Semigroups of composition operators on Hardy spaces of Dirichlet series

Carlos Gómez-Cabello

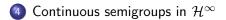
Joint work with Manuel D. Contreras and Luis Rodríguez-Piazza

Encuentros de Análisis Real y Complejo 2022

May 28, 2022

Dirichlet series and Banach spaces of Dirichlet series

- 2 Composition operators in \mathcal{H}^2
 - \bullet Semigroups of analytic functions in \mathbb{C}_+
 - Semigroups of composition operators
- 3 Infinitesimal generators



Dirichlet series

Notation: given $\theta \in \mathbb{R}$, we set $\mathbb{C}_{\theta} := \{s \in \mathbb{C} : \operatorname{Re}(s) > \theta\}$ and $\mathbb{C}_{+} = \mathbb{C}_{0}$.

We denote by \mathcal{D} the space of convergent Dirichlet series, namely, the series

$$\varphi(s)=\sum_{n=1}^{\infty}a_nn^{-s},$$

which are convergent in some half-plane \mathbb{C}_{θ} .

Remarks:

- In this context, instead of radii of convergence, as is the case of Taylor series, we have abscissae of convergence. Hence, Dirichlet series converge in half-planes.
- In the half-plane of convergence, Dirichlet series define analytic functions.

Dirichlet series and Banach spaces of Dirichlet series

To each Dirichlet series $\varphi(s) = \sum_{n=1}^{\infty} a_n n^{-s}$, one can associate the following abscissae:

$$\sigma_{c}(\varphi) = \inf\{\operatorname{\mathsf{Re}} s : \sum_{n=1}^{\infty} a_{n} n^{-s} \text{ is convergent}\};$$

 $\sigma_u(\varphi) = \inf\{\sigma : \sum_{n=1}^{\infty} a_n n^{-s} \text{ is uniformly convergent on } \mathbb{C}_{\sigma}\};$

$$\sigma_b(\varphi) = \inf\{\sigma : \sum_{n=1}^{\infty} a_n n^{-s} \text{ is bounded on } \mathbb{C}_{\sigma}\};$$

$$\sigma_a(\varphi) = \inf\{\operatorname{Re} s : \sum_{n=1}^{\infty} a_n n^{-s} \text{ is absolutely convergent}\}.$$

Theorem (Bohr)

There exists the following relation between the abcissae above

$$\sigma_{c}(\varphi) \leq \sigma_{u}(\varphi) = \sigma_{b}(\varphi) \leq \sigma_{a}(\varphi) \leq \sigma_{c}(\varphi) + 1.$$

Dirichlet series and Banach spaces of Dirichlet series

The Hardy-Dirichlet space \mathcal{H}^2

We define the space \mathcal{H}^2 as the collection of Dirichlet series

$$f(s) = \sum_{n=1}^{\infty} a_n n^{-s}$$

for which

$$\sum_{n=1}^{\infty}|a_n|^2<\infty.$$

The Hardy-Dirichlet space \mathcal{H}^2

We define the space \mathcal{H}^2 as the collection of Dirichlet series

$$f(s) = \sum_{n=1}^{\infty} a_n n^{-s}$$

for which

$$\sum_{n=1}^{\infty} |a_n|^2 < \infty.$$

Remarks:

• Banach space of analytic functions in $\mathbb{C}_{1/2}$ (Cauchy-Schwarz).

The Hardy-Dirichlet space \mathcal{H}^2

We define the space \mathcal{H}^2 as the collection of Dirichlet series

$$f(s) = \sum_{n=1}^{\infty} a_n n^{-s}$$

for which

$$\sum_{n=1}^{\infty}|a_n|^2<\infty.$$

Remarks:

- Banach space of analytic functions in $\mathbb{C}_{1/2}$ (Cauchy-Schwarz).
- Hilbert space structure endowed with the scalar product

$$\langle f,g\rangle = \sum_{n=1}^{\infty} a_n \overline{b}_n,$$

where $f(s) = \sum_{n=1}^{\infty} a_n n^{-s}$ and $g(s) = \sum_{n=1}^{\infty} b_n n^{-s}$ belong to \mathcal{H}^2 .

