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Our goal in these notes is to present a detailed proof of the Riemann–Hilbert cor-

respondence in its classical setting, which relates the solutions of a certain ordinary

differential equation on a complex domain to representations of the fundamental group

of that domain. In addition, we will discuss some generalizations of this correspondence

to higher-dimensional complex manifolds. Our main reference will be [2].

1. Fundamental group, covering spaces and local systems

1.1. Covering spaces. Let us recall some basic topological notions. Given a topological

space X, a cover (or covering space) of X is a topological space Y together with a

surjective continuous map p : Y → X such that, for each p ∈ X, there exists an open

neighbourhood p ∈ U ⊆ X such that p−1(U) =
⊔

i∈I Vi (i.e. p−1(U) is a disjoint union

of open sets of Y ) and p|Vi
: Vi → U is a homeomorphism for each i ∈ I.
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. . .

⊔
i∈I Vi

−→
p

U

Figure 1. Cover of a topological space.

A morphism between two covers Y1
p1→ X and Y2

p2→ X is a continuous map f : Y1 → Y2

such that p1 = p2 ◦ f (i.e. making the corresponding diagram commute). We denote by

HomX(Y1, Y2) the set of such maps. These concepts allow us to consider the category of

covers of X with morphisms of cover as morphisms. It will be denoted by Cov(X).

The following result will be useful in what follows.

Lemma 1.1. Let p : Y → X be a cover, Z a connected space and f, g : Z → Y continuous

maps such that p ◦ f = p ◦ g. If there exists a point z0 ∈ Z such that f(z0) = g(z0), then

f = g.

Proof. Let us consider the subset A = {z ∈ Z : f(z) = g(z)} of Z. Since there exists

a point z0 ∈ Z such that f(z0) = g(z0), the set A is non-empty. Let us show that

A is open in Z. Let z ∈ A and consider the point y = f(z) = g(z) ∈ Y . Given a

connected open neighbourhood U of p(y) ∈ X, let Vi ⊆ Y be the open component of

p−1(U) homeomorphic to U such that y ∈ Vi. The continuity of f and g guarantees the

existence of an open neighbourhood W z of z ∈ Z such that f(W z), g(W z) ⊆ Vi. Let us

suppose that there exists a point w ∈ W such that f(w) ̸= g(w). Hence, since p maps

Vi homeomorphically onto Ui, we have that p(f(w)) ̸= p(g(w)), which contradicts that

p◦f = p◦g. Thus, f|W z = g|W z , so z ∈ W z ⊆ A and A is open in Z. A similar argument

shows that A is closed in Z, so we conclude that A = Z and f = g. □

As a consequence, any automorphism of a connected cover with a fixed point is trivial.

Given a discrete topological space F ̸= ∅, the first projection X × F → X is a cover

called the trivial cover. A cover isomorphic to some trivial cover is called trivial.

Proposition 1.2. Given a cover p : Y → X, each point of X has an open neighbourhood

U such that the restriction of p to p−1(U) is a trivial cover. Moreover, if X is connected,

all the fibres p−1(x) are all homeomorphic to the same discrete space I.

Proof. Let x ∈ X be a point and U ⊆ X an open neighbourhood of x. Thus, we can

write p−1(U) =
⊔

i∈I Vi for some open subsets Vi ⊆ Y for each i ∈ I. Hence, the map
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f : p−1(U) → U×I given by f(vi) = (p(vi), i) for vi ∈ Vi maps homeomorphically p−1(U)

onto U × I, where I is equipped with the discrete topology. This map turns out to be

an isomorphism of covers. □

Let us consider a group G (left-)acting continuously on a topological space Y . We

say that the action of G on Y is even if each point y ∈ Y has an open neighbourhood

y ∈ U ⊆ Y such that gU ∩ U ̸= ∅ for some g ∈ G if and only if g = e. It can be proved

that a continuous even action of a group G on a topological space Y yields to a cover

Y → Y/G given by the canonical projection.

Given a connected and locally simply connected1 topological space X and a cover

p : Y → X, let us consider the group Aut(Y |X) of automorphisms of the cover, i.e. the

group of isomorphisms from Y
p→ X to itself (this is usually called the deck group of the

cover). We have a continuous left-action of Aut(Y |X) on Y . Moreover, it is easy to see

that each element of Aut(Y |X) maps p−1(x) onto itself for each x ∈ X, hence we have

a continuous left-action of Aut(Y |X) on p−1(x) for each x ∈ X.

If p : Y → X is a connected cover (i.e. Y is a connected space), the action of Aut(Y |X)

of Y is even. Something like a reciprocal of this statement is that, if G is a group acting

evenly on a connected space Y , the automorphism group of the cover p : Y → Y/G is

isomorphic to G.

Given a connected cover p : Y → X, since p is Aut(Y |X)-invariant, the action of

Aut(Y |X) on Y gives rise to a factorisation of p given by

p : Y −→ Y/Aut(Y |X)
p−→ X,

where Y → Y/Aut(Y |X) is the canonical projection. The cover p : Y → X is called

a Galois cover (or regular cover or normal cover) if the map p is a homeomorphism.

In particular, if a group G acts evenly on a connected topological space Y , the cover

Y → Y/G is Galois.

Theorem 1.3. Galois Correspondence for Covering Spaces I

Let p : Y → X be a Galois cover and let us consider the deck group G = Aut(Y |X).

Given a subgroup H ⊆ G, the map p induces a cover pH : Y/H → X. Reciprocally, given

a connected cover q : Y ′ → X and a morphism f ∈ HomX(Y, Y
′), the map f : Y → Y ′

is a Galois cover and Y ′ ∼= Y/H for the subgroup H = Aut(Y |Y ′) ⊆ G. Moreover, the

assignments

Sub(G) −→ Cov(X) : H 7→ Y/H Cov(X) −→ Sub(G) : Y ′ 7→ Aut(Y |Y ′)

induce a bijection between subgroups of G and covers Y ′ → X. Moreover, Y ′ → X is

Galois if and only if H is a normal subgroup of G, in which case Aut(Y ′|X) ∼= G/H.

1Recall that a topological space is locally (simply, path-) connected if each point has a basis of (simply,

path-) connected open neighbourhoods.
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Proof. A proof can be found in [2, Theorem 2.2.10]. □

1.1.1. The Universal Cover. Let p : Y → X be a simply connected cover with X a

path-connected and locally simply connected space. If q : Y ′ → X is another simply

connected cover, it can be proved that there exists a unique homeomorphism f : Y → Y ′

such that p = q ◦ f (i.e. making the corresponding diagram commute). This fact can be

rephrased by saying that two simply connected covers are isomorphic. For this reason,

a simply connected cover p : Y → X is called a universal cover.

