Linear combinations of iterates of Blaschke products and Peano curves

Juan J. Donaire
Universitat Autònoma de Barcelona

Lacunary series

Lacunary series

A power series $\sum_{k=1}^{\infty} a_{k} z^{n_{k}}$ is said to be lacunar if there exists $\lambda>1$ such that

$$
\frac{n_{k+1}}{n_{k}} \geq \lambda \text { for } k=1,2, \cdots
$$

In many contexts lacunary series behave as partial sums of independent random variables and many stochastic results have the corresponding translation for these series.

Lacunary series

Kintchine-Kolmogorov's Theorem

Suppose $\left(X_{n}\right)$ is a sequence of real centered independent random variables with finite variance.
Then

$$
\sum X_{n} \text { converges a.s. } \Longleftrightarrow \sum E\left(X_{n}^{2}\right)<\infty .
$$

In the case of lacunary series, we have the corresponding result: If $\sum_{k=1}^{\infty} a_{k} z^{n_{k}}$ is a lacunary series, then $\sum_{k=1}^{\infty} a_{k} \xi^{n_{k}}$ converges a.e. $\xi \in \partial \mathbb{D}$ if and only if $\sum_{n=1}^{\infty}\left|a_{k}\right|^{2}<\infty$.

Lacunary series

Kintchine-Kolmogorov's Theorem

Suppose $\left(X_{n}\right)$ is a sequence of real centered independent random variables with finite variance.
Then

$$
\sum X_{n} \text { converges a.s. } \Longleftrightarrow \sum E\left(X_{n}^{2}\right)<\infty .
$$

In the case of lacunary series, we have the corresponding result: If $\sum_{k=1}^{\infty} a_{k} z^{n_{k}}$ is a lacunary series, then $\sum_{k=1}^{\infty} a_{k} \xi^{n_{k}}$ converges a.e. $\xi \in \partial \mathbb{D}$ if and only if $\sum_{n=1}^{\infty}\left|a_{k}\right|^{2}<\infty$.

Lacunary series

Central Limit Theorem for lacunary series

Let's consider the trigonometric series $\sum_{k=1}^{\infty} a_{k} \cos \left(n_{k} x\right)$, where the sequence of frequencies is lacunar.
Let's put $A_{N}^{2}=\sum_{k=1}^{N} a_{k}^{2}$ and assume that $A_{N} \rightarrow \infty$ and that $a_{N}^{2}=o\left(A_{N}^{2}\right)$ as $N \rightarrow \infty$.
Then, for any $y \in \mathbb{R}$,

$$
\frac{1}{2 \pi} m\left(\left\{x \in[0,2 \pi]: \frac{\sum_{k=1}^{N} a_{k} \cos \left(n_{k} x\right)}{\sqrt{\frac{1}{2} A_{N}^{2}}} \leq y\right\}\right) \rightarrow \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{y} e^{-t^{2} / 2} d t
$$

Lacunary series

Law of the iterated logarithm for lacunary series (M. Weiss)

Let's consider the trigonometric series $\sum_{k=1}^{\infty} a_{k} \cos \left(n_{k} x\right)$, where the sequence of frequencies is lacunar.
Assume that $A_{N}^{2}=\sum_{k=1}^{N} a_{k}^{2}$ tends to infinity and that
$a_{N}^{2}=o\left(A_{N}\left(\log \log A_{N}\right)^{1 / 2}\right)$ as $N \rightarrow \infty$.
Then

$$
\limsup _{N \rightarrow \infty} \frac{\sum_{k=1}^{N} a_{k} \cos \left(n_{k} x\right)}{\sqrt{2 A_{N}^{2} \log \log A_{N}}}=1 \text { a.e. } x \in[0,2 \pi]
$$

Iterates of Blaschke products

Objective

We want to study the behaviour of linear combinations of the iterates of finite Blaschke products which vanish at the origin, that is iterates of

$$
f(z)=z \prod_{k=1}^{N} \frac{z-z_{k}}{1-\overline{z_{k}} z}
$$

Iterates of Blaschke products

Objective

We want to study the behaviour of linear combinations of the iterates of finite Blaschke products which vanish at the origin, that is iterates of

$$
f(z)=z \prod_{k=1}^{N} \frac{z-z_{k}}{1-\overline{z_{k}} z} .
$$

If f^{n} denotes the n-th iterate of f and $\left(a_{k}\right)$ is a sequence of complex numbers,

