Strong $B V$-extension and $W^{1,1}$-extension domains

(XX Encuentros de Análisis Real y Complejo)

Miguel García Bravo

Universidad Complutense de Madrid

26 May 2022

This work was done with Tapio Rajala in Jyväskylä, Finland.

Let $\Omega \subset \mathbb{R}^{n}$ be a domain for some $n \geq 2$. We always work with \mathbb{R}-valued functions. $u: \Omega \rightarrow \mathbb{R}, u: \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Definition

(1) For every $1 \leq p \leq \infty$, we define the Sobolev space $W^{1, p}(\Omega)$ to be

$$
W^{1, p}(\Omega)=\left\{u \in L^{p}(\Omega): \nabla u \in L^{p}\left(\Omega ; \mathbb{R}^{n}\right)\right\}
$$

with norm $\|u\|_{W^{1, p}(\Omega)}=\|u\|_{L^{p}(\Omega)}+\|\nabla u\|_{L^{p}(\Omega)}$.
(2) The space of functions of bounded variation is

$$
B V(\Omega)=\left\{u \in L^{1}(\Omega):\|D u\|(\Omega)<\infty\right\}
$$

where $\|D u\|(\Omega)=\sup \left\{\int_{\Omega} u \operatorname{div}(v) d x: v \in C_{c}^{\infty}\left(\Omega ; \mathbb{R}^{n}\right),|v| \leq 1\right\}$ denotes the total variation of u on Ω. We endow this space with the norm $\|u\|_{B V(\Omega)}=\|u\|_{L^{1}(\Omega)}+\|D u\|(\Omega)$.

- $\mathbf{W}^{\mathbf{1 , 1}}(\boldsymbol{\Omega}) \subset \mathbf{B V}(\boldsymbol{\Omega})$.
- Examples of $B V$ but not $W^{1,1}$: Heaviside and Cantor functions.

We say that $\Omega \subset \mathbb{R}^{n}$ is a $\mathbf{W}^{\mathbf{1}, \mathbf{p}}$-extension domain or $\mathbf{B V}$-extension domain if there exists a (not necessarily linear) operator

$$
T: W^{1, p}(\Omega) \rightarrow W^{1, p}\left(\mathbb{R}^{n}\right) \text { or } T: B V(\Omega) \rightarrow B V\left(\mathbb{R}^{n}\right)
$$

and a constant $C>0$ so that $\left.T u\right|_{\Omega}=u$ and

$$
\|T u\|_{W^{1, p}\left(\mathbb{R}^{n}\right)} \leq C\|u\|_{W^{1, p}(\Omega)} \text { or }\|T u\|_{B V\left(R^{n}\right)} \leq C\|u\|_{B V(\Omega)}
$$

for every $u \in W^{1, p}(\Omega)$ or $u \in B V(\Omega)$ respectively.

Theorem

(1) (Calderón and Stein, 1961, 1970): Lipschitz domains are $W^{1, p}-$ extension domains for all $1 \leq p \leq \infty$.
(2) (Jones, 1981): Uniform domains are $W^{1, p}$-extension domains for all $1 \leq p \leq \infty$.
Despite many partial results in the last 30 years, a complete characterization of Sobolev extension domains is still missing!

Slit disc: Not a Sobolev extension domain

- Ω is $W^{1,1}$ - extension domain $\Rightarrow \Omega$ is $B V-$ extension domain. The converse is not true! The slit disc is a counterexample.

Theorem
$f \in W^{1, p}(\Omega)$ if and only if $f \in L^{p}(\Omega)$ and f has a representative that is absolutely continuous on \mathcal{H}^{n-1}-almost every line within Ω parallel to the coordinate axes and whose partial derivatives belong to $L^{p}(\Omega)$.

About $W^{1,1}$
 \qquad and $B V$-extension domains

QUESTION: What prevents a $B V$-extension domain to be a $W^{1,1}$ extension domain?

About $W^{1,1}$
 and $B V$-extension domains

Let us think about \mathbb{R}^{2}.

Definition

A domain $\Omega \subset \mathbb{R}^{n}$ is quasiconvex if $\exists C>0$ so that for all $x, y \in \Omega$ there is a rectifiable curve $\gamma \subset \Omega$ so that $\ell(\gamma) \leq C|x-y|$.