In order to give a more general construction, let us assume for now that X is connected

and locally simply connected topological space. Let us recall some basic topological

notions. A path in X is a continuous map γ : [0, 1] → X. We say that γ is closed if

γ(0) = γ(1). Two paths γ, σ : [0, 1] → X are homotopic if γ(0) = σ(0), γ(1) = σ(1)

and there exists a continuous map H : [0, 1] × [0, 1] → X such that H(0, t) = γ(t) and

H(1, t) = σ(t) for each t ∈ [0, 1].

γ

σ

X

γ(0) = σ(0)

γ(1) = σ(1)

Figure 2. Homotopic paths.

Given two paths γ, σ : [0, 1] → X with γ(0) = σ(1), we define its juxtaposition2 as the

continuous map γ ∗ σ : [0, 1] → X given by

(γ ∗ σ)(t) =
{

σ(2t) if 0 ≤ t ≤ 1
2

γ(2t− 1) if 1
2
≤ t ≤ 1

.

It is well-known that, given a point x ∈ X, the set π1(X, x) of homotopy classes of closed

paths based on x together with the binary operation given by [α] ∗ [β] = [α ∗ β], where
[·] denotes the homotopy class, is a group called the fundamental group of X based at

the point x.

2Note that the above convention for juxtaposition of paths differs from the convention of many

textbooks.
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We have all the ingredients to define our candidate for universal cover. Given a point

x ∈ X, let us consider the set X̃x of homotopy classes of paths σ : [0, 1] → X with

σ(0) = x. Since homotopic paths have the same endpoints, the map p : X̃x → X given

by p([σ]) = σ(1) is well-defined. Let us now consider a topology on X̃x giving a basis

of open neighbourhoods of a given zx = [σ] ∈ X̃x. Let U z be a simply connected open

neighbourhood of z = p(zx) = σ(1) ∈ X. We define Ũ zx to be the set of homotopy classes

of juxtapositions γ ∗ σ, where γ : [0, 1] → X is a path with γ(0) = z and γ([0, 1]) ⊆ U z.

Note that Ũ zx is well-defined since U z is simply connected.

Hence, if {U z
i }i∈I is a basis of simply connected open neighbourhoods of z (whose

existence is guaranteed since X is locally simply connected),
{
Ũ zx
i

}
i∈I

is a basis of open

neighbourhoods of zx. Moreover, p is a continuous map with respect to this topology

and a connected cover. Indeed, given a point z ∈ X and a simply connected open

neighbourhood U z, we have that p−1(U z) =
⊔

zx∈p−1(z) Ũ
zx and p|Ũzx is a homeomorphism

for each zx ∈ p−1(z).

Proposition 1.4. The cover X̃x → X is Galois.

Let us now assume that X is path-connected and locally simply connected. In this

case, given two distinct points x, y ∈ X, there exists a path σ : [0, 1] → X joining

them, i.e. such that σ(0) = x and σ(1) = y. In this case, the map X̃y → X̃x given

by [γ] 7→ [γ ∗ σ] is an isomorphism of covers, hence the construction of the space X̃x

described above is unique (up to isomorphism) and does not depend on the choice of the

base point x ∈ X, so we can drop the subindex of X̃x.

Proposition 1.5. Let X be a path-connected and locally simply connected topological

space. The cover X̃ → X is simply connected, therefore it is a universal cover.

In particular, since simply connected covers are isomorphic, last result ensures that

every universal cover is isomorphic to X̃ → X, so this cover is usually called the universal

cover.

Remark 1.6. Although we will be able to prove Propositions 1.4 and 1.5 as consequences

of Theorem 1.12, we state these properties here to conclude the discussion on universal

covers. Furthermore, they will no longer be used in what follows, so we omit their proofs.

Let us conclude the section by computing the automorphism group Aut(X̃x|X).

Proposition 1.7. There is a group isomorphism Aut(X̃x|X) ∼= π1(X, x).

Proof. As we already know, there is a continuous left-action of Aut(X̃x|X) on X̃x, thus

we can regard the said action as a continuous right-action of Aut(X̃x|X)op, where (·)op



6 Á. MOLINA-NAVARRO

denotes the opposite group3. It is easy to check that the map

X̃x × π1(X, x) −→ X̃x : (zx = [σ], [α]) 7→ zx[α] = [σ ∗ α]

is a right-action of π1(X, x). Moreover, given a fixed element [α] ∈ π1(X, x), the map

ϕ[α] : X̃x → X̃x given by ϕ[α](zx) = zx[α] is a continuous map, so the right-action of

π1(X, x) is continuous. Moreover, if zx = [σ], we have that

(p ◦ ϕ[α])(zx) = p(ϕ[α](zx)) = p(zx[α]) = p([σ ∗ α]) = (σ ∗ α)(1) = σ(1) = p([σ]) = p(zx),

thus ϕ[α] : X̃x → X̃x is an automorphism of covers, i.e. ϕ[α] ∈ Aut(X̃x|X). Therefore, we

have a group homomorphism π1(X, x) → Aut(X̃x|X)op given by [α] 7→ ϕ[α] (we consider

the homomorphism in this way so that it is compatible with the right-actions on X̃x

described above). Let us denote by cx ∈ X̃x the homotopy class of the constant path

based on x. Given a non-trivial element [α] ∈ π1(X, x), ϕ[α](cx) = cx[α] cannot be equal

to cx since [α] is non-trivial, so the homomorphism is injective. Let ϕ ∈ Aut(X̃x|X)

be an automorphism and let zx = [σ1] ∈ X̃x be a point. If we consider the point

ϕ(zx) = wx = [σ2] ∈ X̃x, we have that σ1(1) = σ2(1). Hence, σ−1
1 ∗ σ2 is a closed

path based on x in X which verifies σ1 ∗ (σ−1
1 ∗ σ2) = σ2. Hence, the automorphism

ϕ[σ−1
1 ∗σ2]

◦ ϕ−1 of X̃x satisfies that

(ϕ[σ−1
1 ∗σ2]

◦ ϕ−1)(wx) = ϕ[σ−1
1 ∗σ2]

(ϕ−1(wx)) = ϕ[σ−1
1 ∗σ2]

(zx) = zx[σ
−1
1 ∗ σ2] = [σ2] = wx,

i.e. wx ∈ X̃x is a fixed point. Therefore, since X̃x → X is connected, Lemma 1.1 assures

that ϕ[σ−1
1 ∗σ2]

= ϕ, so the group homomorphism π1(X, x) → Aut(X̃x|X)op is surjective

and hence an isomorphism.