The Hardy-Dirichlet space \mathcal{H}^∞

• Let $\varepsilon \geq 0$. The space of bounded Dirichlet series $\mathcal{H}^{\infty}(\mathbb{C}_{\varepsilon})$ consists of all analytic functions bounded in \mathbb{C}_{ε} such that they can be written as a Dirichlet series in a certain half-plane. This is,

$$\mathcal{H}^{\infty}(\mathbb{C}_{\varepsilon}) = \mathcal{D} \cap H^{\infty}(\mathbb{C}_{\varepsilon}).$$

The Hardy-Dirichlet space \mathcal{H}^∞

• Let $\varepsilon \geq 0$. The space of bounded Dirichlet series $\mathcal{H}^{\infty}(\mathbb{C}_{\varepsilon})$ consists of all analytic functions bounded in \mathbb{C}_{ε} such that they can be written as a Dirichlet series in a certain half-plane. This is,

$$\mathcal{H}^{\infty}(\mathbb{C}_{\varepsilon}) = \mathcal{D} \cap H^{\infty}(\mathbb{C}_{\varepsilon}).$$

• If we endow the space $\mathcal{H}^\infty(\mathbb{C}_arepsilon)$ with the norm given by

$$\|\varphi\|_{\mathcal{H}^{\infty}(\mathbb{C}_{arepsilon})} = \sup_{s\in\mathbb{C}_{arepsilon}} |\varphi(s)|,$$

we obtain a Banach space.

The Hardy-Dirichlet space \mathcal{H}^∞

• Let $\varepsilon \geq 0$. The space of bounded Dirichlet series $\mathcal{H}^{\infty}(\mathbb{C}_{\varepsilon})$ consists of all analytic functions bounded in \mathbb{C}_{ε} such that they can be written as a Dirichlet series in a certain half-plane. This is,

$$\mathcal{H}^{\infty}(\mathbb{C}_{\varepsilon}) = \mathcal{D} \cap H^{\infty}(\mathbb{C}_{\varepsilon}).$$

• If we endow the space $\mathcal{H}^\infty(\mathbb{C}_arepsilon)$ with the norm given by

$$\|\varphi\|_{\mathcal{H}^\infty(\mathbb{C}_arepsilon)} = \sup_{s\in\mathbb{C}_arepsilon} |arphi(s)|,$$

we obtain a Banach space.

Composition operators on \mathcal{H}^2

Given an analytic function $\Phi:\mathbb{C}_{1/2}\to\mathbb{C}_{1/2}$, we define the associated composition operator \mathcal{C}_Φ on \mathcal{H}^2 as

$$C_{\Phi}(f) = f \circ \Phi, \quad f \in \mathcal{H}^2.$$

The function Φ is referred as the *symbol* of the operator C_{Φ} .

Composition operators on \mathcal{H}^2

Given an analytic function $\Phi:\mathbb{C}_{1/2}\to\mathbb{C}_{1/2}$, we define the associated composition operator \mathcal{C}_Φ on \mathcal{H}^2 as

$$C_{\Phi}(f) = f \circ \Phi, \quad f \in \mathcal{H}^2.$$

The function Φ is referred as the *symbol* of the operator C_{Φ} .

Definition

Let $\Phi:\mathbb{C}_+\to\mathbb{C}_+$ be an analytic function. We say that Φ belongs to the Gordon-Hedenmalm class $\mathcal G$ if

• There exists $c_{\Phi} \in \mathbb{N} \cup \{0\}$ and φ a Dirichlet series such that

$$\Phi(s) = c_{\Phi}s + \varphi(s), \quad s \in \mathbb{C}_+.$$

• If $c_{\Phi} = 0$, then $\Phi(\mathbb{C}_+) \subset \mathbb{C}_{1/2}$.

The value c_{Φ} is known as the characteristic of the function Φ .

