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Operators algebras and modular entropy in holography.

The main goal will be to motivate the use of operator algebras in
physics.

In particular, we will focus on its application to quantum field theory
(AQFT) and how it allows us to better understand certain phenomena
such as entanglement.

It is not just a mathematical trick.

We will focus on its recent application to holography in particular in
calculations of Rényi entropy and Ryu-Takayanagi as a quantum error
correction code (QECC).
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Quantum mechanics postulates and entanglement

A system A in quantum mechanics is described by a Hilbert space
HA.

States given by positive hermitian matrices with unit trace, which we
call density matrices: ρ ∈ Mn×n(C).
An observable O will be given by a self-adjoint matrix acting in H and
the expectation value of said observable is given by:

⟨O⟩ = Tr[ρO] (1)

Time evolution of state is given by an unitary matrix, where H is a
hermitian matrix called the Hamiltonian.

ρ(t) = eiHtρe−iHt (2)
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Quantum mechanics postulates and entanglement

We can then create from states in A and B a joint state in
HAB = HA ⊗HB. Given two states in A and B:

ρAB = ρA ⊗ ρB (3)

A state in a bipartite system is said to be separable if ρ ∈ HAB can be
written as:

ρ =
n∑

j=1

pjρA,j ⊗ ρB,j (4)

States which are not separable are said to be entangled.
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Quantum mechanics postulates and entanglement

We will say that a state is pure if there exists v ∈ H such that
ρ = v†v = |v⟩ ⟨v |. A state that is not pure is called mixed.

Given a state ρAB we can construct a state in one of the subsystems
by what it is called: partial trace:

TrB[ρAB] := (IA ⊗ TrB)(ρAB) (5)
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Measures of entanglement

Definition (Shannon entropy)
Let X be a discrete random variable on a finite set {xi}n

i=1 with a
probability distribution function p(x) = Pr(X = x) then we can define the
Shannon entropy as:

H(X) = −
∑
x∈X

p(x) log2 p(x) (6)

Definition (von Neumann entropy)
Let ρ ∈ L(H) be a state where dimH <∞ then we can define the von
Neumann entropy as:

S = −Tr[ρ log ρ] = ⟨− log ρ⟩ρ (7)

We call the following expression relative entropy:

S(ρ||σ) = −S(ρ)− Tr[ρ log σ] (8)
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Measures of entanglement

Theorem (Strong subadditivity)
Let ρABC ∈ L(HA ⊗HB ⊗HC) and ρi the corresponding reduced matrices
to Hi then the following inequality holds:

S(ρABC) + S(ρB) ≤ S(ρAB) + S(ρBC) (9)

Similarly one can define mutual information as:

I(A : B) = S(ρA) + S(ρB)− S(ρAB) (10)

Definition
Rényi entropies: Let α ∈ [0,∞] then:

Sα =
1

1 − α
lnTr [ρα] for α ∈ (1,∞)

S0 = ln rank(ρ)

S∞ = − ln ||ρ||∞
Franco Salinas Pytel Operator algebras and modular entropy in holography 9th of October, 2025 8 / 38



Measures of entanglement

Thus, entanglement tells us that there are "hidden" correlations
between the two subsystems.

Figure: Spooky action at a distance

Suppose we have a state ρA in a certain system HA. We can purify it:
find a bigger Hilbert space HB and a pure state ρ such that
ρA = TrB[ρ].
Through purification one can find that a pure state in a bipartite
system HAB is separable if and only if the reduced states (partial
trace) are also pure.
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Gibbs states

In QM Gibbs states are an example of equilibrium states:

ρ =
e−βH

Z
(11)

Where Z = Tr[e−βH ] and H is a self-adjoint operator acting in H.