Note that, although we have proved the existence of an isomorphism between π1(X, x)

and Aut(X̃x|X)op, the natural isomorphism between a group and its opposite gives us

the stated isomorphism. □

This result allows us to deduce a particular version of the Galois correspondence.

Corollary 1.8. Galois Correspondence for Covering Spaces II

Consider the cover p : X̃x → X. Given a subgroup H ⊆ π1(X, x), the map p induces

a cover pH : X̃x/H → X. Reciprocally, given a connected cover p : Y → X and a

morphism f ∈ HomX(X̃x, Y ), the map f : X̃x → Y is a Galois cover and Y ∼= X̃x/H for

the subgroup H = Aut(X̃x|Y ) ⊆ G. Moreover, the assignments

Sub(π1(X, x)) −→ Cov(X) : H 7→ X̃x/H Cov(X) −→ Sub(π1(X, x)) : Y 7→ Aut(X̃x|Y )

induce a bijection between subgroups of π1(X, x) and covers Y → X. Moreover, Y → X

is Galois if and only if H is a normal subgroup of π1(X, x), in which case Aut(Y |X) ∼=
π1(X, x)/H.

3Given a group G, its opposite group Gop is the group which is setwise identical to G and whose

binary operation is given by (g, h) 7→ h · g, where · is the binary operation of G. Of course, there is a

natural isomorphism G ∼= Gop.
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1.2. The monodromy action. We now want to show that given a cover p : Y → X,

the fibre p−1(x) carries an action of the fundamental group π1(X, x) for each x ∈ X. Let

us assume for the rest of the section that X is a connected and locally simply connected

space, although some results can be proved with weaker conditions.

Lemma 1.9. Path Lifting Property

Let p : Y → X be a cover, y ∈ Y and x = p(y):

(i) given a path γ : [0, 1] → X with γ(0) = x, there exists a unique path γ̃ : [0, 1] → Y

with γ̃(0) = y and p ◦ γ̃ = γ;

(ii) moreover, let σ : [0, 1] → X be a path homotopic to γ. Then γ̃ and σ̃ are

homotopic.

Proof. A proof can be found in [2, Lemma 2.3.2]. □

We are now ready to define the left-action of π1(X, x) on p−1(x). Given y ∈ p−1(x)

and [α] ∈ π1(X, x), let us define the map

π1(X, x)× p−1(x) −→ p−1(x) : ([α], y) 7→ [α]y = α̃(1),

where α̃ is the unique lifting of α : [0, 1] → X with α̃(0) = y and p◦α̃ = α. Note that this

map is well-defined due to Lemma 1.9. Moreover, since ([α] ∗ [β]) y = [α] ([β]y), the map

described above is therefore a left-action of π1(X, x) on p−1(x) called the monodromy

action of the cover.

The main purpose of this section is to show that the correspondence between covers

and its monodromy actions gives us an equivalence of categories. Given a fixed point

x ∈ X, let us consider the category π1(X, x)-Set whose objects are sets equipped with

a left-action of π1(X, x) and whose morphisms are π1(X, x)-maps, i.e. set-theoretical

maps f : A → B such that f([α]r) = [α]f(r) for each r ∈ A and [α] ∈ π1(X, x). Hence,

we can assign each cover p : X → Y to the fibre p−1(x), which carries the monodromy

action. Moreover, let f : Y1 → Y2 be a morphism of covers. By definition, f restricts to

a map p−1
1 (x) → p−1

2 (x) which we shall denote by fx. Given [α] ∈ π1(X, x) and a point

y ∈ p−1
1 (x), the uniqueness of the lifting ensures that

fx([α]y) = fx (α̃(1)) = (fx ◦ α̃) (1) = α̂(1) = [α]fx(y),

where α̃ is the unique lifting of α to Y1 with α̃(0) = y and α̂ is the unique lifting of α to

Y2 with α̂(0) = f(y). Thus, we can conclude the following.

Proposition 1.10. Given a point x ∈ X, the assignment Fibx : Cov(X) → π1(X, x)-

Set given by

Y
p→ X 7→ Fibx(Y ) = p−1(x)

f : Y1 −→ Y2 7→ Fibx(f) = fx : p−1
1 (x) → p−1

2 (x)

is a (covariant) functor.
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This functor will gives us the equivalence of categories we are looking for. However,

we need to do some preliminary work. Let us start by recalling some categorical facts

about equivalence of categories.

Recall that a functor F : C1 → C2 is fully faithful if each map FAB : Hom(A,B) →
Hom(F (A), F (B)) is bijective for each pair of C1-objects A and B. We say that F is

essentially surjective if each C2-object is isomorphic to some object of the form F (A)

for some C1-object A. It turns out that these conditions are sufficient for F to be an

equivalence of categories.

Lemma 1.11. A functor F : C1 → C2 is an equivalence of categories if and only if it is

fully faithful and essentially surjective.

Proof. A proof can be found in [2, Lemma 1.4.9]. □

Let us check the relation between the cover X̃x → X and the functor Fibx. Note that,

since X is not assumed to be path-connected, X̃x may depend on the base point x ∈ X.

Theorem 1.12. The functor Fibx is representable by the cover X̃x → X.

Proof. We divide the proof into three statements.

(I) For each cover q : Y → X, there is a bijection between the sets Fibx(Y ) and

HomX(X̃x, Y ).

Given a cover q : Y → X, we have to show that each point q−1(x) = Fibx(Y ) corresponds

to a unique morphism of covers X̃x → Y .

Given a point y ∈ q−1(x), let us define a morphism of covers πy : X̃x → Y . Given a

point zx = [σ] ∈ X̃x, we define πy(zx) = σ̃(1), where σ̃ : [0, 1] → Y is the unique lifting

of the path σ : [0, 1] → X with σ̃(0) = y. It can be proved that πy is a continuous map.

