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JESÚS GONZALO(1), ANA PORTILLA(2), JOSE M. RODRÍGUEZ(2) AND EVA TOURÍS(2)

Abstract. It is known that complete Riemannian surfaces can be obtained by pasting three kinds of pieces.

In this paper we prove an analogous result in the context of plane domains with their quasihyperbolic metrics.
In order to do it, we prove several facts about quasihyperbolic closed geodesics of independent interest; for

instance, we characterize the existence of closed geodesics, and we show that they have finite topology.

1. Introduction

A domain is an open connected set Ω  Rn. Given a rectifiable curve γ ⊂ Ω, its quasihyperbolic length
is the length induced by the density 1/δΩ(x), with δΩ(x) = dRn(x, ∂Ω) = dRn(x,Ωc), i.e.,

LΩ(γ) =

∫
γ

ds

δΩ(x)
,

where ds is the differential of the Euclidean arclength. The quasihyperbolic distance in Ω, denoted by dΩ,
is the distance induced by LΩ, i.e.,

dΩ(x1, x2) = inf
{
LΩ(γ) : γ is a curve joining x1 and x2 in Ω

}
.

The quasihyperbolic metric of a domain in Rn was introduced by Gehring and Palka [6] in 1976, and it has
turned out to be a useful tool, for example, in harmonic analysis and many subfields of geometric function
theory, for instance, in the study of quasiconformal maps of Rn and of Banach spaces [14], analysis of metric
spaces [9] and hyperbolic type metric [8]. Also, there is quite a strong relationship between uniform domains
and the quasihyperbolic metric. Most of the basic results on the quasihyperbolic metric can be found in [6],
[5] and [10].

However, there are just a few papers studying the geometric properties of this metric. It is known [5,
Lemma 1] that a quasihyperbolic geodesic between given points always exists. G. Martin [10, Corollary 4.8]
proved in 1985 that quasihyperbolic geodesics are C1 smooth with Lipschitz continuous derivatives, Väisälä
[13] showed that if dΩ(x1, x2) < 2 then the geodesic arc joining x1 to x2 is unique. The proofs required new
ideas, since even in domains with smooth boundary the density 1/δΩ(x) need not be differentiable.

The celebrated Classification Theorem of compact surfaces says that every orientable compact topological
surface is homeomorphic either to a sphere or to a sphere with handles attached, see e.g. [11]. In the Rie-
mannian setting one has the following: Every orientable compact Riemannian surface which is homeomorphic
neither to the sphere nor to the torus can be obtained by gluing Y-pieces along their bounding geodesics.

A halfplane is a simply connected open subset of the hyperbolic plane H whose boundary is a unique
geodesic line. A generalized Y-piece is either a Y-piece or a Y-piece for which one or several boundary
geodesics are replaced by punctures. In [2] the following result was obtained
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Theorem A. ([2, Theorem 1.2]) Every complete orientable Riemannian surface with constant curvature
K = −1, which is not the punctured disc, is the union (with pairwise disjoint interiors) of generalized
Y-pieces, funnels and halfplanes.

The fact that the boundaries of generalized Y-pieces are simple closed geodesics facilitates the applications
of Theorem A, since cutting and pasting surfaces along such type of curves is easy.

The present paper deals with plane domains with their quasi-hyperbolic metric. Since that metric is only
Lipschitz, the behavior of closed geodesics, their existence, and their uniqueness, are not trivial to study.

Theorem 4.3, the main result in this paper, is a decomposition for plane domains with their quasihyperbolic
metric. It is analogous to Theorem A quoted above. This decomposition is made possible by other crucial
results. In Section 3 we determine when a general kind of closed geodesics, called limit geodesics, do exist. In
Section 5 we show that closed geodesics have finite topology; this is specially valuable, as Section 6 exhibits
examples of quite unexpected behavior by quasihyperbolic geodesics: two distinct quasihyperbolic geodesics
may be tangent at a point; further, a sliding occurs when such geodesics have proper segments (of positive
length) that coincide for a while; self-slidings of a single quasihyperbolic geodesic also occur.

Just as half-planes are needed in Theorem A, simply connected open sets are a must in Theorem 4.3; this
is made obvious by Examples 6.2 and 6.4.

2. Background

Let Ω be any domain in C, endowed with its quasihyperbolic metric. For a closed set A ⊂ Ω and r > 0,
we define B(A, r) :=

{
z ∈ Ω : dΩ(p, z) ≤ r for all p ∈ A

}
, which is also closed. For closed A,A′ ⊂ Ω, the

Hausdorff distance between them is

dH(A,A′) = inf
{
r > 0 : A′ ⊆ B(A, r) and A ⊆ B(A′, r)

}
.

