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Abstract. We present McShane and Whitney extension formulas for a new
class of Lipschitz operators on Banach lattices, that we call lattice Lipschitz
maps. Using them, and based on the (approximate) determination of the set of
eigenvectors of the map, we find the (approximate) diagonal representation of
these maps. Our work on such extension/representation formulas is intended
to follow current research on the design of machine learning algorithms based
on the extension of Lipschitz functions.

1. Introduction

The diagonal representation of symmetric linear operators is a classical and
powerful tool in the mathematical treatment of many problems in all fields of
scientific and technical activity. Following this general idea, it has been a com-
mon interest of many researchers in mathematics to extend the ideas that allow
to obtain such diagonal representations to other classes of maps, such as bilinear
operators (see for example [4, 5, 6, 12] and references therein), and Lipschitz
operators ([1, 7, 10]). We are interested in developing new techniques to extend
Lipschitz operators on finite-dimensional normed spaces from subsets of eigen-
vectors to the whole space to obtain explicit representation formulas for them,
based on the previous computation of subsets of eigenvectors of the operator.

In the next sections, we introduce a new class of Lipschitz-type operators on
Banach lattices which we call lattice Lipschitz maps. We also provide a comple-
mentary methodology for the extension of such maps from a set of vectors in the
space that approximately satisfy eigenvector equations. Of course, the reason is
that the set of eigenvectors is known to be a convenient set to start extending a
linear operator in a Euclidean space. In this case the computations to obtain the
pointwise evaluation of the map are just additions and multiplications by scalars,
once the values of the operator in this set are known. However, for more general
maps this rule would not work, even when these maps have a reasonably good
linear approximation.

This opens the door to the project of defining more general extension rules
while preserving that, essentially, the operator under consideration can be “re-
constructed” simply by knowing its “fixed points” (except for a multiplicative
constant). Such points are easily described by a geometric argument allowed by
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Euclidean geometry: an (almost) eigenvector of an operator T is an element x
of the space for which the projection of T (x) onto the subspace generated by x
(almost) coincides with its multiplication by an scalar. Consequently, a useful
extension rule is one that derives some benefit from this easy description, in terms
of facilitating its mathematical representation. This is the motivation of this sec-
ond part of the paper, and the reason why we propose the procedures explained
here. We thus continue the investigation we started in [6, 7]. Specifically, in
[7] several of these extension procedures are presented, and illustrative examples
from physics and other research fields are given.

Once the set of approximate eigenvectors is fixed, we use it to provide a lattice
structure to the Euclidean space from which we start. Using the related order we
can use the extension formulas for the class of lattice Lipschitz operators that we
have previously studied. The final result gives two extension formulas that can
be used to represent approximately any Lipschitz operator satisfying a certain
(pointwise) lattice order requirement. Our construction relies on the fundamental
fact that, for the case of “diagonalizable” operators on Euclidean spaces, our two
extensions (McShane-type and Whitney-type formulas) coincide with the original
map when applied to the eigenvector set of the operator. It is proved in Theorem
2.14 (see also Corollary 2.15 for the linear diagonalizable operators).

Our results are motivated by the potential use of Lipschitz extension formulas
in Machine Learning algorithms. It has been shown that Lipschitz extensions
can be used to predict value functions in Reinforcement Learning, for example
[14, 15]. Although the use of the theory of Lipschitz functions goes back to the
origin of Artificial Intelligence, recently some new results have pointed out the
power of this mathematical setting to provide competitive algorithms in different
fields of Machine Learning (for example, [16, 17, 18, 22]). Hence our interest in
showing a step-by-step methodology for the application of our results, together
with some examples, which will be done in the last section of the paper.

Through the paper we will use standard concepts and notation. Let R+ be the
set of non-negative real numbers and let D be a set. A metric on D is a function
d : D ×D → R+ such that for a, b, c ∈ D,

(1) d(a, b) = 0 if and only if a = b, and
(2) d(a, b) ≤ d(a, c) + d(c, b).

Let (M,ρ) be another metric space. A function T : D → M that satisfies that
there exists a constant K > 0 such that

ρ
(
T (a), T (b)

)
≤ Kd(a, b), a, b ∈ D,

is a Lipschitz function. The Lipschitz constant of T is the infimum of all constants
K which satisfy this inequality.

