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1. Introduction

Quasi-isometries are interesting since they are able to translate much of the large scale structure of a
metric space in spite of an important local distortion. In particular, quasi-isometries need not be continuous
maps. One of the key properties of quasi-isometries is that they preserve Gromov hyperbolicity of geodesic
metric spaces (see, e.g., [14], [15]).

When studying large scale properties of a manifold it is a natural problem to consider which properties
are preserved by quasi-isometries. In [21], [22], [23], M. Kanai studied several geometric properties (such
as isoperimetric inequalities, Poincaré-Sobolev inequalities, parabolicity, growth rate of the volume of balls,
and Liouville type theorems) for a large class of Riemannian manifolds whose Ricci curvature is bounded
from below by a positive number, and proved that these properties are preserved under quasi-isometries.
Also, quasi-isometries preserve the parabolic Harnack inequality (see [6]) and several estimates on transition
probabilities of random walks, such as heat kernel estimates. Moreover, Holopainen and Soardi, among
other authors, (see [17], [18], [33]) proved that the existence of non-trivial solutions of a wide class of partial
differential equations is also preserved under quasi-isometries.

The injectivity radius inj(p) of p ∈ X is the largest radius for which the exponential map at p is a
diffeomorphism. If X has non-positive sectional curvatures, then the injectivity radius can also be defined
as the supremum of those r > 0 such that the ball BX(p, r) is simply connected or, equivalently, as half
the infimum of the lengths of the (homotopically non-trivial) loops based at p in X. The injectivity radius
inj(X) of X is defined as inj(X) = infp∈X inj(p).

Because of the local flexibility of quasi-isometries, Kanai needed some condition to control the local
geometry of the quasi-isometric Riemannian manifolds. Thus, he imposed that the injectivity radius on
both manifolds were positive.

Many of these large scale properties can be studied using discrete structures approximating the Riemann-
ian manifold. In Kanai’s work this is done with a particular graph called the ε-net of the manifold. Several
authors have followed Kanai’s results and ideas whether to study the stability of other properties, or to prove
the equivalence between a manifold and a different associated graph (see, e.g., [1], [2], [10], [13], [17], [18],
[26], [27], [28], [29], [30], [31], [33], [34]).
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However, in the context of Riemannian manifolds, the hypothesis inj(X) > 0 seems too restrictive. Thus,
a natural problem is to find weaker hypotheses that yield the same conclusions from Kanai’s, in particular,
for manifolds with inj(X) = 0. This was the approach of same previous works. For example, in [5] the
authors extend some of the results from Kanai regarding isoperimetric inequaities and existence of Green’s
function to a large class of manifolds without hypotheses on the injectivity radius. They do this by using
certain weighted graphs and asking that the manifolds have doubling measures and the quasi-isometry quasi-
preserves the volume of the balls.

Although quasi-isometry does not preserve local topology (for example, any compact Riemannian manifold
is quasi-isometric to a single point), introducing some hypothesis on the genus of the surfaces gives some
stability for the injectivity radius. In particular, points with small injectivity radius are shown to be mapped
onto points with small injectivity radius. See [3] and [12].

Also, the hypotheses on the injectivity radius is not necessary to prove that the linear isoperimetric
inequality (positive Cheeger inequality) is preserved by quasi-isometries on Riemann surfaces with genus zero
(recall that plane domains are the most important class of Riemann surfaces). Moreover, the isoperimetric
inequality is preserved even when the topological hypotheses on the genus are relaxed (see [3] and [12]).
Both the arguments and the results in [5], [3] and [12] are different between them and from those of this
paper.

As usual, dX(x, y) will denote the distance between the points x, y ∈ X in the Riemannian metric, and
LX(γ) denotes the length of a curve γ ⊂ X with respect to the intrinsic metric in X.

A function between two metric spaces f : X → Y is said to be an (a, b)-quasi-isometric embedding with
constants a ≥ 1, b ≥ 0, if

1

a
dX(x1, x2)− b ≤ dY (f(x1), f(x2)) ≤ a dX(x1, x2) + b , for every x1, x2 ∈ X.

Such a quasi-isometric embedding f is a quasi-isometry if there exists a constant c ≥ 0 such that f is c-full,
i.e., if for every y ∈ Y there exists x ∈ X with dY (y, f(x)) ≤ c.

Two metric spaces X and Y are quasi-isometric if there exists a quasi-isometry between them. It is
well-known that to be quasi-isometric is an equivalence relation (see, e.g., [21]).

Herein, we study the stability of parabolicity and, more generally, p-parabolicity. This is an interesting
research topic, see e.g. [11], [17], [18], [22]. Since Green’s function is the fundamental solution to the Poisson
equation, the problem regarding its existence is an important object, and has been extensively studied. For
example, in [24] it was shown that it exists on any complete Riemannian manifold. In [4] it is proved that
satisfying some necessary conditions involving the volume growth of the manifold gives the existence of a
positive Green’s function.

Given 1 < p <∞, a p-Green’s function in a complete Riemannian manifold X is a positive fundamental
solution of the p-Laplace-Beltrami operator (or, simply, the p-Laplacian) ∆pu = δy, where the p-Laplacian
is defined as ∆pu := −div(|∇u|p−2∇u) on X. Here, ∇ and div denote, respectively, the gradient and the
divergence with respect to the Riemannian metric on X. When dealing with the case p = 2 the p will be
omitted (and so, the 2-Laplacian is the “classical” Laplacian). The manifold X is p-parabolic if it does not
have p-Green’s function. A function is p-harmonic (respectively, p-superharmonic) if it is a weak solution
of ∆pu = 0 (respectively, ∆pu ≥ 0). Notice that p-harmonic functions are precisely the minimizers of the
functional given by the p-Dirichlet integral Dp(u) =

∫
|∇u|p. It is well-known that a complete manifold has

p-Green’s function if and only if there exists a non-constant positive p-superharmonic function (see, e.g., [32]
for the case p = 2). In terms of Brownian motion, a complete manifold has Green’s function if and only if
the Brownian motion on the manifold is transient (i.e., the Brownian motion eventually escapes from any
compact set with probability 1).

