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¢ Astateon 2 isalinearmap ® : A —> C with ®(1) = 1 and ®(Q) > 0 for every Q > 0

O(Q)) = Tr[pQO] VO  forsomep > 0 with Tr(p) = 1  (density operator, state)

Statistical interpretation: If the system is in state p and we measure the observable T = Z A;P; then we

J
obtain as an outcome one of the eigenvalues, each /1]- with probability Tr[ij]

¢ The expectation of an observable 1" with respect to a state p is Tr[pT].
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Composite quantum systems

¢ Consider two quantum systems A and C with respective spaces # 4 and H c- Then, the space
of the composite system is given by

%Acz%A®%C

and the space of observables
N, = LP(Hs) =L H)QL(H)=U, U
¢ \We can canonically identify
A, > Uy , O— 0@ 1,
¢ Everystate ® on A, - = A, @ A induces a state (marginal) on each subsystem
O, A —C, 0 O(OR1,)

If p and p, is the density operators of ® and @ ,, respectively, then p, = (Id, ® Tr-)(p) .



1. Quantum spin systems

2. Operator correlation function

3. Mutual Information

4. Approximate recoverability
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Regular lattice Z”
o Ateachsitex € ZP let # :=C? and A, = L (I )

Let X C ZP finite subset

Hy=QH = (CH®X

® O O O O O ® x€e X

® ® ® ® ® ® ® Q[X — g(%){) — ®xEX2[x

f Y C X C ZP are finite subsets, there is a canonical linear isometry

Q[YL)Q[X QHQ®1X\Y

This allows to consider the algebra of local observables, and the algebra of quasi-local observables (its
completion)

2[loc — UQ[X Q[ZD — Q[ZOC

X finite
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For every pair of neighboring sites (x, y) C Z” let us fix a
local interaction

Iy : C°®CY— C?Q C

hi.y self-adjoint ||, s <1

. D - - :
For each finite X C Z" the associate Hamiltonian HX = Z h<x,y> ® Idrest
(x,y)CX

and the Gibbs or thermal state: for each / > 0 (a.k.a. inverse temperature ﬂ=TL )

. —pOH
u(0) := Try(6*Q) , Q €U, Tr(e="Hx)



Gibbs or thermal state at (inverse) temperature f > 0

py Ay — C ¢ —PHx
X _ X ._
wx(Q) 1= Trx(UXQ) , Qe ly ° = G'B - Tr(e—ﬁHX)

Motivation: Describe the correlation properties of Gibbs states between distant subregions A and C
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e _ﬁHX
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Operator Correlation Function

e _ﬂHX

X —
Tr(e—PHx)

O

py : Ay — C  (expectation)

px(Q) := Try(6*Q) , Q€ Uy

Definition

Corr x(A : C) := sup
1O QclI=1

W (Q40c) — wx(Qy) wi(Qc)

X c 7P




Operator Correlation Function

e_ﬂHX

GX — ® °

Tr(e—FHx) . )

yy - Ay — C  (expectation) o .

WX(Q) — TTX(GXQ) . 0 € uX ® o © o o o o o

Definition
Corr,x(A 2 C) = SUP Wi (Q40c) — wx(Qy) w(Qc)
1AL Qcll=]

Since the interactions are local, we expect that Corr_x(A : C) decays to zero with dist(A, C).

HX — Z h(x,y) & Idrest

(x,y)ycX

X c 7P




Operator Correlation Function

e_ﬂHX
— * °
Tr(e—FHx) . .
Yy Ay —> € (expectation) o o ¥ 7D
WX(Q) P — TI'X( GXQ) | Q = uX ® ® o ® ® ® ® ®
Corrx(A:C) = sup  |yy(@400) — (@D WK(Q0)| < K(p) oo a0

Q411 QclI =1

Since the interactions are local, we expect that Corr_x(A : C) decays to zero with dist(A, C).

Interesting consequences if correlations decay exponentially fast.



Example: Ising model 1D

X=[1,N+1|C”Z

Pauli Z-operator

Z:C2—>(]::2 Z]®Z+1 (]:2®(]:2—>(]:2®C2

10) — |0) 0)®10) = [0)®10)  [0)®[1) = - [0)®|1)
1) > —|1) D) ~» D)  [1H®[0) » - [1)®|0)




Example: Ising model 1D

X=[Il,N+1]CZ

Iy = (CH®*
N
Hy = — Z Z] ® Z]+1
j=1

Y e —pHy B 1 Z

05 =
P Tr[e—PHx]

wx(Z,ZL.) — wyx(Z,) wx(Z,)

ON+T gcr1,....N)

tanh(p)* | ]Z,® 7,

jes

= (tanh(3))'*~*

Correlations decay exponentially fast with dist(a, ¢)

tanh(z) g

N+ 1
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Example: Ising model 2D

Harrow, Mehraban, Soleimanifar (2019)

X=[-N,NJ? c Z?

