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Lacunary series

Lacunary series

A power series
∑∞

k=1 akz
nk is said to be lacunar if there exists

λ > 1 such that

nk+1

nk
≥ λ for k = 1, 2, · · ·

In many contexts lacunary series behave as partial sums of
independent random variables and many stochastic results have
the corresponding translation for these series.
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Lacunary series

Kintchine-Kolmogorov’s Theorem

Suppose (Xn) is a sequence of real centered independent random
variables with finite variance.
Then ∑

Xn converges a.s. ⇐⇒
∑

E (X 2
n ) < ∞.

In the case of lacunary series, we have the corresponding result:

If
∑∞

k=1 akz
nk is a lacunary series, then

∑∞
k=1 akξ

nk converges a.e.
ξ ∈ ∂D if and only if

∑∞
n=1 |ak |2 < ∞.
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Lacunary series

Central Limit Theorem for lacunary series

Let’s consider the trigonometric series
∞∑
k=1

ak cos(nkx), where the

sequence of frequencies is lacunar.

Let’s put A2
N =

∑N
k=1 a

2
k and assume that AN → ∞ and that

a2N = o
(
A2
N

)
as N → ∞.

Then, for any y ∈ R,

1

2π
m
({

x ∈ [0, 2π] :

N∑
k=1

ak cos(nkx)√
1
2A

2
N

≤ y
})

→ 1√
2π

∫ y

−∞
e−t2/2 dt
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Lacunary series

Law of the iterated logarithm for lacunary series (M. Weiss)

Let’s consider the trigonometric series
∞∑
k=1

ak cos(nkx), where the

sequence of frequencies is lacunar.

Assume that A2
N =

N∑
k=1

a2k tends to infinity and that

a2N = o
(
AN(log logAN)

1/2
)
as N → ∞.

Then

lim sup
N→∞

N∑
k=1

ak cos(nkx)√
2A2

N log logAN

= 1 a.e. x ∈ [0, 2π]
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Iterates of Blaschke products

Objective

We want to study the behaviour of linear combinations of the
iterates of finite Blaschke products which vanish at the origin, that
is iterates of

f (z) = z
N∏

k=1

z − zk
1− zkz

.

If f n denotes the n-th iterate of f and (ak) is a sequence of
complex numbers,

What can we say about the partial sums of
∞∑
k=1

ak f
k(ζ) for

ζ ∈ ∂D?
How about the radial behaviour of the analytic function
∞∑
k=1

ak f
k(z) in D?
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Iterates of Blaschke products

Theorem. Nicolau 2022

Let f a finite Blaschke product such that f (0) = 0 which is not a
rotation, and let (an) a sequence of complex numbers. Then, the
following propositions are equivalent.

1 The sequence (an) satisfies
∞∑
k=1

|ak |2 < ∞.

2 The series
∞∑
k=1

ak f
k(ζ) converges a.e. ζ ∈ ∂D.

3 The set
{
ζ ∈ ∂D : sup

N

∣∣∣ N∑
k=1

ak f
k(ζ)

∣∣∣ < +∞
}
has positive

Lebesgue measure.

4 The function defined on D by F (z) =
∞∑
k=1

ak f
k(z) belongs to

VMOA.
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Lacunary series

What happens if
∑∞

k=1 |ak |2 = ∞ and (ak) ∈ ℓ∞?

In this case, the function b(z) =
∑∞

k=1 ak f
k(z) defined by the

series belongs to the Bloch space, that is,

sup
z∈D

(1− |z |2)|b′(z)| < ∞

and has radial limit almost nowhere.

In this situation is interesting to remember Rohde’s theorem,

Theorem (Makarov, Rohde)

A Bloch function f is radially bounded on a set of Hausdorff
dimension one.

If f belongs to B0 and has radial limit almost nowhere, then
for any point w ∈ C there exists a set E ⊂ ∂D with
dimH(E ) = 1, such that for any ζ ∈ E ,

lim
r→1

f (rζ) = w .
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Statement of our results

Theorem (D., Nicolau)

Let f be a finite Blaschke product with f (0) = 0 which is not a
rotation and suppose that (an) is a sequence such that

∞∑
k=1

|ak | = ∞ and ak → 0 as k → ∞.

Then, for any point w ∈ C there exists a set Ew ⊂ ∂D of positive

dimension such that if ζ ∈ Ew ,
∞∑
k=1

ak f
k(ζ) converges and

∞∑
k=1

ak f
k(ζ) = w .

Obviously, the interesting case is when
∑∞

k=1 |ak |2 < ∞, because

by Nicolau’s theorem, the series
∞∑
k=1

ak f
k(ζ) converges a.e.
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Statement of our results

It makes sense to ask if last result has a counterpart in terms of
the asymptotic behaviour of the analytic function

F (z) =
∞∑
k=1

ak f
k(z).

In order to state it, we have the following result that can be
understood as a version of Abel’s Theorem in our context.

Theorem (D., Nicolau)

Let f be a finite Blaschke product with f (0) = 0 which is not a
rotation. Let (an) be a sequence and suppose that for some

ζ ∈ ∂D we have that
∞∑
k=1

ak f
k(ζ) converges. Then the

non-tangencial limit lim
z→ζ
⊀

∞∑
k=1

ak f
k(z) exists and it is equal to

∞∑
k=1

ak f
k(ζ). The converse is true.
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Statement of our results

Theorem (D., Nicolau)

Let f be a finite Blaschke product with f (0) = 0 which is not a
rotation and suppose that (an) is a sequence such that

∞∑
k=1

|ak | = ∞ and ak → 0 as k → ∞.