Green’s function is also related to other topics as the heat kernel and isoperimetric inequalities: it is
well-known that Green’s function is the integral of the heat kernel of the manifold; Fernández proves in [8]
that the existence of some kind of isoperimetric inequalities guarantees the existence of Green’s function
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for Riemannian manifolds; the results in [9] imply that the linear isoperimetric inequality guarantees the
existence of Green’s function for Riemann surfaces.

One of the main results of this paper is Theorem 3.10; it states that, under some natural conditions,
p-parabolicity is preserved by quasi-isometries. Note that there is no hypotheses on the injectivity radius in
Theorem 3.10. This result is also new for Green’s function (p = 2) even in the 2-dimensional case. Theorems
3.8 and 3.9 state that p-parabolicity is preserved by quasi-isometries between manifolds and graphs. Besides,
we study the p-parabolicity of graphs and trees; in particular, Theorem 4.21 characterizes p-parabolicity of
a large class of trees. In [11], section 6, the authors give a construction of Riemannian surfaces by pasting
Y -pieces following a tree pattern so that the surface is quasi-isometric to a given tree. This is used to provide
examples of quasi-isometric surfaces with constant negative curvature where one is parabolic and the other
is not. Thus, a deeper understanding of parabolicity on trees can be also a relevant tool for the study of
necessary conditions on Riemannian manifolds so that p-parabolicity is a quasi-isometric invariant.

2. Definitions and background

Given a complete Riemannian manifold X and a domain with smooth boundary Ω ⊂ X, define

capp Ω = capp(Ω, X) = inf
{∫

X

∣∣∇u∣∣p : u ∈ C∞c (X), u|Ω = 1
}
.

A useful characterization of the existence of p-Green’s function is:

Theorem 2.1. Given 1 < p <∞, a complete Riemannian manifold is p-parabolic if and only if capp Ω = 0
for some (and then for every) domain with smooth boundary Ω ⊂ X.

The proof of Theorem 2.1 appears in [22] for p = 2 and in [16] for 1 < p <∞.

A discrete version of the previous statements is the following.
Given a function u on a graph Γ, define the p-modulus of its discrete gradient |∇Γu|p and its discrete

p-Dirichlet integral Dp,Γ(u), respectively, by

|∇Γu|p(x) :=
( ∑
y∈N(x)

∣∣u(y)− u(x)
∣∣p)1/p

, Dp,Γ(u) :=
∑
x∈Γ

|∇Γu|pp(x) = 2
∑

vw∈E(Γ)

∣∣u(v)− u(w)
∣∣p,

where the edges are considered unoriented.
For a finite subset S of Γ, the p-capacity of S is defined by

capp S = capp(S,Γ) = inf
{
Dp,Γ(u) : u function on Γ with finite support, u|S = 1

}
.

A graph Γ is said to be µ-uniform if each vertex p of V has at most µ neighbors, i.e.,

sup
{
|N(p)|

∣∣ p ∈ V (Γ)
}
≤ µ.

If a graph Γ is µ-uniform for some constant µ we say that Γ is uniform

Theorem 2.2. Given 1 < p <∞, a uniform graph Γ is p-parabolic if and only if capp S = 0 for some (and
then for every) non-empty finite subset of S ⊂ Γ.

For a proof of Theorem 2.2, see [23, Proposition 6] and [17, Final remark 5.16]. Note that the definition
of discrete p-Dirichlet integral in [17] is slightly different, but both are equivalent.

The following volume bounds for geodesic balls are well known:

(2.1) volBr(p) ≥ V0(r) for p ∈ X and r ∈
(

0,
inj(X)

2

]
,

and if the Ricci curvature is bounded below,

(2.2) volBr(p) ≤ V1(r) for p ∈ X and r > 0,
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A subset A in a metric space (X, d) is called ε-separated, ε > 0, if d(a, a′) ≥ ε for any distinct a, a′ ∈ A.
Note that if A is maximal with this property, then the union ∪a∈ABε(a) covers X. A maximal ε-separated
set A in a metric space X is called an ε-approximation of X.

LetX be a complete Riemannian manifold and denote by d the induced metric. Given any ε-approximation
A of X, the graph ΓA = (A,E) with E := {xy |x, y ∈ A with 0 < d(x, y) ≤ 2ε} is called an ε-net.

3. p-parabolicity on manifolds

Definition 3.1. A metric space (X, d) is doubling if there is a constant M such that for every x ∈ X and
every ε > 0 then every ball B(x, 2ε) can be covered by the union of at most M balls B(zi, ε).

The following result is well known and easy to prove. See, for example, Lemma 2.3 in [20].

Lemma 3.2. Given a doubling metric space (X, d), an ε-separated set S in X and some ball B(z, kε) with
x ∈ X and k ∈ N, then there is a constant µ(k) such that |S ∩B(z, kε)| ≤ µ(k).

In particular, we have the following.

Lemma 3.3. An ε-net in a doubling metric space is uniform.

Definition 3.4. A Riemannian n-manifold X satisfies the local Poincaré inequality if for every geodesic
ball Bε(z) in X and every function u ∈ C∞0 (X) there is a constant β = β(n, ε) > 0 such that

(3.3)

∫
Bε(z)

|∇(u)| dx ≥ β
∫
Bε(z)

|u− u∗| dx.

where u∗ = 1
volBε(z)

∫
Bε(z)

u dx.

Lemma 3.5. [22, Lemma 8] [21, Lemma 2.3] If X is a complete Riemannian manifold whose Ricci curvature
is bounded below and P is an ε-net in X, then X satisfies the local Poincaré inequality and P is uniform.