In the proof of Theorem 4.3 we use the following result, a consequence of the proof of [3, Theorem 4.2].

Theorem B. Let Ω be any domain in C, endowed with its quasi-hyperbolic metric and E an end of Ω.
Then E is a collared end if and only if there exists a sequence {αn} of closed curves converging to E and
representing a single non-trivial free homotopy class.

Quasihyperbolic geodesics are usually defined by minimization ot length among all paths with the same
pair of endpoints, thus forcing them to be arcs. Instead, it is useful for our purposes to require minimization
of length within a given free homotopy class of closed curves.

Definition 2.1. Let Ω be any domain in C, endowed with its quasi-hyperbolic metric, and let [α0] be a
non-trivial free homotopy class in this domain. We say that a closed curve α ∈ [α0] is a closed geodesic
in Ω, or that it is a minimizer for the class [α0], if LΩ(α) = inf

{
LΩ(σ) : σ ∈ [α0]

}
. We do not consider

constant paths to be closed geodesics.

G. Martin [10, Corollary 4.8] has shown that quasihyperbolic geodesics are C1,1, i.e., they are C1 and
their first derivatives are Lipschitz. Same is true for closed geodesics.

3. Limit geodesics

In the quasihyperbolic metric, a Jordan curve may be homotopic to a minimizing geodesic that is not a
Jordan curve. However, we are going to see that the minimizer can be chosen without self-crossings, and also
that when two Jordan curves are disjoint their chosen minimizers do not cross. We define the absence of
crossings and self-crossings by requiring that the configuration (one or two geodesics) can be turned into an
embedded one by arbitrarily small perturbations. We restrict attention to quasihyperbolic geodesics because,
as stated in Theorem 5.1, they make up configurations of finite complexity.

Definition 3.1. Let Ω be any domain in C endowed with its quasi-hyperbolic metric. A limit geodesic is a
closed quasihyperbolic geodesic that is a uniform limit of simple closed paths. We say that two limit geodesics
do not cross if the configuration of the two is a uniform limit of pairs of disjoint simple closed paths.
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The interior of a Jordan curve α ⊂ C is the bounded connected component Int(α) of C \ α, while
the exterior of α is the unbounded component. The meanings of the expressions ‘lies interior to α’, ‘is
surrounded by α’, and ‘lies exterior to α’ are the obvious ones. A point p interior to α has rotation index
i(α, p) = ±1; an exterior point q has i(α, q) = 0.

Theorem 3.2. Let Ω be any domain in C, endowed with its quasihyperbolic metric and let [α0] be a non-
trivial homotopy class represented by a Jordan curve α0 ⊂ Ω. This class contains at least one quasihyperbolic
minimizer, except in one special case: when Ωc consists of more than one point and is all surrounded by α0.

It is possible to choose, for each such class not in the special case, a limit geodesic as minimizer, in such
a way that whenever two classes are distinct, and represented by disjoint Jordan curves, the chosen limit
geodesic minimizers do not cross.

Proof. We consider three mutually excluding cases.
Case 1: Ωc has at least two points and is all surrounded by α0. Choose two points z0, z1 ∈ Ωc, and let
γ(t) = z0 + r(t)eiθ(t) ⊂ Ω be any counterclockwise Jordan curve that surrounds Ωc, then:

(3.1) LΩ(γ) =

∫
γ

|dz|
δΩ(z)

≥
∫
γ

|dz|
|z − z0|

=

∫ 1

0

∣∣∣∣r′(t)r(t)
+ iθ′(t)

∣∣∣∣ dt ≥ ∫ 1

0

θ′(t) dt = 2π .

The value 2π is a lower bound for the quasihyperbolic length of all curves in this homotopy class. It is in
fact the infimum, as we see by considering circles centered at z0 with radius going to infinity. Of the two
inequalities in formula (3.1), the second one is strict unless r′(t) ≡ 0. The curve γ thus has LΩ(γ) > 2π if
it is not a circle centered at z0. Likewise it has LΩ(γ) > 2π if it is not a circle centered at z1, but a circle
cannot be centered at both points simultaneously. In this case, thus, there is no minimizer.

