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Motivation

In the upper half-space, SIOs are bounded. But...

... is this actually specific of the upper half-space?

The elliptic measure should be absolutely continuous w.r.t. the
surface measure. But...

... is this actually true in weird domains?

Relation with some geometrical property?

Let us give a common answer.
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Boundedness of SIOs

Let E ⊂ Rn be closed, with Hausdorff dimension n− 1.
Given K, we associate a Singular Integral Operator (SIO):

Tf(x) := p.v.

ˆ
E
K(x− y)f(y)d Hn−1

∣∣
E

(y) for x ∈ E.

Assuming T is a “nice SIO”

K ∈ C∞(Rn \ {0}),
K is odd,

(“Hörmander”)
∣∣∇jK

∣∣ ≤ Cj |x|−n−j for j = 0, 1, 2 . . .,

do we have that

T : L2(E) −→ L2(E) is bounded?
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SIOs and UR sets

How wild can E be so that

Tf(x) := p.v.

ˆ
E
K(x− y)f(y)d Hn−1

∣∣
E

(y) for x ∈ E

satisfies
T : L2(E) −→ L2(E) is bounded?

Definition (Uniformly rectifiable sets [David, Semmes - 1991])

E is ADR:

every “nice SIO” T is bounded in L2(E) ⇐⇒ E is UR.

Theorem (Nazarov, Tolsa, Volberg - 2014)

E is ADR:

the Riesz transforms are bounded in L2(E) ⇐⇒ E is UR.
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UR sets are quantitatively flat

Theorem (David, Semmes - 1991)

E is ADR:

E has Big Pieces of Lipchitz Images ⇐⇒ E is UR.

Big Pieces of Lipschitz Images:

∃ε > 0, M > 0 s.t. ∀x ∈ E, r > 0 ∃fx,r : B(0, r) −→ Rn

s.t. ‖fx,r‖Lip ≤M s.t.
|E ∩B(x, r) ∩ fx,r(B(0, r))|

rn
≥ ε.

Theorem (David, Semmes - 1991)

E is ADR:

E has Very Big Pieces of Bilipchitz Images ⇐⇒ E is UR.

Very Big Pieces of Bilipschitz Images: same as before, with
bilipschitz maps and densities ≥ 1− ε.
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Section 2

Connections with elliptic PDE
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Elliptic measure

Let Ω ⊂ Rn be open and L = −div(A∇) with

A = A(·) ∈ L∞(Ω),

(elliptic) Aξ · ξ ≥ λ |ξ|2.

We are interested in the PDE{
Lu = 0 in Ω

u = f on ∂Ω.
(1)

Theorem (Application of Riesz Rep. Thm.)

The elliptic measure {ωX
L }X∈Ω is a family of probabilities in ∂Ω s.t.

u(X) =

ˆ
∂Ω
f(y)dωX

L (y), X ∈ Ω,

is the solution of (1) if f ∈ C (∂Ω).
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Elliptic measure and surface measure

It is “reasonable” to expect ωL � σ (recalling σ = Hn−1
∣∣
∂Ω

).

Even in a quantitative way: ωL ∈ RHp(σ).( 
Q

(
dωL

dσ

)p

dσ

)1/p

.
 
Q

dωL

dσ
dσ.

Theorem (Dahlberg - 1977)

∂Ω is Lipschitz =⇒ ω−∆ ∈ RH2(σ).

However...

Theorem (Caffarelli, Fabes, Kenig - 1981)

∃L s.t. ωL ⊥ σ in the unit ball.
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Beyond Lipschitz

Can we go beyond Lipschitz domains?

No parametrization no change of variables.
Maybe ωL ∈ RH2(σ) is too much.

A∞(σ) =
⋃

1<q<∞
RHq(σ).

Theorem (using [Caffarelli, Fabes, Mortola, Salsa - 1981])

∂Ω Lipschitz + L symmetric:

Lp-solvability for L for some p <∞ ⇐⇒ ωL ∈ A∞(σ).

Lp-solvability for L: solvability, with interior estimates, of{
Lu = 0 in Ω

u = f ∈ Lp(∂Ω) on ∂Ω.
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Section 3

In sets with good connectivity
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Definitions: ADR and Corkscrews

∂Ω is ADR (Ahlfors-David regular): for any x ∈ ∂Ω,
0 < r . diam(∂Ω):

σ(∂Ω ∩B(x, r)) ≈ rn−1,

(recall σ := Hn−1
∣∣
∂Ω

).

Ω has (interior) corkscrews: ∃c ∈ (0, 1) such that

∀x ∈ ∂Ω, r > 0 ∃Y = Y (x, r) s.t. B(Y, cr) ⊂ B(x, r) ∩ Ω.

x

r B
∆

cr
Y

∂Ω

Ω
Ω

∂Ω

x
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Definitions: Harnack chains and 1-sided CAD

Ω has Harnack chains: “any X,Y ∈ Ω can be connected by

.
|X − Y |

min{dist(X, ∂Ω),dist(Y, ∂Ω)}
interior balls”.