Definition 3.6. Given 1 < p <∞ and ε > 0, we say that a complete Riemannian manifold X is (ε, p)-nice
if there exist constants k1, k2 such that for every q0 ∈ X there is some constant V (q0) satisfying that for
every q ∈ B̄3ε(q0),

(3.4) k1V (q0)(p−1)/p ≤ volBε(q) ≤ volB4ε(q) ≤ k2V (q0).

Remark 3.7. If 1 < p < ∞, ε > 0 and X is a complete Riemannian manifold with positive injectivity
radius whose Ricci curvature is bounded below then, by (2.1) and (2.2), X is (ε, p)-nice with V (q0) = 1.

Theorem 3.8. Given 1 < p <∞ and ε > 0, let X be an (ε, p)-nice, doubling complete Riemannian manifold
satisfying the local Poincaré inequality and P an ε-net in X. If X is p-parabolic, then P is p-parabolic.

Proof. Suppose that P is non-p-parabolic and let us see that X is non-p-parabolic.
Fix any non-empty finite subset S of P . Then, by Theorem 2.2, capp S > 0. Let Ω be a bounded domain

in X with smooth boundary such that B4ε(q0) ⊂ Ω for every q0 ∈ S. For an arbitrary function u ∈ C∞0 (X)
with u = 1 on Ω, define a function u∗ on P by

u∗(q0) =
1

volB4ε(q0)

∫
B4ε(q0)

u dx.

It is clear that u∗(q0) = 1 for every q0 ∈ S.
Since X satisfies the local Poincaré inequality, by Hölder inequality and local Poincaré inequality, we have

that for any q ∈ B̄3ε(q0)(
k2V (q0)

)p−1
∫
B4ε(q)

|∇(u)|pdx ≥
(∫

B4ε(q)

|∇(u)| dx
)p
≥ βp

(∫
B4ε(q)

|u(x)− u∗(q)| dx
)p
.
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Then, following Kanai’s proof, we have that for any q0 ∈ P and any q ∈ Nq0

2pβ−p
(
k2V (q0)

)p−1
∫
B7ε(q0)

|∇(u)|pdx ≥ β−p
(
k2V (q0)

)p−1
2p−1

(∫
B4ε(q0)

|∇(u)|pdx+

∫
B4ε(q)

|∇(u)|pdx
)

≥ 2p−1
(∫

B4ε(q0)

∣∣u(x)− u∗(q0)
∣∣ dx)p + 2p−1

(∫
B4ε(q)

∣∣u(x)− u∗(q)
∣∣ dx)p

≥
(∫

B4ε(q0)

∣∣u(x)− u∗(q0)
∣∣ dx+

∫
B4ε(q)

∣∣u(x)− u∗(q)
∣∣ dx)p

≥
(∫

B4ε(q0)∩B4ε(q)

∣∣u∗(q)− u∗(q0)
∣∣ dx)p

≥
∣∣u∗(q)− u∗(q0)

∣∣p(∫
Bε(q0)

dx
)p

≥ kp1V (q0)p−1
∣∣u∗(q)− u∗(q0)

∣∣p.
Therefore, since P is uniform by Lemma 3.3, there is a constant C independent of u and q0 such that for

every q0 ∈ P
C

∫
B7ε(q0)

|∇(u)|pdx ≥ |∇P (u∗)|pp(q0).

Moreover, by Lemma 3.2, there is a constant µ(7) such that

µ(7)

∫
X

|∇(u)|pdx ≥
∑
q0∈P

∫
B7ε(q0)

|∇(u)|pdx.

Hence,

µ(7ε)C

∫
X

|∇(u)|pdx ≥ C
∑
q0∈P

∫
B7ε(q0)

|∇(u)|pdx ≥
∑
q0∈P

|∇P (u∗)|pp(q0),

and we obtain that there is a constant C2 = µ(7ε)C such that

C2

∫
X

|∇(u)|pdx ≥ Dp,P (u∗) = capp S > 0,

proving the non-p-parabolicity of X. �

Theorem 3.9. Given 1 < p < ∞ and ε > 0, let X be an (ε, p)-nice complete Riemannian manifold with
Ricci curvature bounded below and P an ε-net in X. Then, X is p-parabolic if and only if P is p-parabolic.

Proof. If X is p-parabolic, then Lemma 3.5 and Theorem 3.8 give that P is p-parabolic. (Notice that in the
proof of Theorem 3.8, since the Ricci curvature is bounded below, Lemma 3.5 gives that P is uniform and
lemmas 3.2 and 3.3 are not necessary.)

Assume now that P is p-parabolic. Following Kanai’s proof of [22, Theorem 1], since the hypothesis on
the injectivity radius is not used in this implication, we obtain that X is p-parabolic. (Notice that in the
final steps of this implication it is used that the Ricci curvature is bounded below to give an upper bound
V1(ε) of the volume of Bε(q0) for any q0). �

Theorem 3.10. Let X and Y be quasi-isometric complete Riemannian manifolds. Assume that X is
doubling and satisfies the local Poincaré inequality, and Y has Ricci curvature bounded below. If X is
p-parabolic and (ε, p)-nice for some 1 < p <∞ and ε > 0, then Y is p-parabolic.

Proof. Since X is p-parabolic and (ε, p)-nice for some ε > 0, Theorem 3.8 gives that if P is an ε-net in
X, then P is p-parabolic. Let Q be a net in Y . Since X and Y are quasi-isometric, P and Q are quasi-
isometric to each other, and both are uniform. Thus, [22, Corollary 7], gives that Q is p-parabolic since P
is p-parabolic. The argument in Kanai’s proof of [22, Theorem 1], since the hypothesis on the injectivity
radius is not used in this implication, gives that Y is p-parabolic. �
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Corollary 3.11. Let X and Y be quasi-isometric complete Riemannian manifolds with Ricci curvature
bounded below. If X is p-parabolic and (ε, p)-nice for some 1 < p <∞ and ε > 0, then Y is p-parabolic.

