consider suitable initial conditions:

Sr(0, r , z) = S1(0), Br(0, r , z) = Binit ∀(r , z) ∈ Ω,

and boundary conditions:










DS
dSr

dz
+ Q̄(t)Sr = Q̄(t)Se(t)

DB
dBr

dz
+ Q̄(t)Br = 0

∀(r , z) ∈ Γin, t > 0,











dSr

dr
= 0

dBr

dr
= 0

∀(r , z) ∈ Γwall ∪ Γsym ∪ Γout, t > 0.
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The dynamics of the water resource can be described as follows:











dS1

dt
(t) = Q(t)

V
(Sout(t) − S1(t)), t > 0,

S1(0) = S1,0.

(6)

where Sout(t) =

∫

Γout
Sr(t,r ,z)dr

L
and Γout is the outlet through

which treated water leaves the reactor.
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Bioreactor with ODE model. Theoretical results
Bioreactor with PDE model. Genetic Algorithms

Optimization problem: Bioreactor with ODE model

{

Find Qopt ∈ X , such that
T (Qopt) = minQ∈X T (Q),

(7)

where T (Q) is the time required for achieving S1(T (Q)) = Slim,
with S1 being the solution of (2) (or 6).
X = {Q piecewise C1([0,+∞)) : 0 ≤ Q(t) < Vrµ(S1(t)) ∀t ≥ 0}.

• Flux is constant in time

Theorem

If Q is constant, then the time required for the solution of (3) to
attain the value Slim is:

T (SQ
r ) =

1
Vr

V
µ(SQ

r )
ln

(

S1,0 − SQ
r

Slim − SQ
r

)
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• Q is a time variable

Definition

If a functional relation of the form

SQ
r (t) = ω(S1(t)) ∀t ∈ [0,+∞)

can be found for the optimal control at time t for problem (7),
then ω is called optimal feedback.

Theorem

An optimal feedback Sopt
r must fulfill

Sopt
r (t) = arg min

S
Q
r (t)∈(0,S1(t))

µ(SQ
r (t))(SQ

r (t) − S1(t)).

Moreover t → Q(t) is decreasing along any optimal trajectory.
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Q is constant in time ⇒ Θ = [0,Vrµ(Slim)).

Q is a time variable: Q(t) is C1 and should be decreasing on
time!
We work with 5 optimization parameters:

(Q0, α1, α2, α3, α4) ∈ Θ = [0,Vrµ(S1(0))) × [0, 1]4

such that

Q(t) =



























Q0 t = 0
Q0 · α1 t = t1

Q0 · α1 · α2 t = t2

Q0 · α1 · α2 · α3 t = t3

Q0 · α1 · α2 · α3 · α4 t = t4

for 4 different fixed times t1, t2. t3 and t4

In the time intervals (ti , ti+1) (i = 0, . . . , 3), Q(t) is calculated
with Cubic Hermite Spline
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It is reasonable to think that in practice it is easier to use
Piecewise Constant Q(t).

Q(t) =



























Q0 t ∈ [0, t1)
Q0 · α1 t ∈ [t1, t2)
Q0 · α1 · α2 t ∈ [t2, t3)
Q0 · α1 · α2 · α3 t ∈ [t3, t4)
Q0 · α1 · α2 · α3 · α4 t ∈ [t4, t5)
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Genetic Algorithms

Global optimization method based on a natural selection process
that mimics biological evolution.

min
x∈Θ

f (x)

Θ ⊂ RN is the search space.

Creation a random initial population in the search space.

Successive reproduction of the population by the stochastic
steps Selection, Crossover, Mutation and Elitism.
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Genetic Algorithm: Sketch

Crossover MutationSelection

We iterate the process!Initial
Population

Final
Population

( 0.7 , 0.3 )

REPRODUCTION Best
Individual

Best
Individual

( 0.7 , 0.1 )

We want to minimize: J(x)=x
1
2 + x

2
2

( 1 , 0.5 )

( 4 , 0.6 )

( 2 , 0 )

( 5, 5 )

( 0.7 , 0.3 )

( 0.8 , 0.3 )

( 1 , 0.5 )

( 1 , 0.5 )

( 2 , 0 )

( 0.7 , 0.3 )

( 0.8 , 0.3 )

( 0.8 , 0.3 )

( 1 , 0 )

( 1 , 0.5 )

( 2 , 5 )

( 0.7 , 0.3 )

( 0.8 , 0.3 )

( 0.8 , 0.3 )

( 1 , 0.3 )

( 1 , 0.5 )

( 2.3 , 1 )

( 0.7 , 0.1 )

( 0.8 , 0.3 )

( 0.7 , 0.3 )
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Selection: Individuals are selected according to their fitness
value.