A real-valued Lipschitz function T : B → R (where R is endowed with the
Euclidean norm), defined on an arbitrary subset B of D can be extended to the
whole space D preserving the Lipschitz constant K, see [11, 13]. This classical
result is called the McShane-Whitney Theorem (from 1934): if B is a subspace
of a metric space (D, d) and T : B → R is a Lipschitz function with Lipschitz
constant K, it is always possible to obtain an extension of T to D preserving the
Lipschitz constant. In other words, there is the Lipschitz function F̃ : M → R
that extend T —that is, T̃ (a) = T (a) for all a ∈ B—, with Lipschitz constant
K. This extension can be explicitly computed. There are two classical formulas
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that provide T̃ , that are

TM (b) := sup
a∈B

{T (a)−K d(b, a)}, b ∈ D,

(we call it the McShane extension of T ), and

TW (b) := inf
a∈B

{T (a) +K d(b, a)}, b ∈ D.

(that we call the Whitney extension of T ). A comprehensive study of lipschtz
functions and its extensions can be seen on the book by Cobzas, Miculescu and
Nicolae [3].

In this paper we will modify these definitions for the pointwise evaluation of
functions T : E → E, where E is a function space; related extension formulas
will be obtained in this case.

Let us recall the definition of Banach lattice. Essentially, this is a vector
lattice —with an order relation ≤— and a complete norm ∥ · ∥ that satisfies that
∥x∥ ≤ ∥y∥ when |x| ≤ |y|, x, y ∈ E, where |·| is the modulus of the functions, that
are computed using the order (and coincided with the modulus of the funcions
when the lattice can be represented as a function space). We will use it when
the set of elements in which the functions act are finite, so we will consider finite
dimensional Banach lattices. Once a basis is fixed, we can associate to it the
order in the space, that coincides with the coordinates order (that is, for two
vectors of the space x = (x1, ..., xn) and y = (y1, ..., yn), x ≤ y if and only if
xi ≤ yi for i = 1, ..., n.

2. Lattice Lipschitz operators and lattice extensions for Lipschitz
maps

In this section we define our main extension formula for a particular class of
Lipschitz maps. In the case we consider, the finite dimensional normed space
E is enriched with an order relation, that is defined by a cone associated to
a basis with some characteristic properties. Let us fix first how we consider a
finite dimensional space as a function space to define an order on it. The set
of (approximated) eigenvectors of the map will be fundamental to provide our
(approximated) representation formula.

2.1. Lattice Lipschitz operators. We will define a new extension rule for Lip-
schitz maps on Euclidean spaces that satisfy that it coincide with the usual
representation of diagonalizable linear and non-linear operators (Theorem 2.14
and Corollary 2.15).

Fix E = Rn and let B = {x1, . . . , xn} be a basis for Rn. Consider, as usual, the
adittion and scalar multiplication defined by its components. We will consider
the lattice order on Rn provided by the basis, that is if x = (α1, ..., αn) and
y = (β1, ..., βn) are representations of two vectors of E given by its coordinates
in B, we define

x ≤ y if and only if αi ≤ βi, for every i = 1, ..., n.

This order is the one given by by the positive cone

C =
{
x =

n∑
i=1

αixi : αi ≥ 0 for i = 1, . . . n
}
,



4 R. ARNAU, J. M. CALABUIG, E. ERDOĞAN, E. A. SÁNCHEZ PÉREZ

so x ≤ y if and only if y−x ∈ C. It is easy to see that the sumprema, infima and
modulus in this space is the one given by its components, so∣∣∣∣∣

n∑
i=1

αixi

∣∣∣∣∣ =
n∑

i=1

|αi|xi

Recall that each vector x =
∑n

i=1 αixi = (α1, . . . , αn) of the space E can be
considered as a function fx : Ω = {1, . . . , n} → R in the usual way, fx(w) = αw

and we will refer to fx also as x. Thus, E can be seen as a space of functions
and it defines an order in E as the pointwise order in the space of functions.For
x, y ∈ E,

x ≤ y if and only if x(w) ≤ y(w), for every w ∈ Ω.

Observe that this order coincides with the one provided by its components. The
multiplications of two elements of E will also be considered as pointwise multi-
plication.