Some examples in [11] show that the conclusion of Theorem 3.10 does not hold without the hypothesis of
X being (ε, p)-nice, even in the case of dimension two and constant curvature.

4. p-parabolicity on graphs and trees

Denote by Pn the path graph with length n and vertices v0, v1, . . . , vn.

Lemma 4.1. Consider 1 < p < ∞ and the path graph Pn. Then, for any function u such that u(v0) = 1
and u(vn) = 0, we have

Dp,Pn
(u) ≥ 2

np−1
.

Moreover, this lower bound is achieved when u(vi) = n−i
n for 0 ≤ i ≤ n.

Proof. Let us consider any function u such that u(v0) = 1 and u(vn) = 0. Let us denote ui = u(vi) for every
i. Since 1 < p <∞, Hölder inequality gives

1 =

n∑
i=1

(ui−1 − ui) ≤
( n∑
i=1

|ui − ui−1|p
)1/p( n∑

i=1

1p/(p−1)
)(p−1)/p

= n(p−1)/p
( n∑
i=1

|ui − ui−1|p
)1/p

,

Dp,Pn
(u) = 2

n∑
i=1

|ui − ui−1|p ≥
2

np−1
.

If u(vi) = n−i
n for 0 ≤ i ≤ n, then we have Dp,Pn

(u) = 2
np−1 . �

A rooted tree, (T, v), is a tree T with a fixed point v ∈ T , called the root.

Definition 4.2. A rooted tree (T, v) is geodesically complete if every isometric embedding f : [0, t] → T
with t > 0 and f(0) = v extends to an isometric embedding F : [0,∞)→ T .

Theorem 4.3. [25] If (T, v) is a rooted tree, then there exists a unique geodesically complete subtree
(T∞, v) ⊆ (T, v) that is maximal under inclusion.

Proposition 4.4. Given 1 < p <∞, a uniform rooted tree (T, v) and S = v, then capp(S, T
∞) = capp(S, T ).

Besides, (T, v) is p-parabolic if and only if (T∞, v) is p-parabolic.

Proof. Suppose (T, v) is a uniform rooted tree which is not geodesically complete.
For any function u : V (T∞)→ R with finite support let us define ū : V (T )→ R so that ū(w) = u(w) for

every w ∈ T∞. Now, notice that since T is uniform every connected component of the closure of T \ T∞
is a finite tree. Furthermore, since supp(u) is finite, there is a finite number of components T1, . . . , Tk
of the closure of T \ T∞ such that a unique vertex wj ∈ Tj ∩ T∞ satisfies that u(wj) > 0. Therefore,
suppose ū is constant in each of this components and it is trivial to check that ū has finite support and
Dp,T∞(u) = Dp,T∞(ū). Thus, capp(S, T

∞) ≥ capp(S, T ).
For any function u : V (T )→ R with finite support let us consider its restriction u′ = u|V (T∞). Therefore,

Dp,T∞(u′) ≤ Dp,T (u), and so, capp(S, T
∞) ≤ capp(S, T ).

Hence, by Theorem 2.2, T is p-parabolic if and only if T∞ is p-parabolic. �

Proposition 4.5. If 1 < p <∞ and Γ is a uniform graph with limn→∞
#E(B̄(v0,n))

np = 0 for some v0 ∈ V (Γ),
then Γ is p-parabolic.

Proof. By Theorem 2.2, it suffices to check that cap(v0,Γ) = 0. Let us define the family of functions

un : V (Γ)→ R so that un(v) = n−d(v0,v)
n if d(v0, v) ≤ n and un(v) = 0 otherwise.
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Now, notice that for any edge vw ∈ E(Γ), |un(w) − un(v)| = 1
n or un(w) − un(v) = 0 if the edge is

contained in the closed ball B̄(v0, n) and un(w)− un(v) = 0 otherwise. Therefore,

Dp,Γ(un) = 2
∑

vw∈E(Γ)

∣∣un(v)− un(w)
∣∣p ≤ 2

#E(B̄(v0, n))

np
.

Thus, if limn→∞
#E(B̄(v0,n))

np = 0, then capp(v0,Γ) = 0 and Γ is p-parabolic. �

Proposition 4.6. If 1 < p < ∞ and (T, v) is a uniform rooted tree such that its geodesically complete

subtree (T∞, v) satisfies that limn→∞
#E(B̄(v,n))

np = 0, then T is p-parabolic.

Proof. Proposition 4.5 gives that T∞ is p-parabolic, and so, Proposition 4.4 gives that T is p-parabolic. �

Proposition 4.7. If 1 < p < ∞ and (T, v) is a uniform rooted tree such that its geodesically complete

subtree (T∞, v) satisfies that limn→∞
#S(v,n)
np−1 = 0, then T is p-parabolic.

Proof. Notice that #E(B̄(v, n)) ≤ n#S(v, n). Thus,

0 ≤ lim inf
n→∞

#E(B̄(v, n))

np
≤ lim sup

n→∞

#E(B̄(v, n))

np
≤ lim
n→∞

#S(v, n)

np−1
= 0

and so,

lim
n→∞

#E(B̄(v, n))

np
= 0.

The result follows from Proposition 4.6. �

A cut set C for a rooted, geodesically complete tree (T, v) is a subset C of T such that v /∈ C and for
every isometric embedding f : [0,∞) → T with f(0) = v there exists a unique t0 > 0 such that f(t0) ∈ C
(see [19]). Given a cut set C in a rooted tree (T, v), let us denote [v, C] the set of points in T contained in
some geodesic [v, c] for some c ∈ C.

Lemma 4.8. If C is a cut set for a uniform rooted tree (T, v), then [v, C] is compact.