Boundedness of composition operators

Definition

Let $\Phi:\mathbb{C}_+\to\mathbb{C}_+$ be an analytic function. We say that Φ belongs to the Gordon-Hedenmalm class $\mathcal G$ if

• There exists $c_{\Phi} \in \mathbb{N} \cup \{0\}$ and φ a Dirichlet series such that $\Phi(s) = c_{\Phi}s + \varphi(s), s \in \mathbb{C}_+.$

• If
$$c_{\Phi} = 0$$
, then $\Phi(\mathbb{C}_+) \subset \mathbb{C}_{1/2}$.

The value c_{Φ} is known as the characteristic of the function Φ .

Theorem (Gordon-Hedenmalm, '99)

An analytic function $\Phi : \mathbb{C}_{1/2} \to \mathbb{C}_{1/2}$ defines a bounded composition operator $\mathcal{C}_{\Phi} : \mathcal{H}^2 \to \mathcal{H}^2$ if and only if Φ has a holomorphic extension to \mathbb{C}_+ that belongs to the class \mathcal{G} .

Remark: even though the elements in \mathcal{H}^2 define analytic functions in $\mathbb{C}_{1/2}$, the symbol Φ must have an analytic extension to \mathbb{C}_+ .

Definition

A family $\{\Phi_t\}_{t\geq 0}$ of analytic functions $\Phi_t : \mathbb{C}_+ \to \mathbb{C}_+$ is a semigroup if it verifies:

(i) $\Phi_0(s) = s$.

(ii) For every $t, u \ge 0$,

 $\Phi_t \circ \Phi_u(s) = \Phi_{t+u}(s).$ If, in addition, it satisfies

(iii) $\Phi_t \rightarrow \Phi_0$

uniformly on compact subsets of \mathbb{C}_+ as $t \to 0^+$, we say that it is a continuous semigroup.

Definition

A family $\{\Phi_t\}_{t\geq 0}$ of analytic functions $\Phi_t : \mathbb{C}_+ \to \mathbb{C}_+$ is a semigroup if it verifies:

(i) $\Phi_0(s) = s$.

(ii) For every $t, u \ge 0$, $\Phi_t \circ \Phi_u(s) = \Phi_{t+u}(s)$. If, in addition, it satisfies

(iii) $\Phi_t \to \Phi_0$

uniformly on compact subsets of \mathbb{C}_+ as $t \to 0^+$, we say that it is a continuous semigroup.

Definition

Let X be a Banach space and $\{T_t\}_{t>0}$ such that $T_t: X \to X$ bounded. We say that $\{T_t\}_{t>0}$ is a semigroup if: (i) $T_0 = \mathrm{Id}$, where Id is the identity map on X; (ii) For every t, u > 0, $T_t \circ T_{\mu} = T_{t+\mu}$ If. in addition. it satisfies that (iii) $\lim_{t\to 0^+} T_t f = f$ for all $f \in X$ we say that it is a strongly continuous semigroup.

Definition

A family $\{\Phi_t\}_{t\geq 0}$ of analytic functions $\Phi_t : \mathbb{C}_+ \to \mathbb{C}_+$ is a semigroup if it verifies:

(i) $\Phi_0(s) = s$.

(ii) For every $t, u \ge 0$, $\Phi_t \circ \Phi_u(s) = \Phi_{t+u}(s)$. If, in addition, it satisfies

(iii) $\Phi_t \rightarrow \Phi_0$

uniformly on compact subsets of \mathbb{C}_+ as $t \to 0^+$, we say that it is a continuous semigroup.

Definition

Let X be a Banach space and $\{T_t\}_{t>0}$ such that $T_t: X \to X$ bounded. We say that $\{T_t\}_{t>0}$ is a semigroup if: (i) $T_0 = \text{Id}$, where Id is the identity map on X; (ii) For every t, u > 0, $T_t \circ T_{\prime\prime} = T_{t+\prime\prime}$ If, in addition, it satisfies that (iii) $\lim_{t\to 0^+} T_t f = f$ for all $f \in X$ we say that it is a strongly continuous semigroup.