In what follows we will consider the geometry of E induced by the 2-norm of
the function fx when integrating with the counting measure c, that is,

|∥x∥|2 :=

(∫
{1,...,n}

|f(k)|2dc(k)

)1/2

=

(
n∑

i=1

|αi|2
)1/2

.

Obviously this norm is compatible with the order provided by the function struc-
ture of the space L2(c) (it is in fact the order in this space), so we have a Banach
lattice. Note that this norm can be written as an integral of a function ⟨x, ·⟩ in the
space L2(ν) for a suitable measure ν (for example the one given by the addition
of Dirac’s deltas on biorthogonal functionals for a basis B of E, see [6, 7]).

In what follows, we will asume that we have a basis B of E and we consider
the order defined above.

Definition 2.1. We say that the operator T : E → E is lattice Lipschitz if there
is a bounded function K : E → R such that for every x, y ∈ E,

|T (x)− T (y)|(w) ≤ K(w)|x− y|(w), w ∈ Ω.

This definition is based on the idea of the point wise evaluation of the functions,
writing it in terms of the order of the space E, as

|T (x)− T (y)| ≤ K|x− y|.
It can be seen as a particular case of the one given in [25], with E as a Banach
algebra, considering E as a cone metric space on E itself with the cone metric
ρ : E × E → E

ρ(x, y)(w) = |x− y|(w), w ∈ Ω

for x, y ∈ E. Recall that a cone metric on a set X (see for example [25]) is a
map ρ : X × X → Y , where Y is a Banach lattice, and satisfies that for all
x1, x2, x3 ∈ X,

(1) 0 < ρ(x1, x2) if x1 ̸= x2, and ρ(x1, x1) = 0,
(2) ρ(x1, x2) = ρ(x2, x1),
(3) ρ(x1, x2) ≤ ρ(x1, x3) + ρ(x3, x2).

However, it has only been applied to fixed point theory and the idea of extend-
ing operators which satisfy the previous definition is, as far as we now, new.

Some other Lipschitz-type inequalities in ordered spaces can be found on Pa-
pageorgiou [27], Németh [26] or Li [28]. For the specific case of Banach function
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spaces, the recent paper [2] provides a concrete adaptation of such kind of in-
equalities for spaces of integrable functions. Ch.4.1 in [3] provides an overview
on the topic.

Remark 2.2. A relevant property of the lattice Lipschitz operators with Lipschitz
function K(w) is that they are, in particular, Lipschitz operators with norm less
than or equal to supw |K(w)|. Indeed, note that for x, y ∈ E, if we have that

|T (x)− T (y)|(w) ≤ K(w) · |x− y|(w) for every point of the domain set w,

we also have that, by the relation of the order and the norm on any Banach
lattice,

∥T (x)− T (y)∥ ≤ ∥K(w) · |x− y|(w)∥ ≤ sup
w

|K(w)| ∥x− y∥.

In what follows we will develop the extension results for this family of operators.
It can be found in the scientific literature about Lipschitz extensions ideas that
are in a sense similar. The fundamental extension methods for Lipschitz maps can
be found in Cobzas [3]. In this sense, the already mentioned results of McShane
and Whitney ([11, 13]), together with the celebrated Kirszbraun Theorem ([8]))
form the classical core of the topic.

Let us define lattice-based extension formulas for such an operator T.

Definition 2.3. Let E0 ⊆ E. For a lattice Lipschitz operator T : E0 → E with
associated bounded function K : Ω → R, we consider the formulas

TM (x)(w) :=
∨

{T (z)(w)−K(w)|x− z|(w) : z ∈ E0}, x ∈ E,

and

TW (x)(w) :=
∧

{T (z)(w) +K(w)|x− z|(w) : z ∈ E0}, x ∈ E.

Remark 2.4. Previous expressions are well defined in the sense that the suprema
and infima exists for any w ∈ Ω and TM , TW are operators from E to E. Indeed,
given x ∈ E, let y ∈ E0 be fixed and let w ∈ Ω. Then, for any z ∈ E0,

T (z)(w)− T (y)(w) ≤ |T (z)− T (y)|(w) ≤ K(w)|z − y|(w)
≤ K(w)|z − x|(w) +K(w)|x− y|(w).

It follows that

T (z)(w)−K(w)|x− z|(w) ≤ T (y)(w) +K(w)|x− y|(w) =: M.

