On the dimension of harmonic/elliptic measures

Ignasi Guillén–Mola¹ Martí Prats² Xavier Tolsa^{1,3}

¹Departament de Matemàtiques, Universitat Autònoma de Barcelona²Depart

²Departament de Matemàtiques i Informàtica, Universitat de Barcelona

³ICREA, Barcelona

Elliptic partial differential equations

• Let $A = (a_{ij})_{1 \le i,j \le n+1}$ be an $(n + 1) \times (n + 1)$ matrix whose entries $a_{ij} : \mathbb{R}^{n+1} \to \mathbb{R}$ are measurable functions in $L^{\infty}(\mathbb{R}^{n+1})$.

• Suppose the matrix is **elliptic**, i.e., there exists $\lambda \ge 1$ such that for all $\xi \in \mathbb{R}^{n+1}$ and a.e. $x \in \mathbb{R}^{n+1}$,

 $\lambda^{-1}|\xi|^2 \le \langle A(x)\xi,\xi\rangle, \quad \langle A(x)\xi,\eta\rangle \le \lambda|\xi||\eta|.$

- We study the divergence form PDE $L_A u = -\operatorname{div}(A\nabla u)$.
- A function u is said to be L_A -harmonic in an open set U if

$$\int A\nabla u \nabla \varphi = 0 \quad \text{for every } \varphi \in C_0^\infty(U).$$

• Suppose also that the coefficients of A are Lipschitz, i.e.,

$$|a_{ij}(x) - a_{ij}(y)| \le C_L |x - y|$$

• When A = Id the operator is the Laplacian, $L_{Id} = -\Delta$, and it is said harmonic instead of L_{Id} -harmonic.

Definition of the elliptic measure

• Let Ω be a regular domain for the L_A -Dirichlet problem, also called Wiener regular.

• Given a function $g \in C(\partial \Omega)$, let u_g be the L_A -harmonic extension of g on Ω .

• Fix a point $p \in \Omega$. The operator $T : C(\partial \Omega) \to \mathbb{R}$, defined as $T(g) = u_g(p)$, is linear, bounded and positive.

• By the Riesz representation theorem there exists a unique Radon measure ω^p_{Ω} with total mass 1 such that

$$u_g(p) = \int_{\partial\Omega} g(\xi) \, d\omega_\Omega^p(\xi) \quad \text{for every } g \in C(\partial\Omega).$$

The dimension of the harmonic measure

Some known results on the dimension of the harmonic measure, i.e., on

Reifenberg flat sets

• Let $\Omega \subset \mathbb{R}^{n+1}$ $(n+1 \ge 1)$ be an open set, and let $0 < \delta < 1/2$, $r_0 > 0$. We say that Ω is a (δ, r_0) -Reifenberg flat domain if:

(a) For every $x \in \partial \Omega$ and every $0 < r \le r_0$, there exists a hyperplane $\mathcal{P}(x,r)$ containing x such that

 $\operatorname{dist}_{\mathcal{H}}(\partial \Omega \cap B(x,r), \mathcal{P}(x,r) \cap B(x,r)) \leq \delta r,$

(b) and for every $x \in \partial \Omega$ and every $0 < r \leq r_0,$ one of the connected components of

 $B(x,r) \cap \left\{ x \in \mathbb{R}^{n+1} : \operatorname{dist}(x,\mathcal{P}(x,r)) \ge 2\delta r \right\}$

is contained in Ω and the other is contained in $\mathbb{R}^{n+1} \setminus \Omega$.

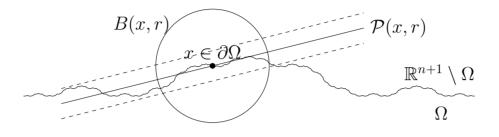


Figure 1. Reifeberg flat domain example.

Theorem (Work in progress)

Let A be a real elliptic Lipschitz (not necessarily symmetric) matrix. Let $\Omega \subset \mathbb{C}^*$ be (δ, r_0) -Reifenberg flat (not necessarily bounded) with bounded boundary $\partial\Omega$, and $p \in \Omega$.