Proof. Suppose C is a cut set such that [v, C] is not compact. Then, there is a sequence (cn) ∈ C with
d(v, cn) > n for every n ∈ N. To reach a contradiction we are going to build an isometric embedding
f : [0,∞) → T with f(0) = v such that f([0,∞)) ∩ C = ∅. Since T is uniform, for each m ∈ N the set
S(v,m) is finite. Thus, by induction, for some vertex v1 ∈ S(v, 1) there is an infinite subsequence (c1n) ⊂ (cn)
such that v1 ⊂ [v, c1n] \ {c1n} for every n ∈ N. Let us define an isometric embedding f with f(0) = v and
f([0, 1]) = [v, v1]. Now, suppose f is defined in [0, k] so that f([0, k]) = [v, vk] and there is an infinite
subsequence (ckn) ⊂ (ck−1

n ) such that vk ∈ [v, ckn]\{ckn} for every n. Again, since S(v, k+1) is finite, for some
vertex vk+1 ∈ S(v, k + 1) there is an infinite subsequence (ck+1

n ) ⊂ (ckn) such that vk+1 ∈ [v, ck+1
n ] \ {ck+1

n }
for every n. Hence, let f([0, k + 1]) = [v, vk+1]. Thus, by induction, we obtain an isometric embedding
f : [0,∞)→ T so that f(t) /∈ C for every t ∈ [0,∞) leading to contradiction. �

If c is any vertex of the rooted tree (T, v), then the subtree of (T, v) determined by c is

Tc = {x ∈ T | c ∈ [v, x]}.

Let us denote by [t] the upper integer part of t ∈ R, i.e., the smallest integer that is greater than or equal
to t.

Proposition 4.9. Consider 1 < p <∞, a uniform rooted tree (T, v) and its maximal geodesically complete
subtree (T∞, v). Fix a function g : N → (0,∞) with limn→∞ g(n) = ∞. If for each n in an infinite subset

A ⊆ N there is a cut set Cn = {cn1 , . . . , cnkn} of T∞ such that B̄T∞
cn
j

(cnj , [g(n)k
1/(p−1)
n ]) is isometric to the path

P
[g(n)k

1/(p−1)
n ]

for each 1 ≤ j ≤ kn, then T is p-parabolic.
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Proof. First, notice that by Lemma 4.8, the set of vertices S = V (T∞) ∩ [v, Cn] is finite for every n ∈ A.
For each n ∈ A, let us define a function un : V (T∞)→ R such that un(w) = 1 for every w ∈ S,

un(w) =

[
g(n)k

1/(p−1)
n

]
− d(w, cnj )[

g(n)k
1/(p−1)
n

]
for every w ∈ B̄T∞

cn
j

(cnj , g(n)kn) and un(w) = 0 otherwise. Then, Lemma 4.1 gives that

Dp,T∞(un) = kn
2[

g(n)k
1/(p−1)
n

]p−1 ≤ kn
2

g(n)p−1kn
=

2

g(n)p−1
,

and so, capp(v, T
∞) = 0. Then, T∞ is p-parabolic and, by Proposition 4.4, T is p-parabolic. �

Proposition 4.10. If a uniform graph Γ contains a non-p-parabolic subgraph Γ′ for some 1 < p <∞, then
Γ is non-p-parabolic.

Proof. Fix some vertex v0 ∈ V (Γ′). Since Γ′ is non-p-parabolic, Theorem 2.2 gives that δ = capp(v0,Γ
′) > 0.

Let us consider any function u : V (Γ) → R with finite support and u(v0) = 1. One can check that
Dp,Γ(u) ≥ Dp,Γ′(u) ≥ δ and capp(v0,Γ) ≥ δ > 0. By Theorem 2.2, Γ is non-p-parabolic. �

Corollary 4.11. If a uniform graph Γ is p-parabolic for some 1 < p < ∞, then every subgraph of Γ is
p-parabolic.

Definition 4.12. Given a rooted tree (T, v0), a set of vertices in T , C = {ci}i∈I , is called a subcut set in
T if Tci ∩ Tcj = ∅ for every i 6= j and C is not a cut set.

Given a rooted tree (T, v0) and a subcut set C = {ci}i∈I , let us denote TC = T \ ∪i∈ITci .
Proposition 4.13. Let (T, v0) be a uniform rooted tree and C a subcut set in T and 1 < p <∞. Then T is
p-parabolic if and only if TC and Tc are p-parabolic for every c ∈ C.

Proof. By Proposition 4.10, if T is p-parabolic, then TC and Tc are p-parabolic for every c ∈ C.
Assume now that TC and Tc are p-parabolic for every c ∈ C. Then, for every n there exists some function

un : V (TC)→ R with finite support such that un(v0) = 1 and Dp,TC (u
n) < 1

2n . Since un has finite support,
there is a finite number of vertices c1, . . . , ck ∈ C adjacent to supp(un). Let wi be the vertex in supp(un)
adjacent to ci for each 1 ≤ i ≤ k. Then, since Tci is p-parabolic, there is a function uni : V (Tci) → R such
that uni has finite support, uni (ci) = 1 and Dp,Tci

(un
i ) <

1
un(wi)p·2i+1n . Let us define ūn : V (T )→ R such that

ūn(v) = un(v) for every v ∈ TC , ūn(v) = un(wi)u
n
i (v) for every v ∈ Tci and every 1 ≤ i ≤ k and ūn(v) = 0

otherwise. Notice that Dp,Tci
(ūn) = un(wi)

pDp,Tci
(uni ) < 1

2i+1n . Since ūn(wi) = ūn(ci) for every 1 ≤ i ≤ k,

Dp,T (ūn)(wi) = Dp,TC (u
n) +

k∑
i=1

un(wi)
pDp,Tci

(un
i )

<
1

2n
+

k∑
i=1

un(wi)
p 1

un(wi)p · 2i+1n
<

1

n

and it is readily seen that ūn has finite support and ūn(v0) = 1. Thus, by Theorem 2.2, T is p-parabolic. �

Example 4.14. Let (T, v0) be a uniform rooted tree defined as follows and 1 < p < ∞. Let T = {(x, y) ∈
R2 | y = 0 and x ≥ 0 or x ∈ N and y ≥ 0} with the shortest path metric and fix v0 = (0, 0). Thus, there is
a geodesic ray f0 : [0,∞) → T such that f0(0) = v0 and a sequence of geodesic rays fn : [0,∞) → T such
that fn(0) = f0(n) and T = ∪∞k=0fk([0,∞)). Then, (T, v0) does not have a cut set satisfying the conditions
in Proposition 4.9 and does not contain any subtree quasi-isometric to the Cantor tree. We can check that
(T, v) is p-parabolic directly using Theorem 2.2.