Their von Neumann entropy reproduces the second law of
thermodynamics:

S = −Tr[ρ log ρ] = βTr[ρH]− β log Z (12)

S = βE − βF (13)
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C∗ algebras

Definition (C∗ algebras)
We will say that a Banach ∗-algebra is a C∗ algebra if it posses the
following property:

||A∗A|| = ||A||2 (14)

Theorem (Characterization of C∗ algebras)
Let A be a C∗ algebra, then A is isomorphic to a normed closed
self-adjoint algebra of bounded operators on a Hilbert space

Theorem (Characterization of commutative C∗ algebras)
Let A be a commutative C∗ algebra, then it it is isometrically isomorphic to
the algebra of continuous functions that vanish at infinity C0(X ) where X is
a locally compact Haussdorff space.
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Representation of C∗-algebras

Definition (Representation of C∗-algebras)
Let H be a complex Hilbert space, A a C∗-algebra and π : A −→ L(H) a
∗-morphism. We say that the pair (π,H) is a representation of A.

Cyclic representations (π,H, x) i.e {π(A)x : A ∈ A} is dense in H.

Irreducible representations are those where the only invariant
subspaces under π(A) are {H, 0}.
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States

Definition (States)
Let ω : A −→ C be a linear functional over a C∗-algebra. We will say that
it is a state if it verifies:

1 ω(AA∗) ≥ 0
2 ||ω|| = 1

The set of states EA is a convex subset of A∗.

Definition (Pure states)
We will say that ω is a pure state if the only functionals bounded by it are
of the form: λω with 0 ≤ λ ≤ 1. We denote the set of pure states as: PA.

If A is a unital algebra then EA is ∗-weakly compact, convex and its
extreme points are pure states.
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GNS construction

Theorem (GNS construction (1943))
Let ω be a positive functional of A a C∗ algebra st. ||ω|| = 1. Then there
exists a cyclic representation: (Hω, πω, xω) such that:

ω(A) = (xω, πω(A)xω). (15)

For all A ∈ A, with ||xω|| = ||ω|| = 1. This representation is unique up to
unitary equivalence.

The GNS representations associated to pure states will be
irreducible. Moreover for each element A ∈ A we can associate a
pure state such that: ω(A∗A) = ||A||2. This will allow us to construct a
Hilbert space for the first characterization:

H =
⊕
ω∈EA

Hω π =
⊕
ω∈EA

πω (16)

For the second characterization the locally compact Haussdorff space
of the theorem will be the set of the pure states, which will be related
to the algebra via an isometry called the Gelfand transform.
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GNS and the postulates of quantum mechanics:

We can translate the postulates of QM to this new formalism:

We will begin with a C∗ algebra of observables. States are now
positive linear functionals.

This allows us to introduce locality more naturally.

In the case of QFT the vacuum state corresponds to the cyclic and
separating vector (Reeh-Schlieder).
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Von Neumann algebras and Tomita-Takesaki theory

Definition (von Neumann algebra)
Let H be a Hilbert space, M a ∗-sub algebra of L(H). We will say that M
is a von Neumann algebra if it satisfies:

M = M′′ (17)

The von Neumann Bicommutant theorem (17) translates this
algebraic property into a topological one:

Theorem (Bicommutant theorem)
Let M be a von Neumann algebra the following properties are equivalent:

1 M = M′′

2 M is (σ)-weakly closed

3 M is (σ)-strongly closed

4 M is (σ)-strongly∗ closed

In order to classify von Neumann algebras, Tomita-Takesaki theory
was developed. Nevertheless, we will focus on its application to
physics.

Franco Salinas Pytel Operator algebras and modular entropy in holography 9th of October, 2025 16 / 38



von Neumann algebras and Tomita-Takesaki

Definition (C∗ dynamical system)
Let G be a locally compact group, A a C∗ algebra and τ : G → Aut(A) a
strongly continuous representation of G in the automorphism group of A.
Then we call the triple {A,G, τ} a C∗ dynamical system. We take G = R.

Theorem
Let ω be a state of a von Neumann algebra M acting on a Hilbert space
H then the following conditions are equivalent:

1 ω is normal (i.e σ-weakly continuous)
2 There exists a positive trace class operator ρ with Tr[ρ] = 1 such that:

ω(A) = Tr[ρA] (18)

Definition (Faithful states)
A state ω in a von Neumann algebra M is faithful if for all A ∈ M:

ω(A) > 0 (19)Franco Salinas Pytel Operator algebras and modular entropy in holography 9th of October, 2025 17 / 38



von Neumann algebras and Tomita-Takesaki

We begin by studying the relation between M and its commutant M′.