Moreover, since πy satisfies the chain of equalities

(q ◦ πy)(zx) = q (σ̃(1)) = (q ◦ σ̃) (1) = σ(1) = p([σ]) = p(zx),

πy is a morphism of covers. Hence, we have an assignment q−1(x) → HomX(X̃x, Y ) given

by y 7→ πy. Conversely, given a morphism of covers ϕ : X̃x → Y , let us consider the point

ϕ(cx) ∈ Y , where cx ∈ X̃x is the homotopy class of the constant path. Since p = q ◦ ϕ,
we have that

q(ϕ(cx)) = (q ◦ ϕ)(cx) = p(cx) = x,

so ϕ(cx) ∈ q−1(x). Thus, we also have an assignment HomX(X̃x, Y ) → q−1(x) given by

ϕ 7→ ϕ(cx), which is precisely the inverse of y 7→ πy.

(II) For each cover q : Y → X, the Hom-set HomX(X̃x, Y ) is equipped with a left-

action of π1(X, x).
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We have a right-action of Aut(X̃x|X) on HomX(X̃x, Y ). Indeed, consider the map

HomX(X̃x, Y )× Aut(X̃x|X) −→ HomX(X̃x, Y ) : (f, ϕ) 7→ fϕ = f ◦ ϕ.

Hence, we obtain a left-action of Aut(X̃x|X)op on HomX(X̃x, Y ). In particular, the bijec-

tion given in (I) gives us a left-action of Aut(X̃x|X)op on Fibx(Y ) = q−1(x). Moreover,

this action coincides with the monodromy action of π1(X, x) on q−1(x), so again, (I)

assures us that the left-action of Aut(X̃x|X)op on HomX(X̃x, Y ) coincides with the given

action of π1(X, x), so HomX(X̃x,−) can be regarded as a functor Cov(X) → π1(X, x)-

Set.

(III) There exists a natural isomorphism τ : Fibx → HomX(X̃x,−).

Parts (I) and (II) of the proof allow us to conclude that, for each cover q : Y → X, we

have an isomorphism of π1(X, x)-sets τY : q−1(x) → HomX(X̃x, Y ) given by τY (y) = πy

and whose inverse is given by τ−1
Y (ϕ) = ϕ(cx).

Given two covers Y
q→ X, Y ′ q′→ X and a morphism of covers f : Y → Y ′, let us

consider the points y ∈ Y and y′ = f(y) ∈ Y ′. We have to check if the diagram

q−1
1 (x)

τY //

Fibx(f)

��

HomX(X̃x, Y )

Hom(X̃x,f)
��

q−1
2 (x)

τY ′
// HomX(X̃x, Y

′)

is commutative. On the one hand, we have that

HomX(X̃x, f)(τY (y)) = HomX(X̃x, f)(πy) = f ◦ πy.

On the other hand, it holds that

τY ′(Fibx(f)(y)) = τY ′(fx(y)) = τY ′(y′) = π′
y′ .

Therefore, the uniqueness of the lifting ensures that f ◦ πy = π′
y′ , so the commutativity

of the diagram holds and hence τ is a natural isomorphism. □

We are now ready to prove the main theorem of the section.

Theorem 1.13. Correspondence Between Covers and π1(X, x)-Sets

Let X be a connected and locally simply connected space. Given a base point x ∈ X, the

functor Fibx : Cov(X) → π1(X, x)-Set induces an equivalence of categories.

Proof. Due to Lemma 1.11, we have to prove that Fibx is both fully faithful and essen-

tially surjective.

(I) Fibx is fully faithful.
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Given two covers p1 : Y1 → X and p2 : Y2 → X and a morphism ϕ : Fibx(Y1) →
Fibx(Y2), we have to show that there exists a unique morphism of covers f : Y1 → Y2

such that ϕ = Fibx(f). It is not restrictive to assume that both Y1 and Y2 are connected

(otherwise, the argument could be repeated on pairs of connected components). Due

to the fact that HomX(X̃x,−) is naturally isomorphic to Fibx, we can regard ϕ as a

map ϕ : HomX(X̃x, Y1) → HomX(X̃x, Y2) which sends the map πy to the map π′
ϕ(y)

(see the proof of Theorem 1.12). Due to the Galois correspondence for covers, we know

that πy : X̃x → Y1 is a Galois cover and it induces an isomorphism of covers πy :

X̃x/Aut(X̃x|Y ) → Y1. Moreover, since Hy = Aut(X̃x|Y1) can be seen as the stabiliser

of πy by the right-action of Aut(X̃x|X) on HomX(X̃x, Y1), we know that Hy embeds

into Hϕ(y) = Aut(X̃x|Y2), i.e. the stabiliser of π′
ϕ(y) by the right-action of Aut(X̃x|X) on

HomX(X̃x, Y2). Hence, the map π′
ϕ(y) : X̃x → Y2 is a Galois cover and induces a morphism

of covers π̂′
ϕ(y) : X̃x/Hy → Y2 (which may fail to be an isomorphism). Therefore, the

composition

f : Y1
(π)−1

y−→ X̃x/Hy

π̂′
ϕ(y)−→ Y2

is the our morphism of covers.

(II) Fibx is essentially surjective.

Let A be a left π1(X, x)-set. It is sufficient to prove that A is isomorphic to the fibre

of some cover when A contains a single π1(X, x)-orbit. Otherwise, we can decompose

A into its π1(X, x)-orbits. Given a point a ∈ A, let us consider the stabiliser H =

Stabπ1(X,x)(a) ⊆ π1(X, x). Hence, the Galois correspondence ensures the existence of the

cover pH : X̃x/H → X we are looking for. □

1.3. Locally constant sheaves. In a categorical language, a section is a right-inverse

of some morphism. Particularly, in the category Top of topological spaces, given a

continuous map p : Y → X, a section of p over U for some open subset U ⊆ X is a

continuous map s : U → Y such that p ◦ s = idY .

In this context, for each open subset U ⊆ X, we define the set FY (U) to be the set

of sections s : U → Y . Moreover, given another open subset V ⊆ U , we define the map

FY (U) → FY (V ) by restricting sections over U to V . This construction yields to a sheaf

FY : Open(X) −→ Set

called the sheaf of sections of p : Y → X.

Remark 1.14. Some of the most relevant examples of sheaves arise as the sheaf of sections

of some morphism. Apart from the above example, we could consider the sheaf of sections

of a vector bundle on an algebraic variety, or more generally of a fibre bundle. In a more

technical sense, any sheaf is the sheaf of sections over its étale space (see below for the
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formal definition). This is why the elements of a sheaf are called the sections of the

sheaf.