Case 2: Ωc ∩ Int(α0) consists of exactly one point p. Near the point p we have δΩ(z) = |z − p| = r. The
quasihyperbolic metric of Ω is, in this neighborhood, same as in the product cylinder [0,∞)×S1, where the
coordinate along the [0,∞) factor is log r and the circle factor has length 2π. The circles r = constant are
the minimizers.

Case 3: Ωc contains at least two points interior to α0 and at least one point exterior to α0. We can choose
distinct points p1, p2, q ∈ Ωc, with p1, p2 lying interior to α0 and q exterior to α0, plus a path β(t) : [0, 1]→ C
with q = β(0), p1 = β(1), and β

(
(0, 1)

)
⊂ Ω. Let D be a closed Euclidean disc centered at q and disjoint

from {p1, p2}. Let D1 be a closed Euclidean disc centered at p1 and disjoint from {p2} ∪D.
Let α ∈ [α0] be any curve with LΩ(α) ≤ LΩ(α0) + 1. Since i(α, q) = 0 and i(α, p1) = ±1, the path β

must intersect α. There is a point pα ∈ α outside D ∪D1, otherwise we would have α ⊂ D or α ⊂ D1, and
in both cases i(α, p2) = 0, which is false. Starting at pα, we cannot go along α and get very close to p1 or
to q, because this would force LΩ(α) > LΩ(α0) + 1. All this provides a compact arc A0 ⊂ β intersected by
all this curves α which, in turn, are all contained in the compact set A = B

(
A0 , LΩ(α0) + 1

)
⊂ Ω.

Now we approximate the quasihyperbolic metric λ0 |dz|2 by Riemannian metrics λ |dz|2 near the compact
set A. Each of these metrics satisfies m2

λλ0 ≤ λ ≤M2
λλ0, with mλ,Mλ as close to 1 as we please. Minimize

Riemannian length among those closed paths α ∈ [α0] whose Riemannian length is at most that of α0. The
quasihyperbolic length of those paths satisfies the inequality LΩ(α) ≤ (Mλ/mλ) · LΩ(α0) and, for mλ,Mλ

close enough to 1, we have LΩ(α) ≤ 1 + LΩ(α0). Then all those paths are contained in the fixed compact
set A and Arzelá-Ascoli provides, for each metric λ|dz|2, a closed minimizer αλ ∈ [α0]. By the results in [4],
the Riemannian geodesics αλ are smooth Jordan curves.

Among the Riemannian metrics λ|dz|2 select a sequence {λn|dz|2} converging uniformly on A to the
quasihyperbolic metric. Get a corresponding sequence {αn} of geodesics all contained in A and each
minimizing length in [α0] for the respective metric λn|dz|2. A second use of Arzelá-Ascoli yields a subsequence
{αk} converging uniformly to a quasihyperbolic minimizer α∞ for the class [α0]. Now α∞ is a limit geodesic,
because it is approximated by the Jordan curves αk. This completes the analysis of the three cases.

For each limit geodesic α∞, constructed as the uniform limit of a sequence of Jordan curves αk, we
define the limit interior as the limit (in Hausdorff distance) of the compact sets Int(αk). This set has finite
complexity by Theorem 5.1.

Suppose now that α, β ⊂ Ω are two disjoint Jordan curves, with non-trivial homotopy classes [α] 6= [β]
neither of which is in Case 1. If α surrounds β, then the limit interior of the limit geodesic chosen for [α]
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contains the limit geodesic chosen for [β], hence they do not cross. If α and β have disjoint interiors; then
the chosen limit geodesics for [α] and [β] have non-overlapping limit interiors and, again, do not cross. �

4. Structure theorem

Definition 4.1. Given any domain Ω in C, endowed with its quasi-hyperbolic metric, we define:
A funnel is the closed subset of Ω placed between a limit geodesic and a connected component of C \Ω =

Ωc ∪ {∞} with more than one point.
A puncture in Ω is the closed subset of Ω lying between a simple closed geodesic with length 2π and an

isolated point in Ωc.
The puncture at infinity of Ω is (if it exists) the collared end in Ω defined by the inclusion C \ D ⊂ Ω,

where D is a suitable closed disc.
A geodesic domain G is a closed subset of Ω, neither simply nor doubly connected, limited by finitely many

non-crossing limit geodesics. It may contain the puncture at infinity but neither funnels nor punctures.
Generalizing the classical definition with negative curvature to our context, we call Y-piece a compact

geodesic domain limited by three limit geodesics. Likewise we call exterior Y-piece a non-compact geodesic
domain that contains the puncture at infinity and is limited by two limit geodesics.