In our context:

- Continuous semigroups of analytic functions in the class G.
- Semigroups of composition operators in $X = \mathcal{H}^2$.

• Clearly, given a semigroup $\{\Phi_t\}_t$ such that $\Phi_t \in \mathcal{G}$ for every t, $T_t = C_{\Phi_t}$ defines a semigroup of composition operators.

- Clearly, given a semigroup $\{\Phi_t\}_t$ such that $\Phi_t \in \mathcal{G}$ for every t, $T_t = C_{\Phi_t}$ defines a semigroup of composition operators.
- The reciprocal also holds. Not as direct as in $H^2(\mathbb{D})$ since $f(s) = s \notin \mathcal{H}^2$.

- Clearly, given a semigroup $\{\Phi_t\}_t$ such that $\Phi_t \in \mathcal{G}$ for every t, $T_t = C_{\Phi_t}$ defines a semigroup of composition operators.
- The reciprocal also holds. Not as direct as in $H^2(\mathbb{D})$ since $f(s) = s \notin \mathcal{H}^2$.
- Consider the continuous semigroup $\Phi_t(s) = s + at$, $\text{Re}(a) \ge 0$, in the class \mathcal{G} . The semigroup of composition operators $\{T_t\}_t$, $T_t = C_{\Phi_t}$ is strongly continuous.

- Clearly, given a semigroup $\{\Phi_t\}_t$ such that $\Phi_t \in \mathcal{G}$ for every t, $T_t = C_{\Phi_t}$ defines a semigroup of composition operators.
- The reciprocal also holds. Not as direct as in $H^2(\mathbb{D})$ since $f(s) = s \notin \mathcal{H}^2$.
- Consider the continuous semigroup $\Phi_t(s) = s + at$, $\text{Re}(a) \ge 0$, in the class \mathcal{G} . The semigroup of composition operators $\{T_t\}_t$, $T_t = C_{\Phi_t}$ is strongly continuous.

Question

Is it true in general that given a continuous semigroups of analytic functions $\{\Phi_t\}$ in \mathcal{G} induce strongly continuous semigroups of composition operators $\{T_t\}_t$, $T_t = C_{\Phi_t}$? Does the converse hold?

Let $\{\Phi_t\}_{t\geq 0}$ be a semigroup of analytic functions, such that $\Phi_t \in \mathcal{G}$ for every t > 0 and denote by T_t the composition operator $T_t(f) = f \circ \Phi_t$. Then, the following assertions are equivalent:

- $\{T_t\}_{t\geq 0}$ is a strongly continuous semigroup in \mathcal{H}^2 .
- $\{\Phi_t\}_{t\geq 0}$ is a continuous semigroup.
- $\Phi_t(s) \to s$, as t goes to 0, uniformly in \mathbb{C}_{ε} , for every $\varepsilon > 0$.

Let $\{\Phi_t\}_{t\geq 0}$ be a semigroup of analytic functions, such that $\Phi_t \in \mathcal{G}$ for every t > 0 and denote by T_t the composition operator $T_t(f) = f \circ \Phi_t$. Then, the following assertions are equivalent:

- $\{T_t\}_{t\geq 0}$ is a strongly continuous semigroup in \mathcal{H}^2 .
- **(** $\{\Phi_t\}_{t\geq 0}$ is a continuous semigroup.
- $\Phi_t(s) \to s$, as t goes to 0, uniformly in \mathbb{C}_{ε} , for every $\varepsilon > 0$.