Theorem
Let M be a von Neumann algebra and R ⊂ H a subset. Then the two
following conditions are equivalent:

1 R is cyclic for M.
2 R is separating for M′

Said relationship is even stronger for σ-finite algebras. We have the
following theorem:

Theorem
Let M be a von Neumann algebra, then the following conditions are
equivalent:

1 M is σ-finite.
2 There exists a faithful and normal state.
3 M is isomorphic to a von Neumann algebra π(M) that admits a
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von Neumann algebras and Tomita-Takesaki

Suppose there exists a cyclic and separating vector x ∈ π(M). This
allows us to define anti-linear operators in M and M′:

S0Ax = A∗x (20)

F0A′x = A′∗x (21)

These operators are closable and through the polar decomposition
we can find a anti-unitary operator called: conjugation operator J and
an positive self-adjoint operator ∆ such that:

S = S0 = J∆1/2 (22)

Several relations hold for these operators:

∆ = FS (23)

∆−1 = SF (24)

∆− 1
2 = J∆

1
2∆ (25)

Franco Salinas Pytel Operator algebras and modular entropy in holography 9th of October, 2025 19 / 38



Tomita-Takesaki theorem:

Theorem (Tomita-Takesaki theorem (1967))
Let M be a von Neumann algebra with a cyclic and separating vector x,
let ∆ be the associated modular operator and J the modular conjugation.
It follows that:

JMJ = M′ (26)

∆itM∆−it = M (27)

The modular operator gives rise to a uniparametric group of
automorphisms of the algebra called the modular group.

σωt (A) = π−1
ω (∆itπω(A)∆−it) (28)

The modular group satifies the following property:

ω(σ i
2
(A)σ− i

2
(B))) = ω(BA) (29)

In particular, the ∆ is measuring how far our state is to be tracial. If it
is tracial, then ∆ = I.n
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Example: Bipartite system

Let H = HA ⊗HB be a bipartite system and consider the von
Neumann algebra: A = L(H)⊗ I y A′ = I ⊗ L(H). Then we can
write our cyclic vector as:

xω =
n∑

k=1

λk xk ⊗ yk ; λk > 0 (30)

We can calculate the S and F operators:

S(xj ⊗ yi) =
λj

λi
xi ⊗ yj (31)

S∗(xj ⊗ yi) =
λi

λj
xi ⊗ yj (32)

∆(xj ⊗ yi) = S∗S(xj ⊗ yi) =
|λj |2

|λi |2
xj ⊗ yi (33)
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Example: Bipartite system

Let xi ⊗ yj → |i⟩ ⊗ |j⟩′

If we introduce the following notation the density matrix given by the
cyclic and separating state: ρ = |xω⟩ ⟨xω| and the reduced matrices:

ρA =
∑

i

|λi |2 |i⟩ ⟨i| (34)

ρB =
∑

i

|λi |2 |i⟩′ ⟨i|′ (35)

One finds that the modular operator it’s just:

∆ = ρA ⊗ ρ−1
B (36)

And the modular group is given by:

∆it(Aij ⊗ I)∆−it = ρit
AAijρ

−it
A ⊗ I (37)
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Applications of Tomita-Takesaki modular theory

Similar to how we developed the modular operator we can define a
relative modular operator via two cyclic and separating vectors ψ and
ϕ. We can define S0ϕ,ψAϕ = A∗ψ and from its closure:

∆ϕ,ψ = Fϕ,ψSϕ,ψ (38)

Definition (Relative modular entropy)
Let ω1 and ω2 be two faithful normal positive linear functionals over a von
Neumann algebra M. Let ψ and ϕ be the two vector representatives in the
natural positive cone P . Then we define the relative entropy as:

S(ω1|ω2) =

∫ ∞

0
d(ψ,E(λ)ψ) log λ (39)