- What can we say about the partial sums of $\sum_{k=1}^{\infty} a_{k} f^{k}(\zeta)$ for

$$
\zeta \in \partial \mathbb{D} ?
$$

- How about the radial behaviour of the analytic function

$$
\sum_{k=1}^{\infty} a_{k} f^{k}(z) \text { in } \mathbb{D} ?
$$

Iterates of Blaschke products

Theorem. Nicolau 2022

Let f a finite Blaschke product such that $f(0)=0$ which is not a rotation, and let $\left(a_{n}\right)$ a sequence of complex numbers. Then, the following propositions are equivalent.
(1) The sequence $\left(a_{n}\right)$ satisfies $\sum_{k=1}^{\infty}\left|a_{k}\right|^{2}<\infty$.
(2) The series $\sum_{k=1}^{\infty} a_{k} f^{k}(\zeta)$ converges a.e. $\zeta \in \partial \mathbb{D}$.
(3) The set $\left\{\zeta \in \partial \mathbb{D}: \sup _{N}\left|\sum_{k=1}^{N} a_{k} f^{k}(\zeta)\right|<+\infty\right\}$ has positive Lebesgue measure.
(9) The function defined on \mathbb{D} by $F(z)=\sum_{k=1}^{\infty} a_{k} f^{k}(z)$ belongs to VMOA.

Lacunary series

What happens if $\sum_{k=1}^{\infty}\left|a_{k}\right|^{2}=\infty$ and $\left(a_{k}\right) \in \ell^{\infty}$?
In this case, the function $b(z)=\sum_{k=1}^{\infty} a_{k} f^{k}(z)$ defined by the series belongs to the Bloch space, that is,

$$
\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)\left|b^{\prime}(z)\right|<\infty
$$

and has radial limit almost nowhere.

Lacunary series

What happens if $\sum_{k=1}^{\infty}\left|a_{k}\right|^{2}=\infty$ and $\left(a_{k}\right) \in \ell^{\infty}$?
In this case, the function $b(z)=\sum_{k=1}^{\infty} a_{k} f^{k}(z)$ defined by the series belongs to the Bloch space, that is,

$$
\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)\left|b^{\prime}(z)\right|<\infty
$$

and has radial limit almost nowhere.
In this situation is interesting to remember Rohde's theorem,

Theorem (Makarov, Rohde)

- A Bloch function f is radially bounded on a set of Hausdorff dimension one.
- If f belongs to \mathcal{B}_{0} and has radial limit almost nowhere, then for any point $w \in \mathbb{C}$ there exists a set $E \subset \partial \mathbb{D}$ with $\operatorname{dim}_{H}(E)=1$, such that for any $\zeta \in E$,

$$
\lim _{r \rightarrow 1} f(r \zeta)=w
$$

Statement of our results

Theorem (D., Nicolau)

Let f be a finite Blaschke product with $f(0)=0$ which is not a rotation and suppose that $\left(a_{n}\right)$ is a sequence such that

$$
\sum_{k=1}^{\infty}\left|a_{k}\right|=\infty \text { and } a_{k} \rightarrow 0 \text { as } k \rightarrow \infty
$$

Then, for any point $w \in \mathbb{C}$ there exists a set $E_{w} \subset \partial \mathbb{D}$ of positive dimension such that if $\zeta \in E_{w}, \sum_{k=1}^{\infty} a_{k} f^{k}(\zeta)$ converges and $\sum_{k=1}^{\infty} a_{k} f^{k}(\zeta)=w$.

Obviously, the interesting case is when $\sum_{k=1}^{\infty}\left|a_{k}\right|^{2}<\infty$, because by Nicolau's theorem, the series $\sum_{k=1}^{\infty} a_{k} f^{k}(\zeta)$ converges a.e.

Statement of our results

It makes sense to ask if last result has a counterpart in terms of the asymptotic behaviour of the analytic function

$$
F(z)=\sum_{k=1}^{\infty} a_{k} f^{k}(z)
$$

Statement of our results

It makes sense to ask if last result has a counterpart in terms of the asymptotic behaviour of the analytic function

$$
F(z)=\sum_{k=1}^{\infty} a_{k} f^{k}(z)
$$

In order to state it, we have the following result that can be understood as a version of Abel's Theorem in our context.