The proof of b) \Leftrightarrow c) depends strongly on the properties of \mathcal{G} . This implication fails for general continuous semigroups of analytic functions in \mathbb{C}_+ . Indeed, consider

$$\Phi_t(s) = \left(rac{t}{2} + s^{1/2}
ight)^2, \quad s \in \mathbb{C}_+$$

where we are taking the principal branch of the square root. Clearly,

- $\Phi_0(s) = s$, $\Phi_{t+u}(s) = \Phi_t(\Phi_u(s))$.
- $\Phi_t(s) s = \frac{t^2}{4} + ts^{1/2} \to 0$ as $t \to 0$ uniformly on compact subsets of \mathbb{C}_+ . However, $\Phi_t(s) \not\to s$ uniformly in half-planes \mathbb{C}_{ϵ} , $\epsilon > 0$.

Ideas of the proof

We need an auxiliary Lemma.

Proposition

Let $\{\Phi_t\}_{t\geq 0}$ be a continuous semigroup of analytic functions in the class \mathcal{G} . Set $c_t = c_{\Phi_t}$. Then, the characteristics $\{c_t\}_{t\geq 0}$ of the symbols $\{\Phi_t\}_t$ is constantly equal to 1.

Ideas of the proof

We need an auxiliary Lemma.

Proposition

Let $\{\Phi_t\}_{t\geq 0}$ be a continuous semigroup of analytic functions in the class \mathcal{G} . Set $c_t = c_{\Phi_t}$. Then, the characteristics $\{c_t\}_{t\geq 0}$ of the symbols $\{\Phi_t\}_t$ is constantly equal to 1.

Key ideas:

- $t \mapsto c_t$ measurable and $c_t c_u = c_{t+u}$, $t, u \ge 0 \Rightarrow c_t \in \{0, 1\}$.
- Elements of a continuous semigroup are injective.
- Dirichlet series are never injective.

Ideas of the proof

We need an auxiliary Lemma.

Proposition

Let $\{\Phi_t\}_{t\geq 0}$ be a continuous semigroup of analytic functions in the class \mathcal{G} . Set $c_t = c_{\Phi_t}$. Then, the characteristics $\{c_t\}_{t\geq 0}$ of the symbols $\{\Phi_t\}_t$ is constantly equal to 1.

Key ideas:

- $t \mapsto c_t$ measurable and $c_t c_u = c_{t+u}$, $t, u \ge 0 \Rightarrow c_t \in \{0, 1\}$.
- Elements of a continuous semigroup are injective.
- Dirichlet series are never injective.

Conclusion: given a continuous semigroups $\{\Phi_t\}_t$ of elements in \mathcal{G} ,

$$\Phi_t(s) = s + \varphi_t(s), \quad \varphi_t \in \mathcal{D}.$$

$(a) \Rightarrow c) (\{T_t\} \text{ strongly continuous } \implies \{\Phi_t\} \text{ continuous})$

Long proof (Bayart theorem, Baire's category Theorem). The semigroup structure is essential. In general, given $\{T_n\}_{n\in\mathbb{N}}$, $T_nf = f \circ \Phi_n$, convergent to the identity operator in the SOT \implies local uniform convergence to the identity of $\{\Phi_n\}_{n\in\mathbb{N}}$.

$a) \Rightarrow c) (\{T_t\} \text{ strongly continuous } \implies \{\Phi_t\} \text{ continuous})$

Long proof (Bayart theorem, Baire's category Theorem). The semigroup structure is essential. In general, given $\{T_n\}_{n\in\mathbb{N}}$, $T_nf = f \circ \Phi_n$, convergent to the identity operator in the SOT \implies local uniform convergence to the identity of $\{\Phi_n\}_{n\in\mathbb{N}}$.

Example

By Kronecker's Theorem, we can take a sequence $\{x_n\}_n \in \mathbb{R}$ such that $|x_n| \to \infty$ when $n \to \infty$ and $m^{-ix_n} \to 1$ as $n \to \infty$ for all $m \in \mathbb{N}$.