Let us denote vi = f0(i) for every i ∈ N, and wij = fi(j) for every i ∈ N and every j ∈ N ∪ {0} (notice

that wi0 = vi). Let us define the map un : V (T )→ R such that
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• ui = un(vi) = n−i
n for 1 ≤ i ≤ n,

• ui = un(vi) = 0 for every i > n,

• uij = un(wij) = n−i−j/2i

n for every 1 ≤ j ≤ 2i(n− i),
• uij = un(wij) = 0 for every 2i(n− i) < j.

Then,

Dp,T (un) =2

n∑
i=1

(
(ui − ui−1)p +

2i(n−i)∑
j=1

(uij − uij−1)p
)

=
2

np−1
+ 2

n∑
i=1

2i(n−i)∑
j=1

1

2pinp
=

2

np−1
+ 2

n∑
i=1

n− i
2(p−1)inp

<
2

np−1
+

2

np

n∑
i=1

n

2(p−1)i
<

2p−1

2p−1 − 1

2

np−1
.

Thus, capp(v0, T ) = 0 and, by Theorem 2.2, T is p-parabolic.
However, using Proposition 4.13 it is immediate to check that T is p-parabolic. It suffices to see that the

set C = {fn(1) : n ∈ N} is a subcut set and T \ ∪n∈NTfn(1) is just the geodesic ray f0([0,∞)). Then, using
the minimizing map on f0([0, n]) ≈ Pn (resp. on fn([1, n+ 1]) ≈ Pn) from Lemma 4.1 and Theorem 2.2, it
is trivial to prove that f0([0,∞)) (resp. fn([1,∞))) is p-parabolic.

Given two sequences of positive integers L = {`n}∞n=1 and R = {rn}∞n=1, with 2 ≤ rn ≤ N for every n ≥ 1
and some constant N , the Cantor tree (TL,R, v0) is a rooted tree such that the root, v0, has degree r1, the
vertices at distance `1 + · · ·+ `n−1 have degree rn + 1, and any other vertex has degree two.

The Cantor tree (TC , v0) is a rooted tree such that the root, v0, has degree two and any other vertex
has degree three, i.e., (TC , v0) = (TL,R, v0) with `n = 1 and rn = 2 for every n ≥ 1. Note that (TC , v0) is
uniform since R = {rn}∞n=1 is a bounded sequence.

Let F be the set of maps u : V (TL,R)→ R such that u(v0) = 1 and u has finite support. Let G be the set
of maps in F such that u(w) = u(w′) if d(v0, w) = d(v0, w

′).

Lemma 4.15. infu∈F Dp,TL,R
(u) = infu′∈G Dp,TL,R

(u′).

Proof. It suffices to show that given any u ∈ F we can build a function u′ ∈ G such that Dp,TL,R
(u′) ≤

Dp,TL,R
(u). Given any u ∈ F , since u has finite support, there is some N such that supp(u) ⊂ BTL,R

(v0, N).
Let v1, . . . , vr1 be the vertices in STL,R

(v0, `1). Define T ∗vj = [v0, vj ] ∪ Tvj for every 1 ≤ j ≤ r1. Let us
assume, relabeling if necessary, that∑

vw∈E(T∗v1
)

∣∣u(v)− u(w)
∣∣p ≤ ∑

vw∈E(T∗vj
)

∣∣u(v)− u(w)
∣∣p, for every 1 < j ≤ r1.

Let Ij : T ∗vj → T ∗v1 be the natural isometry with Ij(vj) = v1 and let us define u1 : V (TL,R) → R such that

u1(v0) = 1, u1(v) = u(v) for every v ∈ T ∗v1 and u1(v) = u(Ij(v)) for every v ∈ T ∗vj and 1 < j ≤ `1. Then,

it is immediate to check that Dp,TL,R
(u1) ≤ Dp,TL,R

(u), u(v) = u(w) if d(v0, v) = d(v0, w) ≤ `1 and its

support is finite since supp(u1) ⊂ BTL,R
(v0, N). Thus, u1 ∈ F . Suppose we have defined uk ∈ F such that

uk(v) = uk(w) if d(v0, v) = d(v0, w) ≤ `1 + · · ·+ `k, supp(uk) ⊂ BTL,R
(v0, N) and Dp,TL,R

(uk) ≤ Dp,TL,R
(u).

Let STL,R
(v0, `1 + · · ·+ `k+1) = {w1, . . . , wM}, with M = r1 · · · rk+1. For each 1 ≤ j ≤M , we denote by w∗j

the unique vertex in V (TL,R) \ V (Twj
) at distance `k+1 from wj . Note that it is possible to have w∗i = w∗j

with i 6= j. Define T ∗wj
= [w∗j , wj ] ∪ Twj

for every 1 ≤ j ≤M .
Let us assume, relabeling if necessary, that∑

vw∈E(T∗w1
)

∣∣uk(v)− uk(w)
∣∣p ≤ ∑

vw∈E(T∗wj
)

∣∣uk(v)− uk(w)
∣∣p, for every 1 < j ≤M.
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Let ij : T ∗wj
→ T ∗w1

be the natural isometry with ij(wj) = w1 and let us define uk+1 : V (TL,R) → R
such that uk+1(v) = uk(v) for every v ∈ B̄TL,R