The domain Ω has a (unique) puncture at infinity if and only if Ωc is compact. According to Theorem 3.2,
this type of collared end is the only one with no closed geodesic in its homotopy class.

An exterior Y-piece can be cut by a Jordan curve into a “topological Y-piece” and a puncture at infinity,
but the cutting curve can never be a closed geodesic.

Proposition 4.2. Let Ω be any domain in C, endowed with its quasi-hyperbolic metric. Every geodesic
domain G ⊂ Ω is a finite union (with pairwise disjoint interiors) of Y-pieces and, at most, an exterior
Y-piece. Furthermore, the exterior Y-piece appears in this union if and only if Ωc is a compact set and the
geodesic domain contains a neighborhood of infinity in Ω.

Proof. We denote by γ1, γ2, . . . , γk the limit geodesics in ∂G. We can choose pairwise disjoint Jordan curves
g1, g2, . . . , gk in Ω such that gj ∈ [γj ] for each j. Let G′ be the closed region with boundary g1 ∪ · · · ∪ gk.
Topologically G′ is a disc with k − 1 holes (or the complex plane with k holes) and we can cut it into
finitely many topological Y-pieces Y1, . . . , Ys (and maybe also an exterior Y-piece Y0). We consider the set
{g1, . . . , gk, η1, . . . , ηh} of pairwise disjoint Jordan curves in ∪n∂Yn and modify it in the following way. For
i = 1, . . . , k replace gi with γi. For j = 1, . . . , h choose a limit geodesic γk+j ∈ [ηj ]; this geodesic exists
because ηj separates two pieces none of which is a puncture at infinity. By Theorem 3.2, the limit geodesics
γ1, . . . , γk+h do not cross, therefore γk+1, . . . , γk+h lie inside G and in fact split it into the required finite
union of Y-pieces and, perhaps, one exterior Y-piece in addition. �

Theorem 4.3. For each domain Ω in C, endowed with its quasi-hyperbolic metric, which is neither simply
nor doubly connected, there exists a set H ⊆ Ω made of Y-pieces, funnels, punctures and, at most, an exterior
Y-piece, all glued together by sharing boundary geodesics, in such a way that Ω is the union of the closure of
H and simply connected open sets. Furthermore, the exterior Y-piece appears in this decomposition if and
only if Ωc is a compact set.

Assume first that the fundamental group of Ω is finitely generated. Thus, C \ Ω has just a finite number
of connected components C0, C1, . . . , Ck, with ∞ ∈ C0. Notice that k ≥ 1, because π1(Ω) has at least two
generators. For each 1 ≤ j ≤ k, let Fj be a funnel or puncture in Ω such that Cj is contained in the interior
of the limit geodesic ∂Fj . If Ωc is not compact, i.e. C0 6= {∞}, let F0 be the funnel in Ω between C0 and a
limit geodesic ∂F0 that separates C1, . . . , Ck from C0. Then the closure of Ω \ ∪nj=1Fj (if Ωc is compact) or
Ω \ ∪nj=0Fj (if Ωc is not compact) is a geodesic domain, and Proposition 4.2 gives the result in this case.

Assume now that Ω has infinitely generated fundamental group. The proof in this case will take up
the rest of this Section, including proofs of some lemmas and propositions. Fix a point p0 ∈ Ω. Since Ωc

has more than one point, we can consider the Poincaré metric ρ in Ω, a complete Riemannian metric with
constant curvature −1. As ρ is real analytic, the boundary of the Poincaré ball Bρ(r) centered at p0 is
a finite union of pairwise disjoint Jordan curves (see [7, Theorem 1.2]) except for r ∈ R where R is some
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countable set of numbers. Start with r1 /∈ R such that the fundamental group of the ball Bρ(r1) induces a
subgroup of π1(Ω) with at least two generators. Inductively, once rn−1 has been chosen we take rn /∈ R with
rn > max{rn−1, n}. Each Bn = Bρ(rn) induces a non-cyclic subgroup of π1(Ω) and has boundary made of
finitely many pairwise disjoint Jordan curves.

Call a boundary component of ∂Bn inessential if it is contractible in Ω, and essential if it is not contractible

in Ω. Let B̂n ⊂ Ω be the union of Bn with the closures of the interiors of its inessential boundary components.