Since M does not depend on z, {T (z)(w) − K(w)|x − z|(w) : z ∈ E0} is a set
of real numbers bounded from above by M , so its supremum exist. It shows that
TM (x) ∈ E, for the TW case consider following remark.

Remark 2.5. Notice that the extension formulas TM and TW are related by the
equation

TW (x)(w) =
∧

{T (z)(w) +K(w)|x− z|(w) : z ∈ E0}

=
∧

{−((−T )(z)(w)−K(w)|x− z|(w)) : z ∈ E0}

= −
∨

{(−T )(z)(w)−K(w)|x− z|(w) : z ∈ E0} = −(−T )M (x)(w).

Moreover, −T : E0 → E is also a lattice Lipschitz operator with the same associ-
ated function K. This fact will allow us to prove some properties only to one of
the formulas and apply the previous identity for the other case.
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Observe that the only information of the space E required in both extension
formulas is the order in E and the associated Lipschitz function, which is cal-
culated using the order. Non information about metric or linear structure is
required.

Proposition 2.6. Let E0 ⊆ E. Let T : E → E be a lattice Lipschitz operator
with associated bounded function K : Ω → R. Then TM and TW are suitable
extension formulas from E0 to E which preserve the lattice Lipschitz inequality
with the same function K.

Proof. First we show that TM is an extension of T . For any x ∈ E0 and w ∈ Ω,
clearly one has

TM (x)(w) ≥ T (x)(w)−K(w)|x− x|(w) = T (x)(w).

In addition, for every y ∈ E0,

T (y)(w)− T (x)(w) ≤ |T (y)− T (x)|(w) ≤ K(w)|y − x|(w),

so T (y)(w) − K(w)|x − s|(w) ≤ T (x)(w) and, taking supremum, TM (x)(w) ≤
T (x)(w). We conclude that T (x) = TM (x) for every x ∈ E0.

In order to justify that TM verifies the lattice Lipschitz inequality with the
same function K, let x, y ∈ E. For any w ∈ Ω, if z ∈ E0

TM (x)(w) ≥ T (z)(w)−K(w)|x− z|(w)
≥ T (z)(w)−K(w)|y − z|(w)−K(w)|x− y|(w).

It follows that

TM (x)(w) ≥
∨

{T (z)(w)−K(w)|y − z|(w)−K(w)|x− y|(w) : z ∈ E0}

= TM (y)(w)−K(w)|x− y|(w),

so K(w)|x− y|(w) ≥ TM (y)(w)− TM (x)(w). Interchanging the roles of x and y,
one obtains K(w)|y − x|(w) ≥ TM (x)(w)− TM (y)(w), so

|TM (x)(w)− TM (y)(w)| ≤ K(w)|y − x|(w).

The case of TW , can be proved similarly or by applying the previous case to
−T as in Remark 2.5. □

The following result gives information about the extremal properties of the
McShane and Whitney lattice extensions.

Proposition 2.7. Let E0 ⊆ E. Let T : E0 → E be a lattice Lipschitz operator
with associated bounded function K : Ω → R. If T̂ : E → E is an extension of
T which preserve the lattice Lipschitz inequality with the same function K, then
TM ≤ T̂ ≤ TW .

Proof. Let x ∈ E and w ∈ Ω. Since T̂ is a lattice Lipschitz operator with
associated function K, for any z ∈ E0

−K(w)|x− z|(w) ≤ T̂ (x)(w)− T̂ (z)(w) ≤ K(w)|x− z|(w).

Notice that T̂ (z)(w) = T (z)(w), so

T (z)(w)−K(w)|x− z|(w) ≤ T̂ (x)(w) ≤ T (z)(w) +K(w)|x− z|(w).