Then there exists $\delta_0 = \delta_0(\lambda)$ such that if $0 < \delta \leq \delta_0$ then there is a set $F \subset \partial \Omega$ satisfying $\omega_{\Omega}^p(F) = 1$ and with σ -finite one-dimensional Hausdorff measure. In particular dim_H $F \leq 1$, and hence dim_H $\omega_{\Omega}^p \leq 1$.

• It is the analogue of [Wol93] for the elliptic case, whenever the matrix is Lipschitz and the set is Reifenberg flat with small constant.

– A similar proof in [Wol93] is used to obtain Theorem from the following Main Lemma.

Sketch of the proof [2/2] (Main Lemma)

- 5. Relation between the final and initial elliptic measure. We want to transfer information from the final measure and domain, to the initial setting.
- 6. Every point has not excessive density for the new elliptic measure with respect to lenght.
- 7. *The most delicate step*: If the set is Reifenberg flat with **small enough constant**,

$$-\infty < C < \int_{\partial \widetilde{\Omega}} \frac{d\widetilde{\omega}}{d\sigma}(\xi) \log \frac{d\widetilde{\omega}}{d\sigma}(\xi) \, d\sigma(\xi).$$

8. From the last two steps we can find a collection of balls satisfying the conditions in Main Lemma.

Reifenberg flat with dimension larger than 1

• Despite we are requiring in Main Lemma and Theorem to work with **Reifenberg flat domains with small enough constant**, one can construct such sets with Hausdorff dimension strictly largen than 1.

• **Example:** Construct the analogue of the Koch snowflake with small angle, as small as desired.

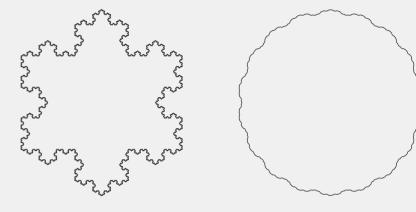
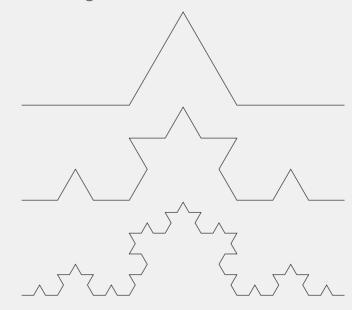


Figure 2. $\frac{\pi}{3}$ - Koch snowflake.

Figure 3. $\frac{\pi}{9}$ -Koch snowflake.

• The smaller the angle, the smaller the δ -Reifenberg flat constant. See Figure 1.



 $\dim_{\mathcal{H}} \omega_{\Omega}^{p} \coloneqq \inf \{ \dim_{\mathcal{H}} F : \omega_{\Omega}^{p}(F^{c}) = 0 \}.$

In the plane, i.e., when $\Omega \subset \mathbb{R}^2$:

- [JW88] There exists a subset $F \subset \partial \Omega$ with $\omega_{\Omega}^{p}(F) = 1$ and $\dim_{\mathcal{H}} F \leq 1$ for every $p \in \Omega$.
- [Wol93] There exists a subset $F \subset \partial \Omega$ with $\omega_{\Omega}^{p}(F) = 1$ and with σ -finite \mathcal{H}^{1} measure for every $p \in \Omega$.

In higher dimensions, $\Omega \subset \mathbb{R}^{n+1}$ with $n \ge 2$, the behaviour of the harmonic measure is different:

- [Bou87] There exists 0 < b_n << 1 such that dim_H ω_Ω^p ≤ n + 1 − b_n, with b_n depending only on dimension of the space, i.e., independent on the set Ω.
 The optimal value of b_n is only known when n = 1 with b₁ = 1.
- [Wol95] There exists an open set $\Omega_n \subset \mathbb{R}^{n+1}$ such that $\dim_{\mathcal{H}} \omega_{\Omega_n}^p > n.$
- It is not longer true in the plane by the results in [JW88] and [Wol93].