Now ∂B̂n is made of the essential boundary components {ηni }i∈I0n of ∂Bn. In particular, write ηn0 for the
outer component; which surrounds all other boundary components. Replace the family of curves {ηni }i∈I0n
by a family of geodesics {γni }i∈In , using the following inductive rules. If the class [ηni ] is not in Case 1 of
Theorem 3.2, and it does not appear among the classes [ηn−1

j ] (in particular, if n = 1), then let γni be a limit

geodesic in this class and include the index i in In. If n > 1 and there is γn−1
j ∈ [ηni ], then choose γni = γn−1

j

and include the index i in In. If the outer component ηn0 is in Case 1 of Theorem 3.2, forget this curve and
exclude the index 0 from In. When done, either In = I0

n or In = I0
n \ {0}.

Fix a ball Bn. Since {ηni }i∈In are pairwise disjoint Jordan curves, Theorem 3.2 says that the limit
geodesics {γni }i∈In do not cross, and there should be a geodesic domain Gn limited by them. We proceed
to the precise construction of Gn. There are a constant Ln and a compact set An ⊂ Ω such that for all
i ∈ In the loops in [ηni ] with quasihyperbolic length not greater than Ln are contained in An. Approximate

the quasihyperbolic metric near An by a sequence
{
λν |dz|2

}∞
ν=1

of Riemannian metrics. For each positive

integer ν get a set of closed Riemannian minimizers for the classes [ηni ] with i ∈ In. By [4], these Riemannian
geodesics are simple and pairwise disjoint, hence bound a closed domain G(ν) ⊂ C.

Lemma 4.4. For all ν we have G(ν) ⊂ Ω.

Proof. Suppose that 0 ∈ In. In this case ∂G(ν) contains a Riemannian geodesic γ0(ν) homotopic to the

outer component ηn0 of ∂B̂n. Each point z ∈ G(ν) lies interior to γ0(ν) and exterior to the other geodesics
in ∂G(ν); if z did not belong to Ω, then it would also lie interior to ηn0 and exterior to all other ηni , hence it

woud be z ∈ B̂ ⊂ Ω, a contradiction. A similar argument applies to the case 0 /∈ In, only without γ0(ν). �

For a fixed ball Bn, the domains G(ν) are either all compact or all non-compact. The second possibility

only happens when the outer component of ∂B̂n is homotopic to the puncture at infinity of Ω, and then all
domains G(ν) contain the puncture at infinity.

After passing to a subsequence, the boundaries {∂G(ν)}∞ν=1 converge uniformly and
{
G(ν)

}∞
ν=1

is a
Cauchy sequence in Hausdorff distance. We define the closed set Gn ⊂ Ω as the Hausdorff limit Gn :=
limν→∞G(ν).

We define the boundary of the geodesic domain Gn as ∂Gn = ∪i∈Inγni = limν→∞ ∂G(ν). This set
contains the topological frontier: FrGn ⊆ ∂Gn, but this inclusion could be strict.

Proposition 4.5. The sets Gn are path connected.

Proof. Suffices to prove that any two points in ∂Gn are joined by a path in Gn.
Fix two geodesics α1, β1 ⊂ ∂G(1). For each ν > 1 let αν , βν ⊂ ∂G(ν) be the geodesics homotopic to α1

and β1, respectively. Let M be an apriori bound for the quasihyperbolic distance between αν and βν , and
choose paths ξν ⊂ Ω that join αν to βν and have LΩ(ξν) ≤M . Every time ξν exits G(ν) through a geodesic
γ ⊂ ∂G(ν), it must re-enter through the same γ and we can replace the part of ξν between those two events
with an arc of γ. Doing this as many times as necessary, we get a new path ξν ⊂ G(ν) joining αν to βν .

If ξν visits a geodesic γ ⊂ ∂G(ν) more than once, we can replace the part between the first and last visit

by a single arc of γ. This procedure leads to yet another path ξ̃ν ⊂ G(ν), still joining αν to βν and having

LΩ(ξ̃ν) ≤M + L, where L is an apriori bound for LΩ

(
∂G(ν)

)
.

The sequence {ξ̃ν}∞ν=1 is contained in a compact subset of Ω and has length uniformly bounded by M+L.

We can reparametrize ξ̃ν(t) : [0,M + L]→ Ω so that the sequence becomes uniformly Lipschitz. By Arzelá-
Ascoli there is a subsequence converging uniformly to a Lipschitz path ξ∞ ⊂ Gn that joins the two boundary
geodesics α∞ = limν→∞ αν and β∞ = limν→∞ βν . �
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Lemma 4.6. Let γ be a limit geodesic for which there is a natural number N with γ ⊂ ∂Gn for every n ≥ N .
Then γ is the border of a funnel or a puncture in Ω.