Now, tacking supremum on the left and infimum on the right, TM (x)(w) ≤
T̂ (x)(w) ≤ TW (x)(w). □
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Remark 2.8. Last proposition also show that TM ≤ TW , but we can also study
how both extensions differ. We claim that

0 ≤ TW (x)− TM (x) ≤ 2K
∧

{|x− z| : z ∈ E0}

for any x ∈ E. Indeed, if w ∈ Ω,

TW (x)− TM (x) =

=
∧

{T (z) +K|x− z| : z ∈ E0} −
∨

{T (z)−K|x− z| : z ∈ E0}

=
∧

{T (z) +K|x− z| : z ∈ E0}+
∧

{−T (z) +K|x− z| : z ∈ E0}

≤
∧

{T (z) +K|x− z| − T (z) +K|x− z| : z ∈ E0}

=
∧

{2K|x− z| : z ∈ E0}

Definition 2.9. We say that an operator T : E → E is diagonal with respect to
a basis B = {x1, x2, . . . , xn} of E = Rn if there exists fi : R → R real functions
for 1 ≤ i ≤ n such that

T
( n∑
i=1

αixi
)
=

n∑
i=1

fi(αi)xi, for any α1, α2, . . . , αn ∈ R. (1)

In this case, we call the fi coordinate functions of T .

Observe that previous conditions can be rewritten as

T
(
(α1, α2, . . . , αn)

)
=
(
f1(α1), f2(α2), . . . , fn(αn)

)
in the coordinates of the basis B.

Next results characterizes the lattice Lipschitz condition on euclidean space.

Theorem 2.10. Let T : E → E be an operator. Consider on E the order
provided by the basis B = {x1, . . . , xn}. Then, T is a lattice Lipschitz function
with associated function K : Ω → R if and only if T is diagonal respect to the basis
B with coordinate functions begin real Lipschitz with Lipschitz constant K(i).

Proof. Suppose first that T is diagonal on the basis B and fi are real Lipschitz
function with Lipschitz constant K(i). Let x =

∑n
i=1 αixi and y =

∑n
i=1 βixi

two elements of E, then

|T (x)− T (y)| =
n∑

i=1

|fi(αi)− fi(βi)|xi ≤
n∑

i=1

Ki|αi − βi|xi = K|x− y|.

For the converse, let T be a lattice Lipschitz function with associated function
K. Consider Ti : E → R the functions such that

T (x) =

n∑
i=1

Ti(x)xi, x ∈ E. (2)

Define now the real functions fj : R → R for 1 ≤ j ≤ n as

fj(α) = Tj(αxj).

We claim that

Tj

( n∑
i=1

αixi
)
= fj(αj). (3)
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To see this, fix 1 ≤ j ≤ n, if x =
∑n

i=1 αixi, then

|Tj(x)− fj(αj)| = |Tj(x)− Tj(αjxj)| = |T (x)− T (αjxj)|(j)
≤ K(j)|x− αjxj |(j) = K(j)|αj − αj | = 0.

In other words, the function Tj only depends on the j component of x. As a
consequence of (2) and (3),

T
( n∑
i=1

αixi
)
=

n∑
j=1

Tj

( n∑
i=1

αixi
)
xj =

n∑
j=1

fj(αj)xj .

To finish the proof, we shall show that each fj is a (real) Lipschitz function. Let
α, β ∈ R,

|fj(α)− fj(β)| = |Tj(αxj)− Tj(βxj)| = |T (αxj)− T (βxj)|(j)
≤ K(j)|αxj − βxj |(j) = K(j)|α− β|.

□

Remark 2.11. Consider on E the order provided by the basis B = {x1, . . . , xn}.
For an operator T : E → E the following statements are equivalent.

(1) T is a lattice Lipschitz operator with the order provided by B.
(2) T is a diagonal operator with coordinate functions being real Lipschitz

functions.
(3) T verifies that for any 1 ≤ i ≤ n there exists Ki > 0 such that

|⟨T (x)− T (y), x∗i ⟩| ≤ Ki|⟨x− y, x∗i ⟩|

where x∗i ∈ E∗ is the functional defined as x∗i (xi) = 1 and x∗i (xj) = 0 if
i ̸= j.

The following examples show the importance of the order in the space on the
study of lattice Lipschitz or diagonal mappings.

Example 2.12. Let f : R2 → R2 be f(x, y) = (y, x). Clearly it is not a lattice
Lipschitz mapping (on the usual order of R2) because

|f(1, 0)− f(0, 0)| = (0, 1) ̸≤ K · |(1, 0)− (0, 0)| = (K1, 0),

for any K = (K1,K2) ∈ R2. But we claim that it is a lattice Lipschitz function
on R2 when an appropriate order is considered. Indeed, let be v1 = (1, 1) and
v2 = (1,−1), consider the basis B = {v1, v2} and the order provided by B. Then,

f(αv1 + βv2) = f(α+ β, α− β) = (α− β, α+ β) = f1(α)v1 + f2(β)v2,

where f1(t) = t, f2(t) = −t, that are real Lipschitz functions. By Theorem 2.10,
it is a lattice Lipschitz mapping.