Roulette Wheel Selection:

Individual number Individual Fitness value % of Total

1 (0, 1) 169 22.72

2 (1, 0) 576 6.67

3 (0, 0) 64 59.99

4 (1, 1) 361 10.63

Total 1170 100.0

Table: Roulette Wheel Selection.

3

6.67%
2

10.63%

4

1

22.62%

59.98%
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Crossover: Create a new solution candidate by combining the
characteristics of two existing individuals
Arithmetic Crossover

Chil1 = a · Parent1 + (1 − a) · Parent2

Chil2 = (1 − a) · Parent1 + a · Parent2
a ∈ [0, 1]

Mutation: Randomly modifies the value of one or more genes
of an individual.
Non-Uniform mutation: To mutate an individual x , we
compute

x ′ =

{

x +∆(g , b − x) if τ = 0
x − ∆(g , b − x) if τ = 1

where ∆(g , y) = (1 − r
(1−

g

gmax
)b

).
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Elitism: Ensures that at least one copy of the best
individual(s) of the current generation is directly copied to the
next generation.

Matrix formulation

X i+1 = (IN − E i)(C iS iX i + Mi) + E iX i

-X i : Current generation
-E i : Elitism operator
-C i : Crossover operator
-S i : Selection operator
-Mi : Mutation operator
-IN : Identity matrix

Stopping criteria:

Generation number
No Improvement generation number
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Hybrid Genetic Algorithm
1 Coarse search of global minimum with GA

2 Refine the local search by using a Gradient Descent method.

xk+1 = xk − ∇f (xk)αk,

where αk is the step length which must fulfill

f (xk − ∇f (xk)αk) ≤ f (xk − ∇f (xk)α) for all α ≥ 0.
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Numerical Optimization Results: ODE Approach

µ(·) Monod Function
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opt with optimal constant control q

T
1
opt with optimal feedback q

Optimal feedback can reduce the decontamination time by half!
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Numerical Optimization Results: PDE Approach

µ(·) Monod, Slim = 0.1, Q(t) continuously differentiable.

S1(0) (mol/m3) Time Qopt
HGA(const) (s) Time Qopt

HGA(Tdep) (s)

DS = DB = 100 (m2/s)

5 72750 46650

10 81840 48090

20 90760 49360

DS = DB = 0.01 (m2/s)

5 87710 55120

10 100360 57870

20 58870 26460

Time dependent Q can reduce the decontamination time in 55%!
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Numerical Optimization Results: PDE Approach

µ(·) Monod, Slim = 0.1, Q(t) Piecewise constant.

S1(0) (mol/m3) Time Qopt
HGA(const) (s) Time Qopt

HGA(Tdep) (s)

DS = DB = 100 (m2/s)

5 72750 49390

10 81840 51560

20 90760 55010

DS = DB = 0.01 (m2/s)

5 87710 60120

10 100360 62990

20 58870 23340

Time dependent Q can reduce the decontamination time in 60%!
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Comparison between ODE and PDE Approaches: Q(t)
continuously differentiable

DS = DB = 100 (m2/s)

Both fluxes are suitable.

Decontamination times are
comparable.
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DS = DB = 0.01 (m2/s)

Optimal fluxes obtained with
the ODE approach are not
suitable ⇒ we are not able to
achieve the target.
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Comparison between ODE and PDE Approaches: Q(t)
piecewise constant

DS = DB = 100 (m2/s)

Both fluxes are suitable.

Decontamination times are
comparable.
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Maŕıa Crespo Moya Mathematical Optimization in Industrial Processes



Mathematical model
Optimization problem

Numerical Optimization Results
Conclusions and Future work

Numerical Optimization Results: Comparison between

Q(t) continuously differentiable and piecewise constant

µ(·) Monod, Slim = 0.1

S1(0) (mol/m3) Time Qopt
HGA(CD) (s) Time Qopt

HGA(PC) (s)

DS = DB = 100 (m2/s)

5 46650 49390

10 48090 51560

20 49360 55010

DS = DB = 0.01 (m2/s)

5 55120 60120

10 57870 62990

20 26460 23340

Q(t) continuously differentiable can reduce the decontamination
time in 10%!
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Conclusions

ODE approach for the bioreactor: We obtain the optimal flux
with theoretical results.

PDE approach for the bioreactor: We obtain the optimal flux
using an Hybrid Genetic Algorithm.

The decontamination time can be reduced by half if the
optimal flux is chosen as a time variable rather than constant
in time.

For small diffusivities DS and DB the theoretical results
obtained for the ODE approach are not suitable. We are not
able to achieve the target.
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Future work

Give an existence and uniqueness result for the system
presented in the PDE approach for the bioreactor.

Give a suitable nondimensionalization for the system presented
in the PDE approach.

More intensive study of HGA.

Consider inhomogeneity in the water resource.
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