L = set of edges

Iy = (CH®*

Hy= - ) 7Z.QZ
(x,y)EE
—BH

UX_ e :B X

P Tr[e—PHx]

w(Z,Z) =y Z)ux(Z) | < K(B)e P lla=cll 0 < g < .

Thermal phase transition!!



Exponential Uniform Clustering - arbitrary dimension

GX _ e_,ﬁHX l// (Q) - TI. (GXQ) Q e u o o ® o o o Co ®
Tr(e—ﬂHX) X . X ’ X ® o © o o o o o
o o A ® o o o o o

® o © o o o o o X

Theorem (Kliesch, Gogolin, Kastoryano, Riera, Eisert, 2014) At any dimension and for high-
temperatures, correlations decay exponentially fast. More formally, there exists /* (depending on the lattice

7P such that for every 0 < # < f* there are constants K(f),a(/3) > 0 satisfying for every finite X C Z” and
any A, C C X we have that

Corrp(A:0) = sup  |yx(@400) —yx(@y) yx(Q0)| < K(B) min{|0A],]9C]} e~ A0
QAL Qcll <1

Can we improve this in 1D???



1D Exponential Uniform Clustering condition

e _IBHI

B Tr(e—FH)

GI

l//](Q) L= Tr(alQ) , Q & ul ® o © o o o o o

Definition. Exponential Uniform Clustering at f : There exist K(f),a(f) > O such that for every finite interval
[ = ABC as in the picture

Corr ;(A: C) = sup Y (0,00 — wi(0) yi(Op) < K(p) o) |B]
1OAll N Qcll£1

Gibbs States of a One Dimensional
Quantum Lattice

HUZIHIRO ARAKI*
I.LH.E.S., 91 — Bures-sur-Yvette, France

Proved by Araki (1969) for every f > 07? Received June 20, 1969

Abstract. A one dimensional infinite quantum spin lattice with a finite range inter-
action is studied. The Gibbs state in the infinite volume limit is shown to exist as a primary
state of a UHF algebra. The expectation value of any local observables in the state as well
as the mean free energy depend analytically on the potential, showing no phase transition.
The Gibbs state is an extremal KMS state.
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Definition. Exponential Uniform Clustering at f : There exist K(f),a(f) > O such that for every finite interval
[ = ABC as in the picture
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1O OclI <1
Wy - Q[Z > C unique equilibrium or KMS state w-(Q) =lmy(Q) , Qe l,,

1/ 7
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1D Exponential Uniform Clustering condition
o—BH,
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Definition. Exponential Uniform Clustering at f : There exist K(f),a(f) > O such that for every finite interval
[ = ABC as in the picture

—a B
Corr,i(A:0) == sup  |w(0400) ~wi( Q@) wi(Q0)| < K(B)e™ P
1OAll.IQclI<1
w-(Q) = lim y,(Q) Theorem (Bluhm, Capel, P.H, 2021)
1/ 7
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Definition. Let p, o be full-rank states on a finite-dimensional Hilbert space # . Their Umegaki
relative entropy id given by

D(pllo) = Tr[ p (logp — logo)]

Definition. Let 7 4~ = # 4, ® #  be a bipartite quantum system and let 6, be a full-rank state. The
mutual information of 6,4 between A and C is defined as

e_ﬁHX e © © o o o o o
Tr(e_ﬁHX) ® o © o o o o o
oxc = Iry\ac o] oc = lix\clol .. .- ...
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Mutual information

Definition. Let 7 4~ = # 4, ® #  be a bipartite quantum system and let 6, be a full-rank state. The
mutual information of 6, between A and C is defined as

I (A:C)=D(0y|lo4Q o)

Corr (A : () := sup Tr(cQ,0r) — Tr(cQy) Tr(aQC)|
104111 QclI<1
— Sup Tr((GAC — Oy ® Uc) QA ® QC) c***°*n C N °
104 11QcII£] e o © o o o o o
o o A. [ o o o o
< HGAC — Oy ® 0(/’”1 HOolder ineq T e o o o o o o

Pinskner ineq
< /2 Diosclloy ® o)