As before, let us assume for the rest of the section that X is a fixed connected and

locally simply connected topological space.

Proposition 1.15. Given a cover p : Y → X, the sheaf FY is locally constant. As a

consequence, the sheaf FY is constant if and only if the cover is trivial.

Proof. Let x ∈ X be a point and U ⊆ X an open connected neighbourhood of x such that

the restriction p : p−1(U) → U is trivial, i.e. isomorphic to some trivial cover U×I → U .

Given a section s : U → Y (i.e. an element s ∈ FY (U)), s(U) is an open connected subset

of Y mapped isomorphically onto U by p, so it is a connected component of p−1(U) which

is in a bijective correspondence with I, so sections U → Y correspond in a bijective way

to points of I. Thus, the restriction sheaf (FY )|U is isomorphic to the constant sheaf

defined by the set I, so FY is a locally constant sheaf. □

The following result is an immediate consequence of the above proposition.

Corollary 1.16. Given a cover p : Y → X and a point x ∈ X, the stalk (FY )x is in a

bijective correspondence with p−1(x).

Proof. This is just a consequence of the second part of Proposition 1.2. □

Let p1 : Y1 → X and p2 : Y2 → X two covers and f : Y1 → Y2 a morphism of covers.

Let us consider the family of morphisms (in Set)

Σ(f) = {Σ(f)U : FY1(U) −→ FY2(U)}U∈Open(X) ,

where Σ(f)U(s) = f ◦ s. Indeed, this is a well-defined map since

p2 ◦ Σ(f)U(s) = p2 ◦ (f ◦ s) = (p2 ◦ f) ◦ s = p1 ◦ s = idU

so Σ(f)U(s) ∈ FY2(U). Thus, we can conclude the following.

Proposition 1.17. The assignment Σ : Cov(X) → LCSh(X) given by

Y
p→ X 7→ Σ(Y ) = FY

f : Y1 −→ Y2 7→ Σ(f) : FY1 → FY2

is a (covariant) functor.

Given a presheaf F on X, let us define the set XF =
⊔

x∈X Fx and consider the map

pF : XF → X given by pF(v) = x for each v ∈ Fx and each point x ∈ X. Let us now

define a topology on XF . Given an open subset U ⊆ X and a section s ∈ F(U), let us

consider the map is : U → XF given by is(u) = [s(u)], where [·] denotes the equivalence

class of the relation described in the definition of stalk at a point. We define the topology
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on XF to be the coarsest (i.e. smallest) topology in which the sets is(U) are open. Hence,

pF : XF → X and the maps is are continuous maps with respect to this topology. The

topological space XF is called the étale space of the presheaf F .

Proposition 1.18. If F is a locally constant sheaf on X, its étale space pF : XF → X

is a cover.

Proof. Let U ⊆ X be an open connected subset such that F|U is a constant sheaf. Hence,

it is easy to check that Fx = I for each x ∈ X and some set I. Hence, we have that

p−1
F (U) =

⊔
x∈U

Fx =
⊔
x∈U

I = U × I.

Therefore, the cover pF : p−1
F (U) → U is isomorphic to the trivial cover U × I → U ,

where I is equipped with the discrete topology. Hence, pF : XF → X is a cover. □

Let φ : F → G be a morphism of presheaves. As we know, the morphism φ induces a

family of morphisms (in Set) {φx : Fx → Gx}x∈X . Hence, the map

Étale(φ) : XF −→ XG

given by Étale(φ)|Fx = φx is a well-defined continuous map. Moreover, if we restrict

ourselves to the full subcategory of locally constant sheaves on X, the continuous map

Étale(φ) turns out to be a morphism of covers. Thus, we can conclude the following.

Proposition 1.19. The assignment Étale : LCSh(X) → Cov(X) given by

F 7→ Étale(F) = pF : XF −→ X

φ : F −→ G 7→ Étale(φ) : XF → XG

is a (covariant) functor.

We are now ready to prove the main theorem of the section.

Theorem 1.20. Covers and Locally Constant Sheaves

Let X be a connected and locally simply connected space. The functors Σ : Cov(X) →
LCSh(X) and Étale : LCSh(X) → Cov(X) are naturally isomorphic, i.e. they induce

an equivalence of categories.

Proof. We have to check that, given a locally constant sheaf F on X and a cover p : Y →
X, there are functorial isomorphisms F ∼= FXF and Y ∼= XFY

. On the one hand, consider

the morphism of sheaves F → FXF given by the family {F(U) → FXF (U) : s 7→ is}U∈Open(X).

Indeed, these maps are well-defined since

(pF ◦ is)(x) = pF(is(x)) = pF([s(x)]) = x,

so is ∈ FXF (U). On the other hand, since XFY
=

⊔
x∈X(FY )x ∼=

⊔
x∈X p−1(x), we have

a map Y → XFY
that sends each point y ∈ Y with p(y) = x to its corresponding point

in the stalk p−1(x) ∼= (FY )x.
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Let us check that these maps are isomorphisms by restricting ourselves to a distin-

guished open covering. Indeed, let {Ui}i∈I be an open covering of X such that F|Ui
is

constant for each i ∈ I. Hence, if we replace X by some Ui0 , we may assume that F
is a constant sheaf on X with constant value a fixed set I. Therefore, since there is an

isomorphism of covers XF ∼= X × I, where I is equipped with the discrete topology, and

there is an isomorphism of sheaves between the constant sheaf F and the sheaf of sections

of the trivial cover FX×I , the said isomorphisms F ∼= FXF and Y ∼= XFY
hold. More-

over, the corresponding commutative diagrams are satisfied, so Σ ◦ Étale ∼= IdLCSh(X)

and Étale ◦ Σ ∼= IdCov(X), as we wanted to show. □

We may combine this theorem with Theorem 1.13 to obtain the following result.

Theorem 1.21. Locally Constant Sheaves and π1(X, x)-Sets

Let X be a connected and locally simply connected space, and let x ∈ X be a base point.

The functor Stalkx : LCSh(X) → π1(X, x)-Set induces an equivalence of categories.

Proof. Note that the composition functor given by

LCSh(X)
Étale−→ Cov(X)

Fibx−→ π1(X, x)-Set

satisfies (Fibx ◦ Étale)(F) = Fibx(Étale(F)) = Fibx(XF) = p−1
F (x) = Fx = Stalkx(F).

□

The following result establishes a version of the above correspondence in which the

locally constant sheaves are sheaves of R-modules, where R is a commutative ring with

unit.