Let
$$\Phi_n(s) = s + ix_n$$
, $s \in \mathbb{C}_+$. Define $T_n f = f \circ \Phi_n$.
Then, if $f(s) = \sum_{m \ge 1} a_m m^{-s} \in \mathcal{H}^2$, using the DCT we obtain

$$\lim_{n\to\infty}\|f-f\circ\Phi_n\|_{\mathcal{H}^2}^2=\lim_{n\to\infty}\sum_{m=1}^\infty|a_m|^2|1-m^{-ix_n}|^2=0.$$

However, by the definition of $\{x_n\}_n$, $\Phi_n(s) \not\rightarrow s$ as $n \rightarrow \infty$.

Key ideas:

Key ideas:

• For operators semigroups: strong continuity is equivalent to the weak continuity.

Key ideas:

- For operators semigroups: strong continuity is equivalent to the weak continuity.
- $c_t = 1$ implies $\|C_{\Phi_t}\| \le 1$ (Gordon-Hedenmalm).

Key ideas:

- For operators semigroups: strong continuity is equivalent to the weak continuity.
- $c_t = 1$ implies $\|C_{\Phi_t}\| \le 1$ (Gordon-Hedenmalm).
- The pointwise evaluation functional δ_s is bounded for $s \in \mathbb{C}_{1/2}$.

Key ideas:

- For operators semigroups: strong continuity is equivalent to the weak continuity.
- $c_t = 1$ implies $\|C_{\Phi_t}\| \le 1$ (Gordon-Hedenmalm).
- The pointwise evaluation functional δ_s is bounded for $s \in \mathbb{C}_{1/2}$.

The conclusion follows from a standard compactness argument involving the ideas above.

Infinitesimal generators

Question: besides translations, are there other continuous semigroups in \mathcal{G} ?

Infinitesimal generators

Question: besides translations, are there other continuous semigroups in \mathcal{G} ?

Theorem (Berkson-Porta, '78)

Let $\{\Phi_t\}_t$ be a continuous semigroup of analytic functions in $\mathbb{C}_+.$ Then, there exists

$$H(s) = \lim_{t \to 0^+} rac{\Phi_t(s) - s}{t}, \qquad \textit{for all } s \in \mathbb{C}_+$$

and such limit is uniform on compact sets of \mathbb{C}_+ . Moreover, given $s \in \mathbb{C}_+$, $\Phi_t(s)$ is the solution to the Cauchy problem

$$\begin{cases} y'(t) = H(y(t)) \\ y(0) = s \end{cases}$$

The holomorphic function *H* is called the *infinitesimal generator* of the semigroup $\{\Phi_t\}_t$.

• For continuous semigroups $\{\Phi_t\}_t$ in \mathcal{G} , we have that $H: \mathbb{C}_+ \to \overline{\mathbb{C}}_+$.

Indeed, we know that for every t > 0, $\Phi_t(s) = s + \varphi_t(s)$, where $\varphi_t \in \mathcal{D}$ and $\varphi_t : \mathbb{C}_+ \to \mathbb{C}_+$. By the definition of H,

$$\operatorname{Re}(H(s)) = \lim_{t \to 0} \operatorname{Re}\left(\frac{\Phi_t(s) - s}{t}\right) = \lim_{t \to 0} \operatorname{Re}\left(\frac{\varphi_t(s)}{t}\right) \ge 0.$$

Berkson-Porta: given H: C₊ → C
₊ holomorphic, then H is the infinitesimal generator of a continuous semigroup {Φ_t}_t of analytic functions in C₊ such that Φ_t(∞) = ∞.

Question

Can we describe the infinitesimal generators associated to continuous semigroups $\{\Phi_t\}_t$ in the class \mathcal{G} ?

Let $H : \mathbb{C}_+ \to \overline{\mathbb{C}}_+$ be analytic. Then, the following statements are equivalent:

- *H* is the infinitesimal generator of a continuous semigroup of elements in the class *G*.
- **b** $H \in \mathcal{H}^{\infty}(\mathbb{C}_{\varepsilon})$, for all $\varepsilon > 0$.
- $\ \, \Theta \quad H\in \mathcal{D}.$

Let $H : \mathbb{C}_+ \to \overline{\mathbb{C}}_+$ be analytic. Then, the following statements are equivalent:

- H is the infinitesimal generator of a continuous semigroup of elements in the class G.
- $H \in \mathcal{H}^{\infty}(\mathbb{C}_{\varepsilon})$, for all $\varepsilon > 0$.

$$\ \, \bullet \ \, H\in \mathcal D.$$

Comments:

- b) \iff c): well-known result in Dirichlet series theory.
- a) \implies c): not that surprising, locally uniform limit of Dirichlet series.
- b) ⇒ a): most surprising. Use an adapted Cauchy-Picard type argument to see that the solution of the Cauchy Problem is still in the class G.