Example 2.13. Let on R2 with the usual order be the mapping ϕ : R2 → R2

ϕ(x, y) =


(2x2 + 2y2, 4xy) if |x+ y| ≤ 2, |x− y| ≤ 2

((x+ y)2 + 4, (x+ y)2 − 4) if |x+ y| ≤ 2, |x− y| > 2

(4 + (x− y)2, 4− (x− y)2) if |x+ y| > 2, |x− y| ≤ 2

(8, 0) if |x+ y| > 2, |x− y| > 2.

Clearly it is not a lattice Lipschitz function, since

|ϕ(0, 3)− ϕ(0, 0)|(1) = 2 ̸≤ K|(0, 3)− (0, 0)|(1) = 0
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for any K. Let us see that it is a diagonal function when considering on R2

the order induced by the basis B = {v1, v2} with v1 = (1, 1), v2 = (1,−1). For
α, β ∈ R, it is easy to see that

ϕ(αv1 + βv2) =


(4α2 + 4β2, 4α2 − 4β2) if |α| ≤ 1, |β| ≤ 1

(4α2 + 4, 4α2 − 4) if |α| ≤ 1, |β| > 1

(4 + 4β2, 4− 4β2) if |α| > 1, |β| ≤ 1

(8, 0) if |α| > 1, |β| > 1

so ϕ(αv1 + βv2) = f1(α)v1 + f2(β)v2 where f1(t) = f2(t) = 4t2 for |t| ≤ 1 and
4 otherwise. Since ϕ is diagonal on the basis B with coordinate functions f1, f2
real Lipschitz functions with Lipschitz constant equal to 8, by Theorem 2.10 ϕ it
is a lattice Lipschitz function with associate function K(1) = K(2) = 8.

Theorem 2.14. Let E = Rn and consider the order provided by a basis B =
{x1, x2, . . . , xn} of E, and let T : E → E be a lattice Lipschitz function with as-
sociated function K and coordinate functions fi (the decomposition (1) is possible
because of Theorem 2.10). Consider the “axis” set Σ = {αxi : α ∈ R, 1 ≤ i ≤ n}.
Then,

(1) the Whitney and McShane extensions of T |Σ from Σ to E are

(T |Σ)M = T and (T |Σ)W = T.

If, in addition, T (0) = 0,

(2) the set of eigenvectors of T contains Σ, and
(3) if λ is an eigenvalue of T , |λ| ≤ supw∈ΩKw.

Proof. (1) Let us consider now x =
∑n

i=1 αixi and study the McShane extension
of T |Σ at x.

TM (x) =
∨
s∈Σ

T (s)−K|x− s| =
n∨

i=1

(∨
α∈R

T (αxi)−K|x− αxi|

)
.

Fix 1 ≤ w ≤ n and let 1 ≤ i ≤ n. Observe that x−αxi = (αi−α)xi+
∑

j ̸=i αjxj ,
so if w ̸= i(∨

α∈R
T (αxi)−K|x− αxi|

)
(w) =

∨
α∈R

fw(0)−Kw|αw| = fw(0)−Kw|αw|.

Since fw(0) − fw(αw) ≤ |fw(0) − fw(αw)| ≤ Kw|αw|, then fw(0) − Kw|αw| ≤
fw(αw), so (∨

α∈R
T (αxi)−K|x− αxi|

)
(w) ≤ fw(αw). (4)

For the case w = i,(∨
α∈R

T (αxw)−K|x− αxw|

)
(w) =

∨
α∈R

fw(α)−Kw|αw − α|

Observe that fw(α)−fw(αw) ≤ |fw(α)−fw(αw)| ≤ Kw|α−αw| for any α ∈ R, so
fw(α)−Kw|αw −α| ≤ fw(αw), so the supremum is attained a α = αw. It implies(∨

α∈R
T (αxw)−K|x− αxw|

)
(w) = fw(αw). (5)
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As a consequence of (5) and (4),

TM (x)(w) =
n∨

i=1

(∨
α∈R

T (αei)−K|x− αei|

)
(w) = fw(αw) = T (x)(w),

which proves that TM (x) = T (x).
The proof for the Whitney case is immediate by using previous case on −T .
(2) Clearly, x = 0 is an eigenvector of T . Observe that the condition T (0) = 0

implies that fi(0) = 0 for all 1 ≤ i ≤ n. Let αxi in Σ with α ̸= 0,

T (αxi) =
∑
j ̸=i

fj(0)xj + fi(α)xi =
fi(α)

α
αxi,

so αxi is an eigenvector of T with eigenvalue fi(α)
α .