Theorem 1.22. Locally Constant Sheaves of R-Modules and R[π1(X, x)]-Modules

Let X be a connected and locally simply connected space, and let x ∈ X be a base point.

The category of locally constant sheaves of R-modules is equivalent to the category of left

R[π1(X, x)]-modules.

Proof. We know that the stalk Fx is an R-module by definition and it has a left π1(X, x)-

action equipped as a set. Moreover, since the action of π1(X, x) is compatible with the

R-module structure, the stalk Fx is precisely a left R[π1(X, x)]-module. □

1.3.1. Complex Local Systems. A locally constant sheaf of finite-dimensional C-vector
spaces on X is called a complex local system on X. This definition can be analogously

stated for an arbitrary field K, but for our purpose, we restrict ourselves to the field

K = C.

Moreover, the dimension of the stalks of a local system is constant on each connected

component, so since X is connected, all stalks have the same dimension, which we call
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the dimension of the local system. We denote the category of complex local systems on

X by LocC(X).

As a consequence of Theorem 1.22 and the well-known equivalence between the cate-

gory of finite-dimensional representations of a group and finitely generated left-modules

over the group algebra, we have the following result.

Corollary 1.23. Local Systems and Representations of π1(X, x)

Let X be a connected and locally simply connected space, and let x ∈ X be a base

point. The category of complex local systems on X is equivalent to the category of finite-

dimensional complex representations of π1(X, x).

Therefore, if we fix an integer n ∈ Z≥1, the last theorem states that an n-dimensional

complex local system on X is essentially the same thing as a group homomorphism

π1(X, x) → GLn(C). This representation of π1(X, x) is called the monodromy represen-

tation of the local system.

2. Monodromy representations of ordinary differential equations

Let D ⊆ C be a domain, i.e. a connected open subset. We devote this section

to present the relation between complex local systems on D and solutions of certain

homogeneous ODEs.

Consider the n-th order linear differential equation over D given by

y(n) + a1(z)y
(n−1) + · · ·+ an−1(z)y

′ + an(z)y = 0,

where ai ∈ O(D) for each i = 1, . . . , n. Given an open subset U ⊆ D, let us denote

by Sol(U) the set of holomorphic solutions to the previous differential equations over

U . Hence, we know that Sol(U) is closed under C-linear combinations, so Sol(U) is a

complex vector space for each open set U ⊆ D. Moreover, given a point z0 ∈ D, the

Cauchy–Kovalevskaya theorem implies the existence of a connected open neighbourhood

U ⊆ D containing z0 such that Sol(U) has a finite C-basis {y1, . . . , yn}, so Sol(U) ∼= Cn.

Moreover, since the restrictions of the basics solutions y1, . . . , yn to smaller open sets still

form a basis for the solutions, we deduce that Sol is a locally constant subsheaf of On of

complex vector spaces. We summarise these information in the following result.

Proposition 2.1. Let D ⊆ C be a domain. Consider the n-th order linear differential

equation over D given by

y(n) + a1(z)y
(n−1) + · · ·+ an−1(z)y

′ + an(z)y = 0,

where ai ∈ O(D) for each i = 1, . . . , n. The sheaf of solutions Sol is a complex local

system of dimension n over D.
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Due to Theorem 1.23 and the previous result, for a fixed point z ∈ D, we can assign

to the complex local system Sol a representation π1(D, z) → GLn(C). Let us now try to

describe this representation explicitly.

Given a closed path σ : [0, 1] → D based at a point z ∈ D, consider its homotopy class

γ = [σ] ∈ π1(D, z). Given an element sz ∈ Solz, we can understand sz as the germ of a

solution of our ODE in a neighbourhood of z ∈ D4. Consider the cover pSol : DSol → D

associated to the complex local system Sol. By definition of the monodromy action, the

element γ acts on sz ∈ p−1
Sol(z) = Solz as γsz = σ̃(1) ∈ p−1

Sol(z) = Solz, where σ̃ is the

unique lift of σ to DSol. Due to the compactness of the unit interval, there exist some

open sets U1, . . . , Uk ⊆ D such that σ−1(U1), . . . , σ
−1(Uk) cover [0, 1] and such that Sol|Ui

is constant for each i = 1, . . . , k. Moreover, there are solutions yi ∈ Sol(Ui) for each

i = 1, . . . , k such that yi and yi+1 agree on Ui ∩ Ui+1 for each i = 1, . . . , k − 1. In this

case, the germ of y1 at z is sz, and the germ of yk at z is γsz. That is why γsz is called

the analytic continuation of the germ sz. Note that, the assignment

γ ∈ π1(D, z) 7→ (sz ∈ Solz ∼= Cn 7→ γsz ∈ Solz ∼= Cn)

provides a group homomorphism ρ : π1(D, z) → Aut(Solz) ∼= GLn(C), which is precisely

the monodromy representation of the local system Sol.

D ⊆ C

σ

z

. . .

Figure 3. Trivialization of the closed path.

The existence (and uniqueness) of the analytic continuation of the germ sz along the

path σ is guaranteed by the fact that Sol is a locally constant sheaf. In contrast, for

an arbitrary germ of the sheaf On, analytic continuation along a path may not yield a

globally well-defined extension.

Remark 2.2. A similar reasoning can be made when one considers solutions of a system

of n linear differential equations in n variables, that is, a system of the form Y ′ = A(z)Y ,

where A(z) is an n× n matrix of holomorphic functions.

4Indeed, the elements of Solz are germs of local holomorphic solutions, which equivalently correspond

to initial condition data (y(z), y′(z), . . . , y(n−1)(z)) ∈ Cn.
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So far, we have associated the so-called monodromy representation to a certain ho-

mogeneous ordinary differential equation. But what about the converse? Well, we have

the following. Take D = C− {z0, . . . , zm} and consider the n-th order linear differential

equation over D given by

y(n) + a1(z)y
(n−1) + · · ·+ an−1(z)y

′ + an(z)y = 0,

where ai ∈ O(D) for each i = 1, . . . , n. We say that the point zj ∈ C is a regular

singularity if (z − zj)
iai(z) is holomorphic for each i = 1, . . . , n. A linear differential

equation whose singular points are all regular is called a fuchsian equation. In this

context, we have the following.

Problem 2.3. Hilbert’s 21st problem

Given a representation ρ : π1(D, z) → GLn(C), does there exist a fuchsian system of

linear differential equations whose monodromy representation equals ρ?