(v0, `1 + · · · + `k), uk+1(v) = uk(v) for every v ∈ T ∗w1
and

uk+1(v) = uk(ij(v)) for every v ∈ T ∗wj
and 1 < j ≤M . Then, it is immediate to check that Dp,TL,R

(uk+1) ≤
Dp,TL,R

(uk) ≤ Dp,T (u), uk+1(v) = uk+1(w) if d(v0, v) = d(v0, w) ≤ `1 + · · · + `k+1, and its support is

finite since supp(uk+1) ⊂ BTL,R
(v0, N). Thus, uk+1 ∈ F . It is readily seen by construction that the map

u′ : V (TL,R) → R defined as u′(v) = uk(v) if `1 + · · · + `k−1 < d(v0, v) ≤ `1 + · · · + `k satisfies that u′ ∈ G
and Dp,TL,R

(u′) ≤ Dp,TL,R
(u), finishing the proof. �

Let H1 be the set of maps u in G such that u(v) ≥ u(w) for every v, w such that d(v0, v) ≤ d(v0, w).

Lemma 4.16.
inf
u∈G

Dp,TL,R
(u) = inf

u′∈H1

Dp,TL,R
(u′).

Proof. Let u ∈ G and let us denote u(v) = ui if d(v0, v) = i. Let us define u′ : V (TL,R) → [0, 1] inductively
as follows. Let i1 = mini≥1{ui ≤ u0} and define u′i := u0 for each 0 ≤ i < i1 and u′i1 := ui1 . Now, for
each k, let ik = mini>ik−1

{ui ≤ uik−1
} and define u′i := uik−1

for each ik−1 < i < ik and u′ik := uik . It is
straightforward that Dp,TL,R

(u′) ≤ Dp,TL,R
(u), finishing the proof. �

Let Lk := `1 + · · · + `k for every k (and L0 = 0). Let H2 be the set of maps u in H1 such that

uLk−1+i = uLk−1
− uLk−1

−uLk

`k
i for every k and 1 ≤ i ≤ `k.

Lemma 4.17.
inf
u∈H1

Dp,TL,R
(u) = inf

u′∈H2

Dp,TL,R
(u′).

Proof. As we saw above, by Hölder inequality, for every k

`k∑
i=1

|uLk−1+i−1 − uLk−1+i|p ≥
|uLk−1

− uLk
|p

`p−1
k

.

Moreover, this minimum is attained if u′Lk−1+i = uLk−1
− uLk−1

−uLk

`k
i since |uLk−1+i−1 − uLk−1+i| =

uLk−1
−uLk

`k
for every 1 ≤ i ≤ `k. �

Let Hm2 be the set of maps u in H2 such that supp(u) = B(v0, Lm).

Lemma 4.18.
inf
u∈H2

Dp,TL,R
(u) = inf

u′∈Hm
2 ,m∈N

Dp,TL,R
(u′).

Proof. It is trivial to check that for every function u ∈ H2 with B̄(v0, Lm−1) ⊂ supp(u) ⊂ B(v0, Lm) there
is a function u′ with supp(u′) = B(v0, Lm) and such that Dp,TL,R

(u′) ≤ Dp,TL,R
(u). �

Notice that for every u ∈ Hm2 ,

(4.5)

1

2
Dp,TL,R

(u) =
r1|uL0

− uL1
|p

`p−1
1

+
r1r2|uL1

− uL2
|p

`p−1
2

+ · · ·+
r1 · · · rm|uLm−1

− uLm
|p

`p−1
m

=

m∑
k=1

r1 · · · rk|uLk−1
− uLk

|p

`p−1
k

.

Lemma 4.19. TL,R is p-parabolic if and only if

inf
u∈Hm

2 ,m∈N

m∑
k=1

r1 · · · rk|uLk−1
− uLk

|p

`p−1
k

= 0.

Proof. This result follows immediately from Theorem 2.2, lemmas 4.15, 4.16, 4.17, 4.18, and (4.5). �
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Lemma 4.20. Let 1 < p <∞, a1, . . . , an > 0, f : [0,∞)n → R given by

f(y1, . . . , yn) = a1y
p
1 + · · ·+ any

p
n,

and

D = {y = (y1, . . . , yn) ∈ Rn : yk ≥ 0 for 1 ≤ k ≤ n and y1 + · · ·+ yn = 1}.
Then the minimum of f on D is attained at the point y0 with

y0
k = a

−1/(p−1)
k

( n∑
j=1

a
−1/(p−1)
j

)−1

for 1 ≤ k ≤ n, and

min
y∈D

f(y) = f(y0) =
( n∑
k=1

a
−1/(p−1)
k

)−(p−1)

.

Proof. Since 1 < p <∞ and a1, . . . , an > 0, the function f is strictly convex. We consider the convex set D
with its induced topology of Rn. Define F : D → R as the restriction of the function f to the set D, and let
g(y1, . . . , yn) = y1 + · · ·+ yn. Note that F is a strictly convex function on D, and so, if there exists a critical
point y0 in the interior of D, the function F attains at y0 its minimum value on D.

The method of Lagrange multipliers gives that for each critical point y of F in the interior of D, there
exists λ ∈ R such that ∇f(y) = λ∇g(y), i.e.,

ajp y
p−1
j = λ

for every 1 ≤ j ≤ n. Thus,

ajp y
p−1
j = a1p y

p−1
1 , yj =

(a1

aj

)1/(p−1)

y1,

for every 1 ≤ j ≤ n. Since g(y) = 1, we obtain

1 =

n∑
j=1

(a1

aj

)1/(p−1)

y1, a
1/(p−1)
1 y1 =

( n∑
j=1

a
−1/(p−1)
j

)−1

,

yk =
(a1

ak

)1/(p−1)

y1 = a
−1/(p−1)
k

( n∑
j=1

a
−1/(p−1)
j

)−1

.