(3) If T (x) = λx (with x ̸= 0), equation (1) implies that fi(αi) = λαi for each
i. Since x ̸= 0, at least one αi0 is not 0, so

|λ| =
∣∣∣∣fi0(αi0)

αi0

∣∣∣∣ = ∣∣∣∣fi0(αi0)− fi0(0)

αi0

∣∣∣∣ ≤ ∣∣∣∣Ki0 |αi0 − 0|
αi0

∣∣∣∣ = Ki0 ≤ sup
w∈Ω

Kw.

□

An immediate consequence of Theorem 2.14 is the following, in which the linear
case is considered.

Corollary 2.15. Let T : E → E be a linear diagonalizable operator with real
eigenvalues λ1, ..., λn ∈ R. Let B = {x1, ..., xn} be a basis for E of eigenvectors of
T. Consider the complete set of eigenvectors E0 and recall that the order in the
lattice is induced by the cone defined B. Then

(1) T |E0 is lattice Lipschitz with associated function K(r) = |λr|, r ∈ {1, ..., n}.
(2) Both TM and TW provide lattice Lipschitz extensions of T |E0 from E0 to

E preserving the associated function K such that

(T |E0)
M = T and (T |E0)

W = T.

Consequently, T is lattice Lipschitz with associated function K.

The coincidence of the lattice Lipschitz extension rule and the linear rule opens
the door to a general procedure for extending Lipschitz maps with a “largue
enough” set of eigenvectors. For the diagonalizable case, the minimum-maximum
condition of the McShane and Whitney extensions (Proposition 2.7) can be con-
sidered, along with the extension behavior of diagonalizable mappings (Theorem
2.14) when applying these formulas to obtain the following results, which reveals
a uniqueness property for the lattice extension of linear maps.

Corollary 2.16. With the same hypothesis as in Theorem 2.14, T is the unique
lattice Lipschitz operator with associated function K that extends T |Σ.

Corollary 2.17. With the same hypothesis as in Theorem 2.14, if T (0) = 0 and
E0 is the set of eigenvectors of T , then the McShane and Whitney extensions of
T |E0 are equal to T .

Although we have shown that the extension formulas work as expected for
the case of diagonalizable operators, recall that we are interested in the case of
general lattice Lipschitz maps. Next we will show the error bounds for the lattice
extension formulas at a point x ∈ E with respect to the original operator T. This
expression is valid for the Lipschitz functions of the lattice, and has to be used
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to control the error committed when the reconstruction of the function is done
from the information we have about it in a subset.

Proposition 2.18. Let T : E → E be a lattice Lipschitz operator with associated
bounded function K : Ω → R and E0 ⊆ E. Then, for any x ∈ E

−2K
∧

{|x− z| : z ∈ E0} ≤ (T |E0)
M (x)− T (x) ≤ 0 and

0 ≤ (T |E0)
W (x)− T (x) ≤ 2K

∧
{|x− z| : z ∈ E0}.

Proof. For T : E → E as in the statement of the proposition, consider T |E0 . If
x ∈ E, applying that T is a lattice Lipschitz operator in the whole E,

(T |E0)
W (x)− T (x) =

∧
{T (z) +K|x− z| : z ∈ E0} − T (x)

=
∧

{T (z)− T (x) +K|x− z| : z ∈ E0}

≤
∧

{|T (z)− T (x)|+K|x− z| : z ∈ E0}

≤
∧

{K|z − x|+K|x− z| : z ∈ E0}

= 2K
∧

{|z − x| : z ∈ E0}.