The answer is, in general, negative (see [3, Chapter 2]). However, as we will illustrate

in the next example, the answer is affirmative for 1-dimensional representations of the

punctured plane.

Example 2.4. Take D = C−{0} and consider a point z ∈ D−{r ∈ R : r < 0}. Given a

complex number m ∈ C∗, consider the 1-dimensional representation ρm : π1(D, z) → C∗

defined by ρ(γ) = m, where γ = [σ] is the generator of π1(D, z) ∼= Z and σ(t) = ze2πit.

Now, consider the differential equation

y′ =
µ

z
y,

where µ ∈ C verifies m = e2πiµ. Let us prove that the monodromy representation of this

equation is precisely ρm. At the point z, a local solution to this equation is given by

y(z) = eµ Log(z), where Log(·) denotes the principal branch of the complex logarithm. As

we analytically continue the germ sz = [y] ∈ Solz along γ, the branch of the logarithm

jumps by 2πi, since

Log(z) = ln |z|+ iArg(z) 7→ Log(z) + 2πi = ln |z|+ i(Arg(z) + 2π).

Thus, the analytic continuation of (the germ of) the solution y(z) = eµ Log(z) is given by

y(z) 7→ eµ (Log(z)+2πi) = e2πiµy(z) = my(z).

Therefore, the monodromy representation of this differential equation is precisely ρm.

3. Connections and the Riemann–Hilbert correspondence

In the previous section, given a complex domain D ⊆ C, we associated to each ho-

mogeneous ODE a representation of the fundamental group of D. We also verified that

1-dimensional representations of the punctured complex plane occur as monodromy rep-

resentations of certain ODEs. To establish a well-founded correspondence, however, it
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is necessary to work within a category that captures the holomorphic data inherent to

these ODEs. For our purposes, this will be the category of holomorphic connections.

In what follows, D ⊆ C denotes a complex domain. Let us recall some notions about

sheaf theory. As before, let O be the Ring-sheaf of holomorphic functions on our domain

D ⊆ C. Recall that a sheaf of O-modules is an Ab-sheaf F on D such that for each

open set U ⊆ D, the abelian group F(U) carries the structure of a O(U)-module, and

such that for every inclusion V ↪→ U of open subsets of D, the square

O(U)×F(U) F(U)

O(V )×F(V ) F(V )

is commutative. A morphism of sheaves of O-modules is a morphism of sheaves of

abelian groups that is compatible with the O-module structure. We say that the sheaf

of O-modules F is locally free if for every point z ∈ D, there exists an open set U ⊆ D

containing z such that F|U ∼= On
|U for some n ∈ Z≥1. The integer n is called the rank of

the locally free sheaf. We recall the following fundamental result.

Theorem 3.1. Locally free sheaves and holomorphic vector bundles

There is an equivalence between the category of locally free sheaves on D and the category

of holomorphic vector bundles over D.

Recall that a holomorphic 1-form on D is a complex differential 1-form on D that can

be written, locally, in the form ω = fdz, where f is a holomorphic function. Thus, we

can consider the sheaf of holomorphic 1-forms Ω1
D, which is a sheaf of O-modules on D.

A holomorphic connection on D is a pair (E ,∇), where E is a locally free sheaf on D

and ∇ : E → E ⊗O Ω1
D is a morphism of sheaves of C-vector spaces5 that satisfies the

so-called Leibniz rule:

∇(fs) = df ⊗ s+ f∇(s)

for all open subsets U ⊆ D, f ∈ O(U) and s ∈ E(U). A morphism ϕ : (E ,∇) → (E ′,∇′)

between two connections is a morphism of O-modules ϕ : E → E ′ such that the diagram

E E ⊗O Ω1
D

E ′ E ′ ⊗O Ω1
D

∇

ϕ ϕ⊗id
Ω1
D

∇′

is commutative.

As we said, the category Connhol(D) of holomorphic connections on D will be the

appropriate setting for the Riemann–Hilbert correspondence. A natural question arises:

what is the relation between holomorphic connections and ODEs?

5That is, locally, a connection is C-linear.
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Example 3.2. Consider the sheaf On on D (which is, of course, locally free6) together

with the connection map

∇0 : On −→ On ⊗O Ω1
D = (Ω1

D)
n

defined by ∇0(f1, . . . , fn) = (df1, . . . , dfn). Let ∇ be another connection map on On.

Then, since

(∇−∇0)(fs) = f(∇−∇0)(s),

we deduce that∇−∇0 is anO-linear map (i.e. tensorial), so∇−∇0 ∈ HomO(On, (Ω1
D)

n).

Consequently, ∇−∇0 is given by an n× n matrix Λ of 1-forms (i.e. Λij = fijdz), so

∇(f) = ∇0(f) + Λf.

Therefore, a section f ∈ On(U) on some open set U ⊆ D verifies ∇(f) = 0 if, and only

if, it is a solution of the system of ODEs given by Y ′ = A(z)Y , where A(z)ij = −fij(z).

The previous example shows that, given a holomorphic connection (E ,∇) and an open

set U ⊆ D, the sections s ∈ E(U) which verify ∇(s) = 0 are the analogues of solutions of

a system of ODEs. These sections are called horizontal, and form a (sub)sheaf E∇ ⊆ E
of C-vector spaces. Using the previous example and the fact that over a non-compact

Riemann surface every locally free sheaf is free, we deduce the following result.

Proposition 3.3. Given a holomorphic connection (E ,∇), the sheaf of horizontal sec-

tions E∇ is a complex local system.

Now, we are ready to prove the classical version of the Riemann–Hilbert correspon-

dence on a complex domain D ⊆ C.

Theorem 3.4. Riemann–Hilbert correspondence on D

The assignment H : Connhol(D) → LocC(D) given by

E 7→ H((E ,∇)) = E∇

ϕ : (E ,∇) −→ (E ′,∇′) 7→ H(ϕ) = ϕ|E∇

is a (covariant) functor which induces an equivalence of categories.

Proof. Let us construct a functor in the opposite direction. Given a complex local system

L on D, consider the sheaf EL on D defined by

EL(U) = L(U)⊗C O(U)

for any open set U ⊆ D. Given a point z ∈ D, there exists some neighbourhood U ⊆ D

containing z such that L|U ∼= Cn (as sheaves) for some n ∈ Z≥1. Therefore, we have that

EL(U) = L(U)⊗C O(U) ∼= Cn ⊗C O(U) ∼= O(U)n,

so EL is locally free.