Mutual information

Definition. Let 7 4~ = # 4, ® #  be a bipartite quantum system and let 6, be a full-rank state. The
mutual information of 6, between A and C is defined as

I (A:C)=D(0y|lo4Q o)

In other words

1 1

: 2 2 :
ECOITG(A : C) < EHGAC— O 4 X GCHI < IG(A : C)
Hence, Decay of Ml = Decay of operator correlation function

There are states with small operator correlation and large mutual information in quantum data hiding.
(Hayden, leung, Shor, Winter, 2004)



Mutual information

Definition. Let 7 4~ = # 4, ® # . be a bipartite quantum system and let 6, be a full-rank state. The
mutual information of o4~ between A and C is defined as

I (A:C)=D(0y|lo4Q o)

Area Law
— X —pH —pH
o o .@. o o HX_HA_I_HAC_l_HaA O =€'BX/TI'(€ﬁX)
e o 0o e o o
e o o e o o I .(A:A°) Z20|H;|ll, SPIOA| (Wolf, Verstraete, Hastings, Cirac, 2008)
o o oo e o oo
A A€
e o oo e o o Ia (A:A° < 'B2/3 | 0A | (Kuwahara, Alhambra, Anshu, 2020)
e o oo e e o oo
Also for variants of the mutual information replacing relative entropy
X with Rényi divergences. (Scalet, Alhambra, Styliaris, Cirac, 2021)



Mutual information

Definition. Let 7 4~ = # 4, ® #  be a bipartite quantum system and let 6, be a full-rank state. The
mutual information of o4~ between A and C is defined as

I (A:C)=D(0y|lo4Q o)
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Mutual information

Definition. Let 7 4~ = # 4, ® #  be a bipartite quantum system and let 6, be a full-rank state. The
mutual information of o4~ between A and C is defined as

I (A:C)=D(0y|lo4Q o)

Theorem (Kuwahara, Kato, Brandao, 2020) There is /* (depending on 7P ) such

that for every O < f < f* there exist K(f), a(ff)) > O satisfying that for every finite
XcCZP andeveryA,C C X

::D. [ o [

e _IBHX

B Tr(e—FHx)

5 I x(A:C) < K(P) min{|0A|,|dC|} e *P) BSHAL) o~

Theorem (Bluhm, Capel, A.P.H., 2022) In 1D and if the interactions are translation-invariant, then the above
property actually holds for every # > 0.
® P O O O @ ® ® I — ABC
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Upper bounds on the relative entropy

Umegaki relative entropy

D(pl|lo) = Tr[p(logp — logo)] P, O invertible states

BS relative entropy (Belavkin, Staszewski,1982) = D(pllo) < f)\(pug)

D (pllo) = Trl p log(p'?o™" p'?)] N
= D(plle) = D(pllo) < [p,0]=0

a-geometric Rényi divergence, o > 1 R e
= D, (plle) < D, (pllo) if a<y

D (pllo) = 1 log Tr[c'/? (0‘1/2,0 0‘1/2) o1/?]

. lim D (pllo)= D (pllo)

a—1

D(plle) < D(pllo) < D (pllo)



Upper bounds on the relative entropy

A~ 1 o—1
_ 12 —1 172
Umegaki relative entropy D (pllo) = 1 log Tr|p (p'? 07" p'%)" |

D(pl|lo) = Tr[p(logp — logo)] P, O invertible states

1 oa—1
< 1o 1/26_1 1/2
——logll(p"? o™ p'?)" |l

BS relative entropy (Belavkin, Staszewski,1982) 1 /2

oY 12 ;=1 ;172 <10g||,0 Uz”
D (pllo) = Tr{ p log(p' 6= p'?)]

— lOg ( le/z —1 1/2 —1 4 1” )
a-geometric Rényi divergence, a > 1 ~
9 y 9 < log ( le/z 1 1/2 —1|. )

~ 1 )
D (pllo) = log Tr[c'/? (0‘1/2,0 0‘1/2) o1/?]
“= < le/z —1 1/2 ~1]|..

~ P < —1 o
D(plio) < D(plle) < D ,(pllo) < llop = Tl



Upper bounds on the relative entropy

Umegaki relative entropy

D(pl|lo) = Tr[p(logp — logo)] P, O invertible states

BS relative entropy (Belavkin, Staszewski,1982)

b\(PHU) = Tr| p lgg(p1/2 6—1p1/2>]

a-geometric Rényi divergence, a > 1

D (pllo) = 1 log Tr[c'/? (0‘1/2,0 0‘1/2) o1/?]