In addition,

(T |E0)
W (x)− T (x) =

∧
{T (z)− T (x) +K|x− z| : z ∈ E0}

≥
∧

{−|T (z)− T (x)|+K|x− z| : z ∈ E0}

≥
∧

{−K|z − x|+K|x− z| : z ∈ E0} = 0.

The bounds for the McShane case can be proved by applying Remark 2.5. □

Remark 2.19. Previous proposition can also be proved as a consequence of
Proposition 2.7 and Remark 2.8. Observe that the original map T is a suit-
able extension of T |E0 (with the same associate function). So it is clear that
for x ∈ E, TM (x) ≤ T (x) ≤ TW (x). Also note that |TW (x) − TM (x)| ≤
2K

∧
{|x − z| : z ∈ E0}, so T (x) cannot differ from TM (x) and TW (x) more

than 2K
∧
{|x− z| : z ∈ E0}.

To finish this section, let us show a complete example that can be completely
computed. We will show the set of eigenvectors, the associated lattice Lipschitz
function, and the McShane and Whitney extensions of the map.

Example 2.20. Consider the function ϕ : R2 → R2 given by

ϕ(x, y) =

(
x2

1 + x2
,

y2

1 + y2

)
, (x, y) ∈ R2.

The computation of the eigenvectors by means of the eigenvector equations provide
the next formulas in terms of the eigenvalues λ; for λ = 0, the eigenvector is
(0, 0). The spectrum of the map is given by the values of λ ∈ [−1/2, 1/2]. The
eigenvectors associated to each of these values are given by the combination of
values (x, y) for λ ̸= 0 given by the formulas

x = 0, x =
1

2λ

(
1 +

√
1− 4λ2

)
or x =

1

2λ

(
1−

√
1− 4λ2

)
and

y = 0, y =
1

2λ

(
1 +

√
1− 4λ2

)
or x =

1

2λ

(
1−

√
1− 4λ2

)
.
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Figure 1. Representation of the set of eigenvectors for the func-
tion ϕ. All the points in the curves and lines represented are eigen-
vectors, including the axis OX and OY.

The representation of the points (x, y) that are obtained following this description
is given in Figure 1.

In this case the lattice structure is given by a function space acting in a two-
point measurable space {w1, w2}, and the evaluation of the functions at each of
these points is one of each coordinates of the resulting vector. A standard opti-
mization procedure leads to find the lattice Lipschitz function that plays the role
of the Lipschitz norm, that is

K(w1) = K(w2) =
3
√
3

8
.

We consider as subset for constructing the McShane and Whitney extensions
the set E0 of all the eigenvectores described above. We write the Whitney formula.
Using the parametrization provided by the eigenvalues λ and taking into account
that the infimum can be computed separately for each coordinate, the formulas
are, for every (x0, y0) ∈ R2,

P1

(
(ϕ|E0)

W (x0, y0)
)
=

∧
λ∈[− 1

2
, 1
2
]

(
λx(λ) +

3
√
3

8
·
∣∣x(λ)− x0

∣∣) ∧ 3
√
3

8
· |x0|

= inf
λ∈[− 1

2
, 1
2
]

{
1

2

(
1±

√
1− 4λ2

)
+

3
√
3

8
·
∣∣∣∣ 12λ(1±√1− 4λ2

)
− x0

∣∣∣∣
}

∧ 3
√
3

8
· |x0|,

and

P2

(
(ϕ|E0)

W (x0, y0)
)
=

∧
λ∈[− 1

2
, 1
2
]

(
λ y(λ) +

3
√
3

8
·
∣∣y(λ)− y0

∣∣) ∧ 3
√
3

8
· |y0|
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= inf
λ∈[− 1

2
, 1
2
]

{
1

2

(
1±

√
1− 4λ2

)
+

3
√
3

8
·
∣∣∣∣ 12λ(1±√1− 4λ2

)
− y0

∣∣∣∣
}

∧ 3
√
3

8
· |y0|,

where (ϕ|E0)
W (x0, y0) =

(
P1

(
(ϕ|E0)

W (x0, y0)
)
, P2

(
(ϕ|E0)

W (x0, y0)
))
.

As a consequence of Corollary 2.17, we know that this extension formula (and
the one of McShane) coincides with the original function. Note, however, that
we can also use these formulas if we take a (proper) subset of eigenvectors. In
case that such a subset does not contain the axis, the coincidence of the extension
with the function need not occur.
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