Proof. It is well-known that distρ ≤ 2dΩ (see, e.g., [1, Theorem 1-11]). For n ≥ N , let us consider the Jordan
curve ηn ⊂ ∂Bρ(rn) which is freely homotopic to γ. Since 2 lim infn→∞ dΩ(p0, ηn) ≥ limn→∞ distρ(p0, ηn) =
limn→∞ rn = ∞, and ηn belongs to a single non-trivial free homotopy class for every n ≥ N , Theorem B
gives that {ηn} converges to a collared end F . Since γ is a limit geodesic and ηn ∈ [γ] for every n ≥ N , the
collared end F must be a funnel or a puncture. �

Let us continue now with the proof of Theorem 4.3. By construction we have Gn ⊆ Gn+1. We can take a
subsequence of radii {rh} such that Gh  Gh+1, and besides, if ∂Gh∩∂Gh+1 contains some limit geodesic γ,
then γ is also in ∂GN for all N > h (such γ is, by Lemma 4.6, the border of a funnel or a puncture). This
subsequence can be constructed because, once we have arrived at the geodesic domain Gh, we only need to
examine the long-term behavior of a finite number of boundary components, namely, those of Gh.

By Proposition 4.2, each connected component of the closure of Gh+1 \Gh is a finite union (with pairwise
disjoint interiors) of Y-pieces and, at most, an exterior Y-piece.

For each h, let us define Hh as the closed subset of Ω obtained as the union of Gh and the funnels and
punctures whose boundaries are contained in ∂Gh. Define also H as the union H := ∪hHh.

By construction, any two limit geodesics γh ⊂ ∂Hh and γh+1 ⊂ ∂Hh+1 are non-homotopic in Ω.
If Ω = H there is nothing else to prove, but Ω \H can be a non-empty set, see Examples 6.2 and 6.4. In

any case H “captures all the homotopy of Ω”; let us see that it captures even more.

Lemma 4.7. Every Jordan curve α0 ⊂ Ω with non-trivial homotopy class intersects the set H.

Proof. Choose a radius rh, so that the ball B = Bρ(rh) contains α0. Let Gh be the geodesic domain that
corresponds to B.
Part 1. Let us see that α0 intersects Gh or is homotopic to an essential boundary component of B.

For each connected component ηi of ∂B we have either ηi ⊂ Int(α0) (possible only for the inner com-
ponents of ∂B) or ηi ∩ Int(α0) = ∅. If no essential component ηi lied interior to α0, then we would have

Int(α0) ⊂ B̂ ⊂ Ω, and [α0] would be trivial, contrary to our hypotheses. If only one essential component

ηi0 lies interior to α0, then α0 ∪ ηi0 is the boundary of an annulus contained in B̂ and α0 is homotopic
to ηi0 , as claimed. If all essential inner components of ∂B lie interior to α0, then α0 is homotopic to the
outer component of ∂B, again proving our claim.

The remaining possibility is that there are three essential inner components of ∂B, say η1, η2, η3, the first
two lying interior to α0 and the third one exterior to α0. It is possible to choose, for j = 1, 2, 3, a point
zj ∈ Ωc ∩ Int(ηj).

For j = 2, 3, let γj ⊂ ∂Gh be the limit geodesic chosen in [ηj ]. If α0 intersects γ2 or γ3, the claim is true.
Assume that α0 is disjoint from γ2∪γ3. If γ3 lied interior to α0, then we would have i(γ3, z3) = 0 6= i(η3, z3),
impossible, hence γ3 lies exterior to α0. If γ2 lied exterior to α0, then a close enough Jordan curve γ̃2 would
also lie exterior to α0 and either Int(α0) ⊂ Int(γ̃2) or Int(α0) ∩ Int(γ̃2) = ∅; in the first case we would
have i(γ̃2, z1) = ±1 6= i(γ2, z1), impossible; in the second case we would have i(γ̃2, z2) = 0 6= i(γ2, z2), again
impossible; therefore γ2 lies interior to α0.

Now γ2 lies interior to α0 while γ3 lies exterior to α0. The set Gh thus visits the interior and the exterior
of α0 and, since by Proposition 4.5 it is path connected, it must intersect α0.

Part 2: suppose α0 is homotopic to an essential boundary component ηi of B, hence homotopic to a limit
geodesic γi in ∂Gh or perhaps to the puncture at infinity.