1
~ Corr)(A: CP < [(A: C) <lpz' ®pc' pac — 1l
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Definition. Let 7 4~ = # 4, ® #  be a bipartite quantum system and let 6, be a full-rank state. The
mutual information of o4~ between A and C is defined as

I (A:C)=D(0y|lo4Q o)

o0

1
ECorrO_(A O <IA:C) <|lo)'®c;' o — 1]

Definition. Exponential Decay Mixing Condition at : There exist K(f),a(f#) > O such that for every finite
interval I = ABC and o = e P/ Tr[e PH1]:

e © © o © o o o H(@Tl@UEl)GAc_le < K(ﬁ)e_“(ﬁ) | B

Theorem (Bluhm, Capel, P.H., 2021) The following assertions are equivalent for a fixed temperature f > 0:

() Exponential Uniform Clustering

(i) Exponential Decay of Mutual Information

(i) Exponential Decay Mixing Condition
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Mixing time In 1D thermalization

¥ =ClR..QCH

=
1

L (H,) observables

System size: n qudits H_ local Hamiltonian

Davies semigroup  [; — e"@n(p) —> Gﬁ
[ > OO0

Definition (Mixing time) 7 .

() = inf{r > 0: Vp , [le'?(p) — g4ll < &}

Theorem 3.1. Let A = [1,n]. For any 8 > 0, we denote by o = o the Gibbs state of a finite-
! lation-1 ant, ting Hamiltons t1 t t > 0. Consid
range, translation-invariant, commuting Hamiltonian at inverse temperature 3 onsiaer tmix( 8) S C log(n) (10g(1 / 8) + 10g(l’l)>

LE* the Davies generator of a quantum Markov semigroup {ew/l\)* h>0 with unique fized point o.
Then, there exists a, = Q(In(n)~1) such that, for all p € D(Ha) and all t > 0,

— fnt ar
D(pt||lo) < e D(p|lo), . o L . P
Assumption 1 (mixing condition). Let A cc Z be a finite chain, and let C, D c A be the union of non-overlapping finite-sized segments of

T cb. o o x ée;) ?’A be the Gibbs state of a commuting Hamiltonian. The following inequality holds for certain positive constants K1, K> independent of

” -1/2®0-1/2 _-1/2 -1/2

~-K,d(C, D)
O h ' OcpD0Oq-"" ® 0, < Kje ,

-ncp|| <

o0

(Barden, Capel, Gao, Lucia, Pérez
Garcia. Rouzé 202 2) where d(C, D) is the distance between C and D, i.e., the minimum distance between two segments of C and D.
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[ (A:C|B) := S(o,p) + S(ogr) — S(6450) — S(op) where  S(p) = — Tr(plog p)
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state. The conditional mutual information is given by:

I(A:C|B) = S(a4p) + S(opc) — S(04pc) — S(op)  where  S(p) = — Tr(plog p)

Strong subadditivity: (Lieb and Ruskai 73)

Ia(A :C|B) 20 Let X =ABC and o =o0" Gibbs state. In arbitrary
dimensions and high temperature (# < /*), we have
Quantum Markov chains; (P62 85 exponential decay:

I(A:C|B)=0

< Thereis a CPTP map % 5_ p~ such that

Oapc = Lp_pc(Osp)

I(A:C|B) < K(B) min{|dA]|,|0C|}e /) distd.C)

N— GABC — Gé/g 0151/2 OAB 61;1/2 Gé/g (Kuwahara, Kato, Brandao, 2020)
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Condicional Mutual information

Definition. Let # = # , @ # ; @ #  be a tripartite quantum system and let 6 = 6,5, be a full-rank
state. The conditional mutual information is given by:

[ (A:C|B) := S(o,p) + S(ogr) — S(6450) — S(op) where  S(p) = — Tr(plog p)

In 1D, for every f# > 0 there exists K(f), a(f) > 0 such that

inita | — — »—PH, —pH,
Theorem (Bluhm, Capel, PH. 2021) For each for every finite interval I = ABC and ¢ = e "1/ Tr|e ""]

p > 0 there is a positive function £ > 64(¢)
which decays faster than any exponential such
that: for every finite interval I = ABC the Gibbs
state 045 = e PHasc/Tr(e PHasc) satisfies

I(A:C|B) < K(B) e *PVIBI

(Kato, Brandao, 2019)
—1
|6apc — Oap g Opclli < 0p(1B)
77?7
172 __—1/2 —1/2 _1/2
HUABC_GB/C Op / OAB Op / GB/CH1 < 5ﬂ(‘B‘)
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