6A sheaf of O-modules that is isomorphic to On for some n is called a free sheaf of rank n.
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As before, consider an open subset U ⊆ D such that L|U ∼= Cn and fix a C-basis
{s1, . . . , sn} of L(U). Then, each section of EL(U) can be uniquely written as a sum∑n

i=1 si ⊗ fi, where fi ∈ O(U). Now, define ∇L|U by

∇L

( n∑
i=1

si ⊗ fi

)
:=

n∑
i=1

si ⊗ dfi.

Since two bases of L(U) differ by a matrix whose entries lie in C, this definition does

not depend on the choice of basis. Therefore, the ∇L|U defined over the various U patch

together to give a map ∇L defined over the whole of D. □

It is worth noting that the Riemann–Hilbert correspondence holds for arbitrary Rie-

mann surfaces. Moreover, it can be generalised to higher-dimensional complex mani-

folds, provided that an additional condition is imposed on the holomorphic connections,

namely, that they are flat, i.e. that they have zero curvature. This condition is auto-

matically satisfied for one-dimensional complex manifolds.

Appendix A. Sheaves

Sheaf theory allows us to study some algebraic data attached to the open sets of a

topological space and defined locally with respect to them. In particular, it plays a

crucial role in the theory of algebraic geometry. Throughout this dissertation, we will

assume basic concepts and results from category theory. Our main reference for the

categorical machinery will be [1].

For the sake of simplicity, in what follows C denotes a category from among the cate-

gory Set of sets, the categoryAb of abelian groups or the categoryRing of commutative

unitary rings.

Given a topological space X, let us consider the category Open(X), whose objects

are the open subsets of X and whose Hom-sets are given by

Hom(V, U) =

{
∅ if V ̸⊆ U

{V ↪→ U} if V ⊆ U
.

A C-presheaf F on X is a contravariant functor F : Open(X) → C. Let us establish

some related notations. Given U ∈ Open(X), the elements of F(U) are usually called

sections for further discussion) over U . If V ⊆ U is an open set, the morphism

F(V ↪→ U) : F(U) −→ F(V )

is denoted by ρUV . Given a section s ∈ F(U), we denote by s|V the induced section

ρUV (s) ∈ F(V ).

A C-presheaf F on a topological space X is a C-sheaf if it satisfies the following

conditions:
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(i) Locality. If U ⊆ X is an open set, {Vi}i∈I is an open covering of U and s, t ∈
F(U) are sections such that s|Vi

= t|Vi
for each i ∈ I, then s = t.

(ii) Gluing. Let U ⊆ X be an open set and {Vi}i∈I an open covering of U . Given

sections si ∈ F(Ui) such that si|Vi∩Vj
= sj|Vi∩Vj

for each i, j ∈ I, there is a

(unique) section s ∈ F(U) such that s|Vi = si for each i ∈ I.

Example A.1. Sheaves of functions. Given two topological spaces X and Y , we can

assign to each open subset U ⊆ X the ring of continuous functions C(U, Y ). Thus, we

can consider the sheaf of continuous functions C(−, Y ). In this case, given an open set

V ⊆ U and a continuous function f : U → Y , f|V is just the restriction of f to V . As a

special case, if X were a complex manifold, we could consider the sheaf of holomorphic

functions O(−,C), which will be simply denoted as O.

Example A.2. Constant sheaves. Given a topological space X and a discrete space

I (i.e. a topological space with the discrete topology), consider the sheaf FI defined by

FI = C(−, I). Note that, if U ⊆ X is a connected open subset, a continuous map U → I

must be constant, so FI(U) = I. The sheaf FI is called the constant sheaf on X with

value I. More generally, a sheaf is called constant if it is isomorphic (see below for the

definition of morphism of sheaves) to a constant sheaf FI for some discrete space I.

Given a presheaf F on a topological space X and a fixed open subset U ⊆ X, we define

its restriction to U as the presheaf F|U : Open(U) → C given by F|U(V ) = F(V ). This

concept allows us to define the notion of a locally constant sheaf, which will appear later

in this dissertation.

Example A.3. Locally constant sheaves. Given a topological space X, we say that

a C-sheaf F on X is locally constant if each point p ∈ X has an open neighbourhood

U ⊆ X such that F|U is a constant C-sheaf.

Given a C-presheaf on a topological space X and a point p ∈ X, the stalk of F at the

point p is the quotient object given by

Fx =
(
⊔x∈U∈Open(X)F(U)

)
/ ∼,

where s ∈ F(U) and t ∈ F(V ) satisfy s ∼ t if and only if there exists an open set

x ∈ W ⊆ U ∩ V such that s|W = t|W . In a categorical language, the stalk of F at x ∈ X

can be defined as the direct limit

Fx = lim−→F(U)

over the open sets U ∈ Open(X) with x ∈ U ordered by inclusion. Note that, given a

point x ∈ X, the assignment F 7→ Fx gives rise to the stalk functor Stalkx : PSh(X) →
C, where PSh(X) denotes the category of C-presheaves.

Let F and G be C-presheaves on a topological space X. A morphism of presheaves

φ : F → G is just a natural equivalence of functors, i.e. a family of morphisms {φ(U) :
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F(U) → G(U)}U∈Open(X) such that, given an inclusion arrow V ↪→ U , the following

diagram is commutative:

F(U)
φ(U)

//

ρFUV
��

G(U)

ρGUV
��

F(U)
φ(V )

// G(U)

In particular, an isomorphism is a morphism which has a two-sided inverse.

Given two sheaves F and G on a topological space X, a morphism of sheaves (i.e.

a morphism of its underlying presheaves) φ : F → G induces a family of morphisms

on the stalks {φx : Fx → Gx}x∈X . Moreover, φ is an isomorphism if and only if φx is

an isomorphism for every x ∈ X. The opposite, however, is not true: a collection

of isomorphisms {Fx → Gx}x∈X does not guarantee the existence of an isomorphism of

sheaves F → G.

Given a continuous map between topological spaces f : X → Y and a C-sheaf F on X,

we define the direct image of F as the C-sheaf f∗F on Y given by f∗F(V ) := F(f−1(V ))

for each Y ∈ Open(Y ). This definition allows us to state the following result.

Proposition A.4. Let f : X → Y be a continuous map between topological spaces.

f∗ defines a (covariant) functor Sh(X) → Sh(Y ), where Sh(·) denotes the category of

C-sheaves over the corresponding topological space.
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