Ω

∂Ω

Ω

∂Ω

Ω is 1-sided CAD (chorded-arc domain) [Jerison, Kenig - 1982]:
∂Ω is ADR + Ω has interior corkscrews + Ω has Harnack chains.
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In 1-sided CAD

Theorem (Compendium of papers)

If Ω is 1-sided CAD
(i.e. ∂Ω is ADR + Ω has Corkscrews + Ω has Harnack chains):

Lp-solvability for L
L good⇐⇒

ωL ∈ A∞(σ)⇐⇒L sat. CME

L good
=⇒
⇐=

always
∂Ω UR

L satisfies CME: for bounded solutions of Lu = 0

sup
x∈∂Ω

0<r<∞

1

rn

¨
B(x,r)∩Ω

|∇u|2 dist(·, ∂Ω)dX ≤ C ‖u‖2∞ .

For −∆: [Hofmann, Martell, Uriarte-Tuero - 2014], [Azzam, Hofmann, Martell,
Nyström, Toro - 2017], David, Jerison, Semmes...

For nice L: [Hofmann, Martell, Mayboroda, Toro, Zhao - 2021].
Precedents: [Kenig, Pipher - 2001], [Hofmann, Martell, Toro - 2017].

For general L: [Cavero, Hofmann, Martell, Toro - 2020].
Pablo Hidalgo Palencia Interactions: PDE, SIOs, geometry ICMAT
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If Ω is 1-sided CAD
(i.e. ∂Ω is ADR + Ω has Corkscrews + Ω has Harnack chains):

Lp-solvability for L
L good⇐⇒ ωL ∈ A∞(σ)⇐⇒L sat. CME

L good
=⇒
⇐=

always
∂Ω UR

L satisfies CME: for bounded solutions of Lu = 0

sup
x∈∂Ω

0<r<∞

1

rn

¨
B(x,r)∩Ω

|∇u|2 dist(·, ∂Ω)dX ≤ C ‖u‖2∞ .

For −∆: [Hofmann, Martell, Uriarte-Tuero - 2014], [Azzam, Hofmann, Martell,
Nyström, Toro - 2017], David, Jerison, Semmes...

For nice L: [Hofmann, Martell, Mayboroda, Toro, Zhao - 2021].
Precedents: [Kenig, Pipher - 2001], [Hofmann, Martell, Toro - 2017].

For general L: [Cavero, Hofmann, Martell, Toro - 2020].
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Nice operators

“Nice” operators Fefferman-Kenig-Pipher operators L:

A ∈ Liploc(Ω),

|∇A| dist(·, ∂Ω) ∈ L∞ and

sup
x∈∂Ω

0<r<diam(∂Ω)

1

rn

¨
B(x,r)∩Ω

|∇A|2 dist(·, ∂Ω)dX <∞
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Section 4

Removing connectivity
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Problems without connectivity and general operators

Remove Harnack chains and use really general operators.

Some regions are close within Rn, but far within Ω.

Ω

∂Ω

BQ

Q

Y
1
Q

Y
2
Q

L behaves well there?
We do not have the “full” CFMS estimate. Only

GL(X,Y i
Q)

dist(Y i
Q, ∂Ω)

.
ωX
L (Q)

σ(Q)
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What was known without connectivity

Theorem (Compendium of papers)

∂Ω is ADR + Ω has Corkscrews:

Lp-solvability
L=−∆⇐⇒ ωL ∈ Aweak

∞ (σ)
always
=⇒
⇐=

connectivity
L sat. CME

L good
=⇒
⇐=

L symm.
∂Ω UR

For −∆: [Hofmann, Martell, Mayboroda - 2016], [Hofmann, Le, Martell,
Nyström - 2017], [Azzam, Hofmann, Martell, Mourgoglou, Tolsa - 2020].

For “nice” and “symmetric” L: [Azzam, Garnett, Mourgoglou, Tolsa - 2021].
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Our contribution

Theorem (Cao, H., Martell - 2022)

∂Ω is ADR + Ω has Corkscrews. TFAE:

1 ωL admits a corona decomposition.

2 GL admits a corona decomposition.

3 L satisfies Partial Carleson measure estimates.

Corona ≈ some property is true in most parts and scales at ∂Ω.
Corona for ωL: D = tS and

ωXS
L (Q)

σ(Q)
≈
ωXS
L (Q′)

σ(Q′)
∀Q,Q′ ∈ S.

Corona for GL: D = tS and

sup
X∈BQ

dist(X,∂Ω)&`(Q)

GL(XS, X)

dist(X, ∂Ω)
≈
ωXS
L (Q′)

σ(Q′)
∀Q,Q′ ∈ S.
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Perturbation result

Theorem (Cao, H., Martell - 2022)

∂Ω is ADR + Ω has Corkscrews:

Corona decomposition for ωL, for GL and CME for L
are stable under some perturbations of L.

Perturbations in the sense of Fefferman-Kenig-Pipher:

sup
x∈∂Ω

0<r<diam(∂Ω)

1

σ(B(x, r) ∩ ∂Ω)

¨

B(x,r)∩Ω

sup
Y ∈B(X,

δ(X)
2

)

|A0(Y )−A1(Y )|2

dist(X, ∂Ω)
dX <∞.

Corollary (Cao, H., Martell - 2022)

∂Ω is ADR + Ω has Corkscrews + L close to −∆:

L satisfies Partial CME =⇒ ∂Ω is UR.
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Overview

∂Ω is ADR + Ω has Corkscrews:

Lp-solvability for L
??! ωL ∈ Aweak

∞ (σ)
always
=⇒
⇐=
??

Corona
for ωL
m

Corona
for GL
m

Partial
CME

L good⇐⇒ ∂Ω UR
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