Theorem (D., Nicolau)

Let f be a finite Blaschke product with $f(0)=0$ which is not a rotation. Let $\left(a_{n}\right)$ be a sequence and suppose that for some $\zeta \in \partial \mathbb{D}$ we have that $\sum_{k=1}^{\infty} a_{k} f^{k}(\zeta)$ converges. Then the non-tangencial limit $\lim _{\substack{z \rightarrow \zeta \\ \nless}} \sum_{k=1}^{\infty} a_{k} f^{k}(z)$ exists and it is equal to
$\sum^{\infty} a_{k} f^{k}(\zeta)$. The converse is true.
$k=1$

Statement of our results

Theorem (D., Nicolau)

Let f be a finite Blaschke product with $f(0)=0$ which is not a rotation and suppose that $\left(a_{n}\right)$ is a sequence such that

$$
\sum_{k=1}^{\infty}\left|a_{k}\right|=\infty \text { and } a_{k} \rightarrow 0 \text { as } k \rightarrow \infty
$$

Then, for any point $w \in \mathbb{C}$ there exists a set $E_{w} \subset \partial \mathbb{D}$ of positive dimension such that if $\zeta \in E_{w}$, the function $F(z)=\sum_{k=1}^{\infty} a_{k} f^{k}(z)$ has nontangential limit w at ζ

Statement of our results

A possible way to improve last result is the following one:
Given an analytic function $g: \mathbb{D} \rightarrow \mathbb{C}$ and a point $\zeta \in \partial \mathbb{D}$, the radial cluster set of g at the point ζ is defined to be

$$
\mathrm{Cl}(g, \zeta)=\bigcap_{r<1} \overline{\{g(s \zeta): s \geq r\}}
$$

Statement of our results

A possible way to improve last result is the following one:
Given an analytic function $g: \mathbb{D} \rightarrow \mathbb{C}$ and a point $\zeta \in \partial \mathbb{D}$, the radial cluster set of g at the point ζ is defined to be

$$
\mathrm{Cl}(g, \zeta)=\bigcap_{r<1} \overline{\{g(s \zeta): s \geq r\}}
$$

Theorem (D., Nicolau)

Let f be a finite Blaschke product with $f(0)=0$ which is not a rotation and suppose that $\left(a_{n}\right)$ is a sequence such that

$$
\sum_{k=1}^{\infty}\left|a_{k}\right|=\infty \text { and } a_{k} \rightarrow 0 \text { as } k \rightarrow \infty
$$

and consider the function $F(z)=\sum_{k=1}^{\infty} a_{k} f^{k}(z)$.
Then, for any closed connected set $K \subset \mathbb{C}_{\infty}$ there exists a set of positive dimension E_{K} such that if $\zeta \in E_{K}$, then $\mathrm{Cl}(F, \zeta)=K$.

How about the case $\sum_{k=1}^{\infty}\left|a_{k}\right|<\infty$?
It is clear that in this case the function defined by

$$
F(z)=\sum_{k=1}^{\infty} a_{k} f^{k}(z)
$$

is continuous in $\overline{\mathbb{D}}$.
In order to state our result, let's observe this elementary Calculus fact.

Statement of our results

Suppose we have a sequence of positive numbers $\left(x_{n}\right)$ such that $\sum_{n=1}^{\infty} x_{n}=S<\infty$. Suppose that the convergence of this series is slow in the sense that for any n,

$$
\frac{x_{n}}{\sum_{j>n} x_{j}}<1
$$

Adding and substracting at choice every term x_{n}, what is the set of all possible values we can obtain? That is, what is the set

$$
\left\{\sum_{n=1}^{\infty} \varepsilon_{n} x_{n}: \varepsilon_{n}=-1 \text { or }+1\right\}
$$

Statement of our results

Suppose we have a sequence of positive numbers $\left(x_{n}\right)$ such that $\sum_{n=1}^{\infty} x_{n}=S<\infty$. Suppose that the convergence of this series is slow in the sense that for any n,

$$
\frac{x_{n}}{\sum_{j>n} x_{j}}<1
$$

Adding and substracting at choice every term x_{n}, what is the set of all possible values we can obtain? That is, what is the set

$$
\left\{\sum_{n=1}^{\infty} \varepsilon_{n} x_{n}: \varepsilon_{n}=-1 \text { or }+1\right\}
$$

Answer: This set is $[-S, S]$.