Theorem

Let $\Omega \subset \mathbb{R}^{2}$ be a bounded and simply connected domain.
(1) (Koskela, Miranda, Shanmugalingam, 2010) Ω is a $B V$-extension domain if and only if Ω^{c} is quasiconvex.
(c) (Koskela, Rajala, Zhang, preprint) Ω is a $W^{1,1}$-extension domain if and only if there is $C>0$ so that for every $x, y \in \Omega^{c}$ there exists a curve $\gamma \subset \Omega^{c}$ connecting x and y with

$$
\ell(\gamma) \leq C|x-y|, \text { and } \mathcal{H}^{1}(\gamma \cap \partial \Omega)=0 .
$$

Examples

Examples

Let $C \leqslant[0,1]$ be a Cantor
 set with $H^{1}(C)=0$

$$
\begin{aligned}
N:= & \left.\left\{x_{1}, x_{2}\right): x_{1}\left\{\left[Q_{1}, 1\right]\left|x_{2}\right| \leq d_{s} t\left(x_{1}, c \times x_{1} 0\right\}\right\}\right\} \\
\Omega= & \Omega \\
\Rightarrow & \Omega \text { is } B V \text { - and } W^{1 \prime 1}- \\
& \text { extension domain. }
\end{aligned}
$$

Theorem (Koskela, Rajala, Zhang, preprint)

Let $\Omega \subset \mathbb{R}^{2}$ be a Jordan domain. The following are equivalent:
(1) Ω is a $W^{1,1}$-extension domain.
(2) Ω is a $B V$-extension domain.
(0) $\mathbb{R}^{2} \backslash \bar{\Omega}$ is quasiconvex.

Still thinking...
what are the differences between $B V$ - and $W^{1,1}$-extension domains in \mathbb{R}^{n} ?

Assume $\Omega \subset \mathbb{R}^{n}$ is a $B V$-extension domain and let us try to see if Ω could be a $W^{1,1}$-extension domain as well.

- Take $u \in W^{1,1}(\Omega)$.
- Since $W^{1,1}(\Omega) \subset B V(\Omega)$ there exists an extension $T u \in B V\left(\mathbb{R}^{n}\right)$ so that $\|T u\|_{B V\left(\mathbb{R}^{n}\right)} \leq C\|u\|_{B V(\Omega)} \leq C\|u\|_{W^{1,1}(\Omega)}$.
- We can "smooth" $T u$ on $\mathbb{R}^{n} \backslash \bar{\Omega}$ to get $\widetilde{u} \in W^{1,1}\left(\mathbb{R}^{n} \backslash \partial \Omega\right)$ and so that $\|\widetilde{u}\|_{W^{1,1}\left(\mathbb{R}^{n} \backslash \partial \Omega\right)} \leq C\|u\|_{W^{1,1}(\Omega)}$.
- In an ideal world we would like to assume that $\|D \tilde{u}\|(\partial \Omega)=0$. In such a case $\tilde{u} \in W^{1,1}\left(\mathbb{R}^{n}\right)$ and we would have proved that Ω is a $W^{1,1}$-extension operator.

Conclusion: We want to avoid $\|D \tilde{u}\|(\partial \Omega)>0$. This is achieved if we work with the following stronger definition of $B V$-extension domain.

Definition

A domain $\Omega \subset \mathbb{R}^{n}$ is a strong $\mathbf{B V}-$ extension domain if $\exists C>0$ so that $\forall u \in B V(\Omega), \exists T u \in B V\left(\mathbb{R}^{n}\right)$ with
(1) $\left.T u\right|_{\Omega}=u$
(2) $\|T u\|_{B V\left(\mathbb{R}^{n}\right)} \leq C\|u\|_{B V(\Omega)}$, and
(- $\|D(T u)\|(\partial \Omega)=0$.

$1^{\text {st }}$ main theorem (G-B, Rajala, preprint)

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain. Then the following are equivalent:
(1) Ω is a $W^{1,1}$-extension domain.
(2) Ω is a strong $B V$-extension domain.

BV extension domains and extension of sets of finite

 perimeterA Lebesgue measurable subset $E \subset \mathbb{R}^{n}$ has finite perimeter in Ω if $\chi_{E} \in B V(\Omega)$. We set $P(E, \Omega)=\left\|D \chi_{E}\right\|(\Omega)=\mathcal{H}^{n-1}\left(\partial^{M} E \cap \Omega\right)$.
The measure theoretic boundary is the set

$$
\begin{aligned}
\partial^{M} E=\left\{x \in \mathbb{R}^{n}:\right. & \limsup _{r \searrow 0} \frac{|E \cap B(x, r)|}{|B(x, r)|}>0 \text { and } \\
& \left.\limsup _{r \searrow 0} \frac{\left|\left(\mathbb{R}^{n} \backslash E\right) \cap B(x, r)\right|}{|B(x, r)|}>0\right\}
\end{aligned}
$$

Theorem (Burago, Mazya, 1967 + Koskela, Miranda and Shanmugalingam 2010)

If Ω is a bounded domain in \mathbb{R}^{n} then Ω is a $B V$-extension domain if and only if any set $E \subset \Omega$ of finite perimeter in Ω admits an extension $\widetilde{E} \subset \mathbb{R}^{n}$ satisfying
(1) $\widetilde{E} \cap \Omega=E$,
(2) $P\left(\widetilde{E}, \mathbb{R}^{n}\right) \leq C P(E, \Omega)$ where $C>0$ is some absolute constant.