Assume first that α0 is homotopic to the puncture at infinity, which in turn is contained in an exterior
Y -piece P . It is impossible to have α0 ∩ P = ∅, because then α0 could not be homotopic to ηi. Hence, α0

intersects H in this case.
Assume now that α0 is homotopic to a limit geodesic γi in ∂Gh. If γi is not in ∂Gh+1, then α0 is

not homotopic to any essential boundary component of Bρ(rh+1) and, by Part 1, it intersects Gh+1. By
Lemma 4.6, the only alternative option for γi is to be the boundary of a funnel or puncture F . If some
non-empty part ξ ⊂ α0 lies on γi or is on the side of γi where F is, then α intersects F .
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Finally, α0 could be a Jordan curve homotopic to the boundary γi of F but disjoint from F . But on the
side of γi opposite to F we must have another piece P of the decomposition, and if α0 intersects P , then
it intersects H and we are done. Now P cannot be a funnel or a puncture, because then we would have
Ω = F ∪ P , a domain with cyclic fundamental group. Thus P is either a Y-piece or an exterior Y-piece.
It is impossible that α0 be disjoint from F ∪ P , because then α0 could not be homotopic to γi. Hence, α0

intersects H and the proof is finished. �

The following result completes the proof of Theorem 4.3.

Proposition 4.8. Each connected component J of Ω \H is simply connected.

Proof. Let γ0 ⊂ J be any loop. Slightly perturb γ0 into a closed path γ ⊂ J in general position. This does
not change the homotopy class, but now γ has a finite number of transverse self-intersections and C \ γ has
finitely many bounded components, each contractible. Let U be any of those components.

The Jordan curve ∂U ⊂ γ ⊂ J is disjoint from H and, by Lemma 4.7, it is contractible in Ω. Tus U ⊂ Ω.
Since the connected set H is disjoint from ∂U , either H ⊂ U or H ∩ U = ∅. But if we had H ⊂ U

then H would induce the trivial subgroup in π1(Ω), which is false, hence H and U are disjoint. Then U is a
connected open subset of Ω \H and it intersects J , therefore U ⊂ J .

Since all bounded components of C\γ are contained in J , the path γ is contractible in J and so is γ0. �

5. Finite topology of closed geodesics

Here we give a counting result for tangencies and slidings of maximal length: while the two segments
remain together we count the sliding as a single one.

Theorem 5.1. Let Ω be any domain in C, endowed with its quasi-hyperbolic metric. Given closed geodesics
α and β, and

N :=
⌊LΩ(α)

2

⌋
+ 1, N ′ :=

⌊LΩ(β)

2

⌋
+ 1,

the configuration {α, β} has a finite topological complexity with upper bounds:
at most N(N − 1)/2 self-intersections/self-slidings for α,
at most N ′(N ′ − 1)/2 self-intersections/self-slidings for β,
and at most NN ′ intersections/slidings between α and β.

Proof. We start with a closed geodesic γ with LΩ(γ) = `. Choose a positive integer N with `/N < 2 and
divide γ into segments γ1, . . . , γN each with LΩ(γi) < 2. By a result of Väisälä [13], the γi are Jordan arcs.

Let 1 ≤ i 6= j ≤ N and consider αi and αj . Parametrize αi and αj by arclength, with resulting
parametrizations fi : [0, `i] → Ω and fj : [0, `j ] → Ω. Define a, b ∈ [0, `i] as the first and last values
of t such that fi(t) ∈ αi ∩ αj . For any point fi(t) ∈ αi ∩ αj we must have t ∈ [a, b], in other words
αi ∩ αj ⊆ βi := αi

(
[a, b]

)
.

If a = b then αi ∩ αj = {αi(a)} consists of a singe point.
Suppose now that a < b and define βj as the segment of αj whose endpoints are αi(a), αi(b). The segments

βi, βj are geodesics, they have the same endpoints, and the same length which is less than 2. By [13], we
must have βi = βj . Hence, αi ∩ αj = βi = βj and so, αi and αj have a single sliding: a geodesic segment
whose endpoints are αi(a), αi(b). They have no other intersection.

The conclusion is that two segments, with length less than 2, have at most a single intersection point
(tangential or transverse) or a single sliding, and never both. This counts as one intersection. As the
number of pairs i < j is N(N − 1)/2, a closed geodesic with length less than 2N has at most N(N − 1)/2
self-intersections/self-slidings.