Counterexample to general planar elliptic measures

If we do not requiere any regularity on the coefficients of the matrix A, then the analogous results of [JW88] and [Wol93] in the plane are no longer true:

- [Swe92] For any $\varepsilon > 0$ one can construct a set and an elliptic operator in divergence form whose associated measure has support of Hausdorff dimension 2ε .
- From this we conclude that in this setting there is no optimal value b_1 in the plane for the Bourgain's result [Bou87].

Analogous results for p-harmonic measures

- A function u is said to be p-harmonic if it is solution to the operator div $(|\nabla u|^{p-2}\nabla u) = 0.$
- Similar results about the dimension of the analogous *p*-harmonic measure are known **only** (as far as I know) for Reifenberg flat sets with small constant, or simply connected domains.

Main Lemma (Work in progress)

Let A be a real elliptic Lipschitz (not necessarily symmetric) matrix, and set $0 < r \leq 1$ small enough such that $r \cdot C_L ||A||_{L^{\infty}(\mathbb{R}^2)} \leq 1$. Let $\Omega \subset \mathbb{C}^*$ be (δ, r_0) -Reifenberg flat (not necessarily bounded) with bounded boundary $\partial\Omega$, and let $p \in \Omega$ such that $\operatorname{dist}(p, \partial\Omega) > r_0$. Then there exists $\delta_0 = \delta_0(\lambda)$ such that if $0 < \delta \leq \delta_0$, then we have the following:

For any $0 < \tau < 1$, sufficiently large M (big enough) and ρ such that $0 < \rho/r < 1/M$ there is a set $F \subset \partial\Omega$ such that $\omega_{\Omega}^{p}(F) \geq C^{-1}\tau$ and with a covering $F \subset \bigcup_{i} B(z_{i}, r_{i})$ where

$$\sum_{i} r_i \le CM^{\tau}, \quad \sum_{i:r_i > \rho} r_i \le CM^{-1},$$

with universal constant $C \geq 1$.

Preliminar reductions (Main Lemma)

- 1. Rescaling it suffices to prove for $C_L \leq 1$.
- 2. By means of a diagonal linear deformation we can reduce to the case that the symmetric part $A_0 := \frac{A+A^T}{2}$ is of the form $A_0 = RBR$, where R is a Lipschitz rotation, and B is a Lipschitz diagonal matrix.

Sketch of the proof [1/2] (Main Lemma)

It is based on the proof in [Wol93] for the capacity density condition (CDC) case.

- 1. Select balls centered on $\partial \Omega$ with 'high density' scaling in a ε -Lipschitz way.
- 2. Modify the domain Ω by removing these balls and obtain a new domain $\widetilde{\Omega}$, and its elliptic measure $\widetilde{\omega}$.
- 3. The new domain is smooth except at finitely many points.
- 4. The new domain $\hat{\Omega}$ is Reifenberg flat with small constant, provided the initial domain has enough small Reifenberg flat constant.

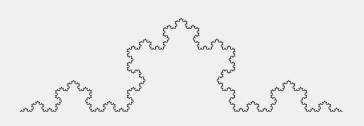


Figure 4. Side construction of the $\frac{\pi}{3}$ -Koch snowflake.

Figure 5. Side construction of the $\frac{\pi}{9}$ -Koch snowflake.

References

- [Bou87] J. Bourgain. On the Hausdorff dimension of harmonic measure in higher dimension. *Invent. Math.*, 87(3):477–483, 1987.
- [JW88] Peter W. Jones and Thomas H. Wolff. Hausdorff dimension of harmonic measures in the plane. *Acta Math.*, 161(1-2):131–144, 1988.
- [Swe92] Caroline Sweezy. The Hausdorff dimension of elliptic measure—a counterexample to the Oksendahl conjecture in ℝ². Proc. Amer. Math. Soc., 116(2):361–368, 1992.
- [Wol93] Thomas H. Wolff. Plane harmonic measures live on sets of σ -finite length. Ark. Mat., 31(1):137–172, 03 1993.
- [Wol95] Thomas H. Wolff. Counterexamples with harmonic gradients in ℝ³. In Essays on Fourier analysis in honor of Elias M. Stein (Princeton, NJ, 1991), volume 42 of Princeton Math. Ser., pages 321–384. Princeton Univ. Press, Princeton, NJ, 1995.