Then, for any point w ∈ C there exists a set Ew ⊂ ∂D of positive

dimension such that if ζ ∈ Ew , the function F (z) =
∞∑
k=1

ak f
k(z)

has nontangential limit w at ζ
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Statement of our results

A possible way to improve last result is the following one:
Given an analytic function g : D → C and a point ζ ∈ ∂D, the
radial cluster set of g at the point ζ is defined to be

Cl(g , ζ) =
⋂
r<1

{g(sζ) : s ≥ r}.

Theorem (D., Nicolau)

Let f be a finite Blaschke product with f (0) = 0 which is not a
rotation and suppose that (an) is a sequence such that

∞∑
k=1

|ak | = ∞ and ak → 0 as k → ∞,

and consider the function F (z) =
∑∞

k=1 ak f
k(z).

Then, for any closed connected set K ⊂ C∞ there exists a set of
positive dimension EK such that if ζ ∈ EK , then Cl(F , ζ) = K .
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Statement of our results

How about the case
∑∞

k=1 |ak | < ∞?

It is clear that in this case the function defined by

F (z) =
∞∑
k=1

ak f
k(z)

is continuous in D.

In order to state our result, let’s observe this elementary Calculus
fact.
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Statement of our results

Suppose we have a sequence of positive numbers (xn) such that∑∞
n=1 xn = S < ∞. Suppose that the convergence of this series is

slow in the sense that for any n,
xn∑
j>n xj

< 1.

Adding and substracting at choice every term xn, what is the set of
all possible values we can obtain? That is, what is the set

{
∞∑
n=1

εnxn : εn = −1 or + 1}.

Answer: This set is [−S ,S ].
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Statement of our results

Keeping in mind last fact, we have the following result.

Theorem (D., Nicolau)

Let f be a finite Blaschke product with f (0) = 0 which is not a
rotation. Let (an) be a sequence such that

∑∞
n=1 |an| < ∞ and

lim
n→∞

|an|∑
j>n |aj |

= 0.

Then the image of ∂D under the function F =
∑

n≥1 anf
n is a

Peano curve, that is, F (∂D) contains a disk.
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Comments

In general, results like ours, requires arguments based on a
”Scaping balls lemma”.

Suppose (Wt) is a planar brownian motion with W0 = 0 and
consider a circle C centered at the origin with radius r . If J is an
arc of this circle, then we know that the probability that Wt scapes
from C across J is |J|/2πr .

For instance, a possible way to prove Rohde’s Theorem is the
following.

Theorem (Rohde)

If f belongs to B0 and has radial limit almost nowhere, then for
any point w ∈ C there exists a set E ⊂ ∂D with dimH(E ) = 1,
such that for any ζ ∈ E ,

lim
r→1

f (rζ) = w .
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Comments

Given the function f it is possible to associate it a complex
discrete martingale (Wn) defined on ∂D with increments
tending to 0 which governs the radial behaviour of f , that is,

|f (rζ)−Wn(ζ)| is small if r ∼ 1− 2−n.

This implies, in particular that this martingale diverges a.e.,
consequently, if C is a circle or radius R centered at the
origin, the stopping time τ(ζ) = inf{n : |Wn(ζ)| > R} is
finite a.e. ζ ∈ ∂D.
The fact that f is analytic, allows us to obtain something
extra: when the martingale scapes from C , the values
Wτ(ζ)(ζ) are, essentially, uniformly distributed along C (a sort
of isotropy) and if Γ is an arc in C , the set of points ζ ∈ ∂D
for which the martingale scapes across Γ has measure
essentially |Γ|/2πR.
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Comments
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Comments

In our situation, this method doesn’t work.

When we consider
∑n

k=1 ak f
k , there is a strong dependence

between the terms of our series.

Since
∑∞

k=1 |ak |2 < ∞, we cannot assure that the stopping
time τ(ζ) = inf{n : |

∑n
k=1 ak f

k(ζ)| > R} is finite a.e.
ζ ∈ ∂D.

Our proofs are inspired in the ideas of M. Weiss but in absence of
lacunarity, we explote a nice interplay between the dynamical
properties of f as a selfmapping of the unit disk and the dynamics
of f n at the boundary.
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Comments

Theorem

Let f be a finite Blaschke product with f (0) = 0 which is not a
rotation and suppose that (an) is a sequence such that

∞∑
k=1

|ak | = ∞ and ak → 0 as k → ∞.

Then, for any point w ∈ C there exists ζ ∈ ∂D such that
∞∑
k=1

ak f
k(ζ) converges and

∞∑
k=1

ak f
k(ζ) = w .

Fix w ∈ C. The idea of the proof of this result is to find a sort of
”scaping balls lemma”a little bit technical and suitable

decomposition of the sum
∞∑
k=1

ak f
k into blocks.
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Comments

That is, we will find a sequence of indices
1 = M1 < N1 < M2 < N2 < M3 < · · · and we will define blocks

Pj =

Nj∑
n=Mj

anf
n, P∗

j =

Mj+1−1∑
n=Nj+1

anf
n

such that

The blocks P∗ will have fix length (maybe large) and have the
mission to prepare the blocks P for the application of the
”scaping balls lemma”.

The blocks P have no controled length and they have the
mission to make that the sequence

∑∞
k=1 ak f

k converges to w
at some point ζ ∈ ∂D.
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THANK YOU
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