Where E is the spectral family of the relative modular operator:

∆ϕ,ψ =

∫ ∞

0
dE(λ)dλ (40)
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Applications of Tomita-Takesaki modular theory

The modular group will allow us to generalize the concept of
equilibrium with thermal entropy (Gibbs state).
First note that for the Gibbs state:

⟨A⟩ρ =
Tr[e−βHA]
Tr[e−βH ]

(41)

ω(Aτt(B))|t=iβ = ω(BA) (42)

τt(A) = eitHA−itH (43)

This motivates the following definition:

Definition (KMS-state)
Let (A, τ) be a C∗ dynamical system. The state ω over A is said to e a
(τ, β)-KMS state if:

ω(Aτiβ(B)) = ω(BA) (44)
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Modular group and KMS condition

Theorem (Takesaki)
Let M is a von Neumann algebra and ω a normal state on M. The
following conditions are equivalent:

1 ω is faithful as a state on πω(M)

2 There exists a σ-weakly continuous one-prameter group τ of
automorhpisms of M such that ω is a τ -KMS state.
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Example: Causal Development of a Sphere

Consider a sphere of dimension n and radius R on a Cauchy slice of
Minkowski space at t = 0. Its causal development:

Figure: Causal development of a sphere of radius R and dimension n

ds2 = Ω2 (−dτ2 + du2 + sinh2 u dΩ2
d−2

)
Ignoring the factor Ω2, the space corresponds to a hyperbolic
cylinder.
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Conformal Transformations

A conformal transformation is a diffeomorphism that relates two
metrics by a factor Ω2, called the conformal factor:

gµν(x) → g̃µν(x) = Ω2(x)gµν(x).

These transformations form the conformal group, which includes the
Poincaré group along with dilations and special conformal
transformations.

Xµ → Xµ − bµ(X · X )

1 − 2b · X + b2(X · X )

A conformal field theory (CFT) is a theory whose action is invariant
under this group. For a CFT, we can map D(A) to R×Hn:

ds2 = Ω2 (−dτ2 + du2 + sinh2 u dΩ2
d−2

)
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AdS/CFT Correspondence

Originally developed by Maldacena and Witten in the context of string
theory, the AdS/CFT correspondence establishes a dictionary
between:

A gravity theory in an asymptotically AdS × M space, where M is a
compact manifold.
A conformal field theory (CFT), which is a gauge theory with a large
number of degrees of freedom and a broad spectrum at low energies.

Formally, the correspondence equates the partition functions:

ZCFT [g, J] = Zgravity [g, J]

There’s a relationship between the fields in the AdS and the operators
in the CFT.

lim
r→∞

r∆ϕi(r , t ,Ω) = Oi(t ,Ω) (45)
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Ryu–Takayanagi Formula

The Bekenstein–Hawking formula relates the entropy of a black hole
to the area of its event horizon.

S =
A

4G
(46)

The entanglement entropy of a subregion of the CFT can be
computed as:

SA =
Area(γA)

4Gd+2
n

The entropy is related to the area of a minimal surface whose
boundary coincides with that of region A. In the case of AdS3, this
corresponds to the area enclosed by a geodesic whose endpoints
match those of A.
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Properties of Conformal Transformations and Thermality

The Rindler wedge, or causal development of the right half-plane, is
given by:

W :
{

X± ≥ 0 ; X± ≡ X 1 ± X 0}
X 1 = eu cosh (τ) ; X 0 = eu sinh (τ)

Theorem
Bisognano-Wichmann states that the Minkowski vacuum |Ω⟩, when
restricted to the Rindler wedge, is a thermal state with respect to ∂τ .
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Conformal Transformation between D(A) and the Rindler
Wedge

Special conformal transformations the Rindler wedge to the causal
development D(A).