Let $H : \mathbb{C}_+ \to \overline{\mathbb{C}}_+$ be analytic. Then, the following statements are equivalent:

- *H* is the infinitesimal generator of a continuous semigroup of elements in the class *G*.
- $H \in \mathcal{H}^{\infty}(\mathbb{C}_{\varepsilon})$, for all $\varepsilon > 0$.

$$\ \, \Theta \quad H\in \mathcal{D}.$$

Comments:

- b) \iff c): well-known result in Dirichlet series theory.
- a) \implies c): not that surprising, locally uniform limit of Dirichlet series.
- b) ⇒ a): most surprising. Use an adapted Cauchy-Picard type argument to see that the solution of the Cauchy Problem is still in the class G.

Answer: there are 'many' continuous semigroups in \mathcal{G}_{\cdot}

Example: for $H(s) = 1 + 2^{-s}$, we obtain the semigroup in $\mathcal G$ given by

$$\Phi_t(s) = s + t + rac{1}{\ln 2} Log(1 + 2^{-s}(1 - 2^{-t})), t \ge 0, \ s \in \mathbb{C}_+.$$

Continuous semigroups in \mathcal{H}^∞

• Remark: result extends to \mathcal{H}^{p} , $p \in [1, \infty)$.

Continuous semigroups in \mathcal{H}^∞

- Remark: result extends to \mathcal{H}^{p} , $p \in [1, \infty)$.
- For $p = \infty$: characterisation of boundedness of composition operators in \mathcal{H}^{∞} due to Bayart.

Theorem (Bayart'02)

An analytic function $\Phi : \mathbb{C}_+ \to \mathbb{C}_+$ defines a bounded composition operator \mathcal{C}_{Φ} in \mathcal{H}^{∞} if and only if $\Phi(s) = c_{\Phi}s + \varphi(s)$, $c_{\Phi} \in \mathbb{N} \cup \{0\}$ and $\varphi \in \mathcal{D}$.

Remark: every bounded composition operator in \mathcal{H}^2 is bounded in $\mathcal{H}^\infty.$ The converse is false.

Continuous semigroups in \mathcal{H}^∞

- Remark: result extends to \mathcal{H}^p , $p \in [1,\infty)$.
- For $p = \infty$: characterisation of boundedness of composition operators in \mathcal{H}^{∞} due to Bayart.

Theorem (Bayart'02)

An analytic function $\Phi : \mathbb{C}_+ \to \mathbb{C}_+$ defines a bounded composition operator \mathcal{C}_{Φ} in \mathcal{H}^{∞} if and only if $\Phi(s) = c_{\Phi}s + \varphi(s)$, $c_{\Phi} \in \mathbb{N} \cup \{0\}$ and $\varphi \in \mathcal{D}$.

Remark: every bounded composition operator in \mathcal{H}^2 is bounded in $\mathcal{H}^\infty.$ The converse is false.

Theorem

Let $\{T_t\}_{t\geq 0}$ be a strongly continuous semigroup of composition operators in \mathcal{H}^{∞} . Then, $T_t = \text{Id}$ for every $t \geq 0$.

Idea: for a strongly continuous semigroup, the operator $f \mapsto Hf'$, $f \in \mathcal{H}^{\infty}$, must have dense range. If this is the case, there exists a point in $i\mathbb{R}$ such that **every** function in \mathcal{H}^{∞} has non-tangential limit there. Impossible.

Thank You!