Keeping in mind last fact, we have the following result.

Theorem (D., Nicolau)

Let f be a finite Blaschke product with $f(0)=0$ which is not a rotation. Let $\left(a_{n}\right)$ be a sequence such that $\sum_{n=1}^{\infty}\left|a_{n}\right|<\infty$ and

$$
\lim _{n \rightarrow \infty} \frac{\left|a_{n}\right|}{\sum_{j>n}\left|a_{j}\right|}=0
$$

Then the image of $\partial \mathbb{D}$ under the function $F=\sum_{n \geq 1} a_{n} f^{n}$ is a Peano curve, that is, $F(\partial \mathbb{D})$ contains a disk.

Comments

In general, results like ours, requires arguments based on a "Scaping balls lemma".

Suppose $\left(W_{t}\right)$ is a planar brownian motion with $W_{0}=0$ and consider a circle C centered at the origin with radius r. If J is an arc of this circle, then we know that the probability that W_{t} scapes from C across J is $|J| / 2 \pi r$.

Comments

In general, results like ours, requires arguments based on a "Scaping balls lemma".

Suppose $\left(W_{t}\right)$ is a planar brownian motion with $W_{0}=0$ and consider a circle C centered at the origin with radius r. If J is an arc of this circle, then we know that the probability that W_{t} scapes from C across J is $|J| / 2 \pi r$.

For instance, a possible way to prove Rohde's Theorem is the following.

Theorem (Rohde)

If f belongs to \mathcal{B}_{0} and has radial limit almost nowhere, then for any point $w \in \mathbb{C}$ there exists a set $E \subset \partial \mathbb{D}$ with $\operatorname{dim}_{H}(E)=1$, such that for any $\zeta \in E$,

$$
\lim _{r \rightarrow 1} f(r \zeta)=w
$$

- Given the function f it is possible to associate it a complex discrete martingale $\left(W_{n}\right)$ defined on $\partial \mathbb{D}$ with increments tending to 0 which governs the radial behaviour of f, that is,

$$
\left|f(r \zeta)-W_{n}(\zeta)\right| \text { is small if } r \sim 1-2^{-n}
$$

Comments

- Given the function f it is possible to associate it a complex discrete martingale (W_{n}) defined on $\partial \mathbb{D}$ with increments tending to 0 which governs the radial behaviour of f, that is,

$$
\left|f(r \zeta)-W_{n}(\zeta)\right| \text { is small if } r \sim 1-2^{-n}
$$

- This implies, in particular that this martingale diverges a.e., consequently, if C is a circle or radius R centered at the origin, the stopping time $\tau(\zeta)=\inf \left\{n:\left|W_{n}(\zeta)\right|>R\right\}$ is finite a.e. $\zeta \in \partial \mathbb{D}$.
- Given the function f it is possible to associate it a complex discrete martingale (W_{n}) defined on $\partial \mathbb{D}$ with increments tending to 0 which governs the radial behaviour of f, that is,

$$
\left|f(r \zeta)-W_{n}(\zeta)\right| \text { is small if } r \sim 1-2^{-n}
$$

- This implies, in particular that this martingale diverges a.e., consequently, if C is a circle or radius R centered at the origin, the stopping time $\tau(\zeta)=\inf \left\{n:\left|W_{n}(\zeta)\right|>R\right\}$ is finite a.e. $\zeta \in \partial \mathbb{D}$.
- The fact that f is analytic, allows us to obtain something extra: when the martingale scapes from C, the values $W_{\tau(\zeta)}(\zeta)$ are, essentially, uniformly distributed along C (a sort of isotropy) and if Γ is an arc in C, the set of points $\zeta \in \partial \mathbb{D}$ for which the martingale scapes across Γ has measure essentially $|\Gamma| / 2 \pi R$.

Comments

Comments

In our situation, this method doesn't work.

Comments

In our situation, this method doesn't work.

- When we consider $\sum_{k=1}^{n} a_{k} f^{k}$, there is a strong dependence between the terms of our series.

Comments

In our situation, this method doesn't work.