Thus, y = y0 and

min
y∈D

f(y) = f(y0) =

n∑
k=1

ak a
−p/(p−1)
k

( n∑
j=1

a
−1/(p−1)
j

)−p
=

n∑
k=1

a
−1/(p−1)
k

( n∑
j=1

a
−1/(p−1)
j

)−p
=
( n∑
k=1

a
−1/(p−1)
k

)−(p−1)

.

�

Theorem 4.21. Given 1 < p <∞ and sequences L = {`n}∞n=1 and R = {rn}∞n=1, the Cantor tree (TL,R, v0)
is p-parabolic if and only if

∞∑
k=1

`k
(r1 · · · rk)1/(p−1)

=∞.

Proof. By Lemma 4.19, it suffices to prove that

(4.6) inf
u∈Hm

2 ,m∈N

m∑
k=1

r1 · · · rk|uLk−1
− uLk

|p

`p−1
k

= 0.
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Fix m ∈ N and u ∈ Hm2 . Since uLk−1
− uLk

≥ 0 for 1 ≤ k ≤ m, and

m∑
k=1

(
uLk−1

− uLk

)
= u0 − uLm

= 1,

Lemma 4.19, with ak = r1 · · · rk`−(p−1)
k , gives

inf
u∈Hm

2

m∑
k=1

r1 · · · rk|uLk−1
− uLk

|p

`p−1
k

=
( m∑
k=1

`k
(r1 · · · rk)1/(p−1)

)−(p−1)

.

Thus, (4.6) holds if and only if
∞∑
k=1

`k
(r1 · · · rk)1/(p−1)

=∞.

�

Corollary 4.22. Consider 1 < p <∞ and the sequences L = {`n}∞n=1 and R = {rn}∞n=1. If there is k0 such

that `p−1
k+1 ≥ rk+1`

p−1
k for every k ≥ k0, then (TL,R, v0) is p-parabolic.

Corollary 4.23. Let us consider two sequences L = {`n}∞n=1 and R = {rn}∞n=1. If L = {`n}∞n=1 is bounded,
then the Cantor tree (TL,R, v0) is non-p-parabolic for every 1 < p <∞.

Corollary 4.24. The Cantor tree (TC , v0) is non-p-parabolic for every 1 < p <∞.

Corollary 4.25. If a uniform tree T contains a subtree T ′ quasi-isometric to the Cantor tree (TC , v0), then
T non-p-parabolic for each 1 < p <∞.

A tree is said to be bushy if each vertex is a uniformly bounded distance from a vertex with degree at
least three.

Proposition 4.26. If a uniform tree T contains a uniform bushy tree without vertices of degree one, then
T is non-p-parabolic for each 1 < p <∞.

Proof. Suppose T contains an infinite uniform bushy tree T ′ without vertices of degree 1, and let us fix
a root v0 in T ′. By hypothesis, there exists a constant k such that each vertex is at distance less than k
from a vertex with degree at least three. Then, v0 has two descendants, v1, v2 in T ′ with degree at least
three such that d(v0, vi) < k for i = 1, 2. Again, vi has two descendants vi1, v

i
2 with degree at least three

such that d(vi, v
i
j) < k for 1 ≤ i, j ≤ 2. Repeating the argument we obtain a tree T ′′ ⊂ T ′ such that T ′′

is homeomorphic to the Cantor tree TC . Moreover, the distance between every vertex in T ′′ and its two
descendants is less than k. Therefore, the natural homeomorphism between T ′′ and TC is a (k, 0)-quasi-
isometry and by Corollary 4.25, T is non-p-parabolic for each 1 < p <∞. �

Recall that a graph is said parabolic if it is 2-parabolic. The following theorem is a particular case of
Theorem 4.21. We include it since, in this case, a different proof is obtained by using electric networks.

Theorem 4.27. Let us consider the sequences L = {`n}∞n=1 and R = {rn}∞n=1. Then the Cantor tree
(TL,R, v0) is parabolic if and only if

∞∑
k=1

`k
r1 · · · rk

=∞.

Proof. It is a well-known fact that there is a strong relationship between discrete potential theory and electric
networks (see, e.g., [7]). A graph G can be seen as an electric network where each edge of length ` has electric
resistance `. In this way, we can see (TL,R, v0) as a rooted tree such that v0 is the starting point of r1 edges
with length `1 ending in r1 vertices of the first generation, for each vertex of the first generation there are r2

edges with length `2 ending in r2 vertices of the second generation, and for each vertex of the k-th generation
there are rk+1 edges with length `k+1 ending in rk+1 vertices of the (k + 1)-th generation for each k ≥ 2.
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Let REFF (Tn) be the effective resistance of the electric network associated to the subgraph Tn of TL,R
induced by the set of vertices of generations up to n, between the root and the vertices of the n-th generation.
By [7, Sections 3.4, 5.5 and 5.6], the random walk in TL,R is recurrent (i.e., TL,R is parabolic) if and only if
REFF (TL,R) := limn→∞REFF (Tn) =∞. Hence, it suffices to show REFF (TL,R) =∞. Let Gn be the graph
obtained from Tn by identifying the vertices of each generation in a single vertex (Gn has n + 1 vertices
and r1 · · · rk edges of length `k joining the vertex of the (k − 1)-th generation with the vertex of the k-th
generation, for each k ≤ n). By symmetry, REFF (Tn) = REFF (Gn). Since the r1 · · · rk edges of length `k
joining the vertex of the (k− 1)-th generation with the vertex of the k-th generation are parallel resistances,
they can be replaced by a single edge between these vertices with resistance `k(r1 · · · rk)−1. Since these new
resistances are series resistances,

REFF (Tn) = REFF (Gn) =

n∑
k=1

`k
r1 · · · rk

, REFF (TL,R) =

∞∑
k=1

`k
r1 · · · rk

(see [7, Section 3.4]). Thus, TL,R is parabolic if and only if

REFF (TL,R) =

∞∑
k=1

`k
r1 · · · rk

=∞.

�
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