Myers, Casini and Huertas showed that under this map the thermal
state with respect to Rindler time translations Hτ is mapped to a
thermal state in D(A), with β = 2πR.
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Conformal Mapping of CFT Operators

Primary operators in a CFT transform locally under conformal maps
as:

ϕ(x) = Ω(X )∆ U0 ϕ(X )U−1
0 ,

where ∆ is the scaling dimension of the field.
Practically, vacuum correlators on region R are mapped to vacuum
correlators on D:

⟨ϕ1(x1) · · ·ϕn(xn)⟩ = Ω(X1)
∆1 · · ·Ω(Xn)

∆n⟨ϕ1(X1) · · ·ϕn(Xn)⟩.

The KMS condition is interpreted as the following periodicity:

O(s) = U(s)OU(−s)

U(t) = ρit := ∆it

⟨O1(i)O2⟩ = ⟨O2O1⟩

The thermal character is carried from the Rindler wedge to D(A) and
to R×Hd−1

Why do we care so much about R×Hd−1? → topological black
holes correspond with thermal states.
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Error Correction Codes

We encode Alice’s message |s1s2...sk⟩ into the code subspace
H = Hcode ⊗HB as |s1s2...sk 00...0⟩.
Errors E are described by quantum channels (TPCP maps) that act
nontrivially on l qubits of the message.

An error is said to be correctable if there exists another quantum
channel R along with an auxiliary space HA such that:
R ◦ E = Ik ⊗ MBA.

There are several characterizations; in particular, we say a code |̃i⟩ is
correctable if its density matrix ρ = |̃i⟩ ⟨̃i| factorizes as:

ρH = ρHcode ⊗ ρHB (47)

This characterization establishes an equivalence between having an
expression analogous to RT and the ability to correct errors.
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Qutrit Code

Suppose Alice wants to send a message |ψ⟩ ∈ C3 to Bob.
|ψ⟩ =

∑3
i=1 Ci |i⟩. We can encode it through the following isometries:

|0⟩ −→ |0̃⟩ = 1√
3
(|000⟩+ |111⟩+ |222⟩)

|1⟩ −→ |1̃⟩ = 1√
3
(|012⟩+ |120⟩+ |201⟩)

|2⟩ −→ |2̃⟩ = 1√
3
(|021⟩+ |102⟩+ |210⟩)

We can recover it using unitaries Uij that act nontrivially on two qutrits.

(U12 ⊗ I3) |̃i⟩ = |i⟩ ⊗ 1√
3
(|00⟩+ |11⟩+ |22⟩) (48)

Considering locality, the behavior of the qutrit code is analogous to
the reconstruction of bulk fields ϕi from operators in the CFT.
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Quantum Error Correction and Holographic
Reconstruction

In the AdS/CFT context, quantum error correction explains how bulk
information is encoded in the boundary theory.

The code subspace Hcode is generated by the action of CFT
operators Oi on the vacuum:

Hcode = span{Oi |Ω⟩}.

Bulk fields ϕi(x) are represented on the boundary by operators Oi ,
encoding the bulk degrees of freedom.

Although the CFT has fewer spatial dimensions, it contains more
degrees of freedom and acts as the complete physical system.
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Operator Reconstruction and Error Correction

Consider a partition of the boundary into A and A: HA ⊗HA.

If errors on A can be corrected, then bulk operators can be
represented using only region A:

ÕA |ψ⟩ = O |ψ⟩ , ∀ |ψ⟩ ∈ Hcode.

This property reflects the local holographic reconstruction: bulk
operators in the causal wedge of A have equivalent representations in
the CFT restricted to A.

The holographic code ensures that bulk information is protected
against the loss of part of the boundary.
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Harlow’s Theorem: Algebraic Structure of RT

Let H = HA ⊗HA and a code subspace Hcode with von Neumann algebra
M. Then, the following statements are equivalent:

1 Algebraic Ryu–Takayanagi formula:

S(ρ̃A) = Tr(ρ̃LA) + S(ρ̃,M),

where LA acts as the “area operator”.
2 Subregion duality/Error correction Every bulk observable has a

representation in both A and A.
3 Equality of relative entropies (JLMS formula):

S(ρ̃A∥σ̃A) = S(ρ̃, σ̃,M).
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