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Abstract
We provide a structural theory of monetary risk measures with the crucial property of being maxitive. In particular, we
show that the basic theory of large deviations is covered by this general theory. We prove for this type of monetary risk
measures the Varadhan-Bryc equivalence between large deviation principle (LDP) and Laplace principle (LP), and extended
versions of Bryc’s theorem, and Cramer’s theorem. As an application, we provide a comparison result for the asymptotic
behavior of two random walks.

1 Motivation

e The theory of risk measures 1s one of the main directions of recent developments in stochastic optimization.
It has found multitude of applications.

* Risk measures are connected to nonlinear expectations, model uncertainty/model-free finance, and robust
optimization.

* Typical examples include: expectations, coherent/convex risk measures, nonlinear expectations...

Throughout, we fix a completely regular topological space S endowed with the Borel o-algebra B(.5).

Definition 1. A monetary risk measure is a function ¢: L°°(S) — R that satisfies the following axioms:
1. Normalization: ¢(0) = 0,
2. Translation invariance: ¢(f + ¢) = ¢(f) + c for every constant c,

3. Monotonicity: ¢(f) < ¢(g) if f < g.
A monetary risk measure ¢ is maxitive if o(f V g) < o(f)V ¢(g) forall f,g € L>(S).

In the following we focus on maxitive monetary risk measures. In contrast to an expectation, where losses
are averaged over different states, a maxitive monetary risk measure does not compensate losses by large
profits in other states.

In probability theory, the theory of large deviations concerns the asymptotic behaviour of sequences of prob-
ability distributions, see [2].

Example 1.1. Suppose that X1, Xo, X3, --- are S-valued random variables on a probability space (§2, F,P).
The asymptotic entropic risk measure

6 LX(8) R, 6(f) = lim —logEplexp(nf(Xy))

n—oo

is a maxitive monetary risk measure (for simplicity, we assume that the limit exists). The sequence (X)) is
said to satisfy the Large deviation principle (LDP) with rate function I: S — |0, 00| if

1
— inf [I(z) < lim —logP(X, € A) < — inf I(x),
r€int(A) n—oomn recl(A)

forall A € B(S).

The LDP has the following equivalent formulation in terms of the asymptotic entropic risk measure

¢(f) = sup{f(z) — I(z)} forall f € Cy(S).

€S

This form is called Laplace principle (LP). An important example is the case when X, = %(51 + -+ &) s
the sample mean of i.i.d. real-valued random variables &1, &>, - - -. In that case, the LDP is satisfied and the
rate function is the convex conjugate of the logarithmic moment generating function A(t) = log Ep[@t&].

2 Large deviation principle and Laplace principle

Suppose that ¢: L°°(S) — R is a monetary risk measure. For every A € B(S), we define its concentration as

Jyp= lim @(M1ye).

M——o0

Inspired by Example 1.1, we define.

Definition 2. Suppose that ¢: L°°(S) — R is a monetary risk measure and I : S — |0, 00| is a rate function.
» We say that ¢ satisfies the Large deviation principle (LDP) with rate function I(-) if

— nt I(x) < Js < — int Iz
r€int(A) @) < Ja< recl(A) (@)

» We say that ¢ satisfies the Laplace principle (LP) with rate function I(-) if

o(f) = sup{f(z) — I(z)} forall f € Cp(S).

€S

Both principles are equivalent and uniquely determine the rate function. More precisely, we have the follow-
ing.

Theorem 1. Suppose that ¢: L°°(S) — R is a maxitive monetary risk measure and I: S — |0, 0| a rate
function. Then, the following are equivalent:

1. ¢ satisfies the LDP with rate function I(-),
2. ¢ satisfies the LP with rate function I ().

In that case, I(z) = sup e, )1/ (@) — o(f)}-

3 Large deviation results for maxitive monetary risk measures

We prove several analogues of large deviation results for maxitive monetary risk measures. For instance, we
have the following version of Bryc’s theorem.

Theorem 2. Let ¢: L°°(S) — R be a maxitive monetary risk measure. Suppose that for every N € N there

exists K C S compact such that
Jge < —N.

Then ¢ satisfies the LDP and LP with rate function I(x) = sup,cs{f(z) — o(f)}-

In the case that S is a topological vector space, we have the following general version of Cramer’s theorem.

Theorem 3. Let ¢: L°°(E) — R be a maxitive monetary risk measure, where E is a topological vector space.
Suppose that ¢ satisfies the LDP with a convex rate function I: E — [0, 00]. Then

I(z) = A*(z) = sup {u(z) — A(w)},
pe b

where A(p) == lim  lim ¢((uV —M) A N), and E* is the dual space of E.

N—ocoM—o0

4 Maxitive integral representation

One of the 1deas behind the latter results 1s the maxitive integration representation of a monetary risk measure.
A function J: B(S) — [00, 0] is called a concentration if

1. Jy = —o0, Jg = 0;
2. Jp < Jpif AC B.
The maxitive integral of f € L'(S) with respect to J is defined by

V
dJ = +Jres g,
[ 47:= agle i)

see [1]. Denote by LSC'(FE) the set of all lower semincontinuous real-valued functionals, and by USC(FE) all
upper semincontinuous real-valued functionals. We provide the following duality bounds.

Theorem 4. Let [: S — |0, oo| a function. Then

V
/ fdJ > sup{f(z)—I(x)}Vf € LSC(F) <<= Jp>— ingl(x) VO C S open. (1)
TES e
V
fdJsup{f(x) —I(x)}Vf e USC(FE) <+— Jo<-— ing[(az) VC' C S closed. (2)
rES xE

In Theorem 4, we do not assume maxitivity. However, the duality bounds (1) and (2) together imply that ¢ ;
1s maxitive in the following weak sense.

Definition 3. We say that a monetary risk measure ¢: L°°(S) — R is weakly maxitive if
o(f) < \/@']\i1¢<9z’) whenever f € USC(S), g; € LSC(S), and f < \/z‘]\ilgi-

The maxitive integral 1s a monetary risk measure which is maxitive when J i1s maxitive. In the converse
direction, Cattaneo [1] proved that every maxitive risk measure 1s represented by a maxitive integral. We have
the same representation on continuous bounded functionals if we assume only weak maxitivity.

Theorem 5. If ¢: L°°(S) — R is a weakly maxitive monetary risk measure and J 5 := Mlim O(M1 ye), then
——00

V
o(f) —/ fdJ forall f € Cy(S).

S Application: Asymptotic comparison of random walks

Next, we apply the theory above to asymptotically compare two random walks. Fritz [3] derived a formula
to analyze how the tail probabilities of one random walk decay relative to those of another random walk. By
application of the representation theory of maxitive monetary risk measures, the Fritz’s formula extends to the
following general LDP. Next, we state the result in the real-valued case.

Theorem 6. Suppose that X,, = % v & and Yy, = % i m; for some i.i.d. sequences (&;), (n;) of real-

valued random variables with bounded support. Then, for every a € R, it holds

| — P(X,>aVc) |
_ _ 1 = _ _
Inf {e(z) — In(2)} < up lim = log T — = = It el = Byl
where
Ie(x) = sup{zy — log E[e"*]}, Iy(z) = sup{ay — log E[e¥"]}.
y=0 y>0
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