Strong extension of sets of finite perimeter

Recall the definition of strong $B V$-extension domain.

Definition

A domain $\Omega \subset \mathbb{R}^{n}$ is a strong $\mathbf{B V}$-extension domain if $\exists C>0$ so that $\forall u \in B V(\Omega), \exists T u \in B V\left(\mathbb{R}^{n}\right)$ with
(1) $\left.T u\right|_{\Omega}=u$
(2) $\|T u\|_{B V\left(\mathbb{R}^{n}\right)} \leq C\|u\|_{B V(\Omega)}$, and
(3) $\|D(T u)\|(\partial \Omega)=0$.

Translate it to the language of extension of sets of finite perimeter.

Definition

A domain $\Omega \subset \mathbb{R}^{n}$ has the strong extension property for sets of finite perimeter if $\exists C>0$ so that $\forall E \subset \Omega$ of finite perimeter in $\Omega, \exists \widetilde{E} \subset \mathbb{R}^{n}$ such that
(1) $\tilde{E} \cap \Omega=E$,
(2) $P\left(\widetilde{E}, \mathbb{R}^{n}\right) \leq C P(E, \Omega)$, and
(0) $\mathcal{H}^{n-1}\left(\partial^{M} \widetilde{E} \cap \partial \Omega\right)=0$.
$2^{\text {nd }}$ main theorem (G-B, Rajala, preprint)
Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain. Then the following are equivalent:
(1) Ω is a $W^{1,1}$-extension domain.
(2) Ω is a strong $B V$-extension domain.
(3) Ω has the strong extension property for sets of finite perimeter.

Corollary

Suppose that $\Omega \subset \mathbb{R}^{n}$ is a bounded $W^{1,1}$-extension domain. Let Ω_{i}, for $i \in I$, be the connected components of $\mathbb{R}^{n} \backslash \bar{\Omega}$. Then

$$
\mathbf{H}=\partial \boldsymbol{\Omega} \backslash \bigcup_{\mathbf{i} \in \mathbf{I}} \overline{\boldsymbol{\Omega}_{\mathbf{i}}} \text { is purely }(\mathbf{n}-\mathbf{1}) \text { - unrectifiable, }
$$

i.e., for every Lipschitz map $f: \mathbb{R}^{n-1} \rightarrow \mathbb{R}^{n} \Rightarrow \mathcal{H}^{n-1}\left(H \cap f\left(\mathbb{R}^{n-1}\right)\right)=0$.

Necessary geometric condition

We have found a necessary geometric condition in the boundary for $W^{1,1}$-extension domains.

Corollary

Suppose that $\Omega \subset \mathbb{R}^{n}$ is a bounded $W^{1,1}$-extension domain. Let Ω_{i}, for $i \in I$, be the connected components of $\mathbb{R}^{n} \backslash \bar{\Omega}$. Then

$$
\mathbf{H}=\partial \boldsymbol{\Omega} \backslash \bigcup_{\mathbf{i} \in \mathbf{I}} \overline{\boldsymbol{\Omega}_{\mathbf{i}}} \text { is purely }(\mathbf{n}-\mathbf{1}) \text { - unrectifiable, }
$$

i.e., for every Lipschitz map $f: \mathbb{R}^{n-1} \rightarrow \mathbb{R}^{n} \Rightarrow \mathcal{H}^{n-1}\left(H \cap f\left(\mathbb{R}^{n-1}\right)\right)=0$.

Question: Is this condition sufficient for a bounded $B V$-extension domain in order to be a $W^{1,1}$-extension domain?

- For the case of bounded $B V$-extension domains $\boldsymbol{\Omega} \subset \mathbb{R}^{2}$ the answer is YES.

$3^{\text {rd }}$ main theorem (G-B, Rajala, preprint)

Let $\Omega \subset \mathbb{R}^{2}$ be a bounded $B V$-extension domain. Then Ω is a $W^{1,1}$-extension domain if and only if the set

$$
H=\partial \Omega \backslash \bigcup_{i \in I} \overline{\Omega_{i}}
$$

is purely 1 -unrectifiable, where $\left\{\Omega_{i}\right\}_{i \in I}$ are the connected components of $\mathbb{R}^{2} \backslash \bar{\Omega}$.