By the same argument, if α, β are closed geodesics with LΩ(α) < 2N and LΩ(β) < 2N ′, then they have
at most NN ′ intersections/slidings. �

6. Examples

We begin by showing that infinitely many quasihyperbolic geodesics can have the same initial point and
same initial tangent direction.
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Example 6.1. Consider Ω = C \ {−1, 1} with its quasihyperbolic metric. For 0 < r ≤ 1, the following
curves are closed geodesics in Ω, each a minimizer for its homotopy class:

ar = { z : |z + 1| = r } , br = { z : |z − 1| = r } ,

and we see that for r = 1 they are tangent at the point z = 0. Let D,D′ be the closed discs bounded by a1

and b1, respectively. One can check that a geodesic joining 0 to any point z /∈ D ∪D′ is exterior to both a1

and b1, which forces it to be tangent at 0 to both a1 and b1.

The following example shows that Ω \H may be non-empty.

Example 6.2. Let us define

D =
{
z ∈ C : |z| < 1

}
, Ω = D \ ∪∞n=1

{
− 1 + 1/n

}
, W =

{
x+ iy ∈ D : x > 1/2

}
.

The set H corresponding to this domain contains no outer funnel and no exterior Y-piece. It consists only
of geodesic domains Gh and the punctures around the points −1 + 1/n. We claim that every limit geodesic
in Ω is disjoint from W , hence the Gh are disjoint from W . Since the punctures are also disjoint from W ,
at least one simply connected piece is needed in the decomposition of Ω.

Let γ be a limit geodesic in Ω and suppose that there exists z0 = x0 +iy0 ∈ γ with x0 > 1/2. The connected
component γ0 of γ ∩W that contains z0 is an arc joining two points 1/2 + iy1, 1/2 + iy2 ∈ D. For each
x + iy ∈ γ0 we have dC(x + iy, ∂Ω) ≤ dC(1/2 + iy, ∂Ω), with strict inequality for x0 + iy0. Therefore, if g
is the Euclidean segment joining 1/2 + iy1 and 1/2 + iy2, we have LΩ(g) < LΩ(γ0) and, since g and γ0 are
homotopic in Ω rel endpoints, we would deduce that γ is not minimizing in its homotopy class.

We shall see now that a narrow straight corridor in the domain Ω forces geodesics to have (self)-slidings.

Lemma 6.3. Let Ω be a domain that for some a > 2 contains the open rectangle Ua = (−1, 1) + i(−a, a),
while the long sides L±a = ±1 + i[−a, a] of that rectangle lie entirely in Ωc.

If γ is a geodesic in Ω joining a point on the short side {x − ia : x ∈ (−1, 1)} ∩ Ω with a point on the
other short side {x+ ia : x ∈ (−1, 1)} ∩Ω, and contained in Ua ∩Ω, then the segment L4 = i[−a+ 2, a− 2],
four units shorter than [−a, a], is part of γ.

Proof. The segment L2 = i[−a+1, a−1], two units shorter than [−a, a], separates Q−a := (−1, 0]+L2 ⊂ Ua
from Q+

a := [0, 1) + L2 ⊂ Ua. In the left rectangle Q−a we have δΩ(x + iy) = 1 + x, hence the restriction
to Q−a of the quasihyperbolic metric of Ω coincides with the restriction to Q−a of the Poincaré metric in the
half-plane {x + iy ∈ C : x > −1}. Thus, the geodesics of Ω in Q−a consist of straight segments orthogonal
to L−a , subarcs of half-circles orthogonal to L−a , and segments contained in L2. A symmetric result holds for
the right rectangle Q+

a . All these parts must be put together so that the result is a C1 curve. One checks,
by inspection, that if γ goes all the way from {y = 1− a} to {y = a− 1}, then it is the union of a straight
segment that contains L4 and at most two subarcs of circles centered at L+

a ∪ L−a and with radius 1. �

A first application of Lemma 6.3 is the existence of a Y-piece with the shape shown in Figure 1. The
domain Ω is the complex plane minus two pairs of parallel straight segments, indicated by thick lines in the
figure, which delimit narrow rectangular corridors in Ω. The Y-piece consists of the shaded area plus the
thin segments (one vertical, one horizontal). One of the boundary geodesics has two self-slidings, because it
goes twice along each corridor, while the other two are Jordan curves. The three boundary geodesics have
a common sliding along the thin vertical segment.

Example 6.4. Let Ω be the plane domain

Ω =
{
x+ iy : x > 0 , |y| < 1

}
\ ∪∞n=1{5n} .

Lemma 6.3 implies that the decomposition is Ω = H ∪ J , as shown in Figure 2. The boundary ∂J is not
an embedded geodesic.
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Figure 1. A Y-piece.

J

Figure 2
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