- When we consider $\sum_{k=1}^{n} a_{k} f^{k}$, there is a strong dependence between the terms of our series.
- Since $\sum_{k=1}^{\infty}\left|a_{k}\right|^{2}<\infty$, we cannot assure that the stopping time $\tau(\zeta)=\inf \left\{n:\left|\sum_{k=1}^{n} a_{k} f^{k}(\zeta)\right|>R\right\}$ is finite a.e. $\zeta \in \partial \mathbb{D}$.

In our situation, this method doesn't work.

- When we consider $\sum_{k=1}^{n} a_{k} f^{k}$, there is a strong dependence between the terms of our series.
- Since $\sum_{k=1}^{\infty}\left|a_{k}\right|^{2}<\infty$, we cannot assure that the stopping time $\tau(\zeta)=\inf \left\{n:\left|\sum_{k=1}^{n} a_{k} f^{k}(\zeta)\right|>R\right\}$ is finite a.e. $\zeta \in \partial \mathbb{D}$.

Our proofs are inspired in the ideas of M. Weiss but in absence of lacunarity, we explote a nice interplay between the dynamical properties of f as a selfmapping of the unit disk and the dynamics of f^{n} at the boundary.

Comments

Theorem

Let f be a finite Blaschke product with $f(0)=0$ which is not a rotation and suppose that $\left(a_{n}\right)$ is a sequence such that

$$
\sum_{k=1}^{\infty}\left|a_{k}\right|=\infty \text { and } a_{k} \rightarrow 0 \text { as } k \rightarrow \infty
$$

Then, for any point $w \in \mathbb{C}$ there exists $\zeta \in \partial \mathbb{D}$ such that $\sum_{k=1}^{\infty} a_{k} f^{k}(\zeta)$ converges and $\sum_{k=1}^{\infty} a_{k} f^{k}(\zeta)=w$.

Comments

Theorem

Let f be a finite Blaschke product with $f(0)=0$ which is not a rotation and suppose that $\left(a_{n}\right)$ is a sequence such that

$$
\sum_{k=1}^{\infty}\left|a_{k}\right|=\infty \text { and } a_{k} \rightarrow 0 \text { as } k \rightarrow \infty
$$

Then, for any point $w \in \mathbb{C}$ there exists $\zeta \in \partial \mathbb{D}$ such that $\sum_{k=1}^{\infty} a_{k} f^{k}(\zeta)$ converges and $\sum_{k=1}^{\infty} a_{k} f^{k}(\zeta)=w$.

Fix $w \in \mathbb{C}$. The idea of the proof of this result is to find a sort of "scaping balls lemma" a little bit technical and suitable decomposition of the sum $\sum_{k=1}^{\infty} a_{k} f^{k}$ into blocks.

Comments

That is, we will find a sequence of indices
$1=M_{1}<N_{1}<M_{2}<N_{2}<M_{3}<\cdots$ and we will define blocks

$$
P_{j}=\sum_{n=M_{j}}^{N_{j}} a_{n} f^{n}
$$

$$
P_{j}^{*}=\sum_{n=N_{j}+1}^{M_{j+1}-1} a_{n} f^{n}
$$

such that

Comments

That is, we will find a sequence of indices
$1=M_{1}<N_{1}<M_{2}<N_{2}<M_{3}<\cdots$ and we will define blocks

$$
P_{j}=\sum_{n=M_{j}}^{N_{j}} a_{n} f^{n}, \quad P_{j}^{*}=\sum_{n=N_{j}+1}^{M_{j+1}-1} a_{n} f^{n}
$$

such that

- The blocks P^{*} will have fix length (maybe large) and have the mission to prepare the blocks P for the application of the "scaping balls lemma".

That is, we will find a sequence of indices
$1=M_{1}<N_{1}<M_{2}<N_{2}<M_{3}<\cdots$ and we will define blocks

$$
P_{j}=\sum_{n=M_{j}}^{N_{j}} a_{n} f^{n}, \quad P_{j}^{*}=\sum_{n=N_{j}+1}^{M_{j+1}-1} a_{n} f^{n}
$$

such that

- The blocks P^{*} will have fix length (maybe large) and have the mission to prepare the blocks P for the application of the "scaping balls lemma".
- The blocks P have no controled length and they have the mission to make that the sequence $\sum_{k=1}^{\infty} a_{k} f^{k}$ converges to w at some point $\zeta \in \partial \mathbb{D}$.

THANK YOU