- For the case of bounded $B V$-extension domains $\Omega \subset \mathbb{R}^{n}$ with $\mathbf{n} \geq \mathbf{3}$ the answer is NO.

With our $3^{\text {rd }}$ main result one can "easily" recover some previous results.
Theorem (Koskela, Rajala, Zhang, preprint)
$\Omega \subset \mathbb{R}^{2}$ bounded simply connected is a $W^{1,1}$-extension domain if and only if for every $x, y \in \Omega^{c}$ there exists a curve $\gamma \subset \Omega^{c}$ connecting x and y with

$$
\ell(\gamma) \leq C|x-y|, \text { and } \mathcal{H}^{1}(\gamma \cap \partial \Omega)=0 .
$$

Theorem (Koskela, Rajala, Zhang, preprint)
$\Omega \subset \mathbb{R}^{2}$ Jordan domain is a $W^{1,1}$-extension domain if and only if it is a $B V$-extension domain. Indeed for this case one has

$$
H=\partial \Omega \backslash \bigcup_{i \in I} \overline{\Omega_{i}}=\emptyset
$$

Other consequences: Bi-Lipschitz invariance

Definition

Given two domains $\Omega, \Omega^{\prime} \subset \mathbb{R}^{n}$ we say they are bi-Lipschitz equivalent if there exists a homeomorphism $f: \Omega \rightarrow \Omega^{\prime}$ and a constant $L>0$ so that

$$
L^{-1}|x-y| \leq|f(x)-f(y)| \leq L|x-y|
$$

for all $x, y \in \Omega$.

QUESTION: If $\Omega, \Omega^{\prime} \subset \mathbb{R}^{n}$ are two bi-Lipschitz equivalent domains and Ω is a $W^{1, p}$-extension domain, is then Ω^{\prime} a $W^{1, p}$-extension domain?

Observation

Suppose given $f: \Omega \rightarrow \Omega^{\prime}$ bi-Lipschitz there exists a bi-Lipschitz homeomorphic extension $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. In such a case the problem is trivial. However in general no such extension exists!

Other consequences: Bi-Lipschitz invariance

QUESTION: If $\Omega, \Omega^{\prime} \subset \mathbb{R}^{n}$ are two bi-Lipschitz equivalent domains and Ω is a $W^{1, p}$-extension domain, is then Ω^{\prime} a $W^{1, p}$-extension domain?
(1) Case $1<p \leq \infty$: YES. Hajłasz, Koskela and Tuominen (2008).
(2) Case $p=1$:
(1) If $\Omega \subset \mathbb{R}^{2}$ bounded simply connected. YES. Koskela, Miranda, Shanmugalingam (2010).
(2) Otherwise unknown.
(3) $B V$ case.
(1) If $\Omega \subset \mathbb{R}^{2}$ bounded simply connected. YES. Koskela, Miranda, Shanmugalingam (2010).
(2) Otherwise unknown.

Other consequences: Bi-Lipschitz invariance

We were able to solve the case of bounded domains $\Omega \subset \mathbb{R}^{\mathbf{2}}$ (not necessarily simply connected).

Theorem (G-B, Rajala, Zhu, 2021)

Let $\Omega, \Omega^{\prime} \subset \mathbb{R}^{2}$ be bi-Lipschitz equivalent bounded domains. Then
(1) Ω is a $B V$-extension domain if and only if Ω^{\prime} is a $B V$-extension domain.
(2) Ω is a $W^{1,1}$-extension domain if and only if Ω^{\prime} is a $W^{1,1}$-extension domain.
(1) M. García-Bravo and T. Rajala, Strong $B V$-extension and $W^{1,1}$-extension domains, preprint 2021.
(2) M. García-Bravo, T. Rajala and Zheng Zhu, Bi-Lipschitz invariance of planar $B V$ - and $W^{1,1}$ - extension domains. Proc. Amer. Math. Soc. 150 (2022), no. 6, 2535-2543.
© P. Koskela, M. Jr. Miranda and N. Shanmugalingam, Geometric properties of planar BV-extension domains. Around the research of Vladimir Maz'ya. I, 255-272, Int.Math.Ser.(N.Y.), 11, Springer, New York, 2010.
(9) P. Koskela, T. Rajala and Y. Zhang, Planar $W^{1,1}$-extension domains, preprint 2017.

THANKS FOR YOUR ATTENTION!

