Connections between the solvability of the Dirichlet problem and flatness of the boundary for PDE in sets without connectivity

> Pablo Hidalgo Palencia (pablo.hidalgo@icmat.es)

Joint work with Mingming Cao and José María Martell

XX Encuentro de Análisis Real y Complejo Cartagena, 26 May 2022 • In the upper half-space, SIOs are bounded. But...

• In the upper half-space, SIOs are bounded. But... ... is this actually specific of the upper half-space?

- In the upper half-space, SIOs are bounded. But... ... is this actually specific of the upper half-space?
- The elliptic measure should be absolutely continuous w.r.t. the surface measure. But...

• In the upper half-space, SIOs are bounded. But... ... is this actually specific of the upper half-space?

• The elliptic measure should be absolutely continuous w.r.t. the surface measure. But...

... is this actually true in weird domains?

- In the upper half-space, SIOs are bounded. But... ... is this actually specific of the upper half-space?
- The elliptic measure should be absolutely continuous w.r.t. the surface measure. But...
 - ... is this actually true in weird domains?
- Relation with some geometrical property?

- In the upper half-space, SIOs are bounded. But... ... is this actually specific of the upper half-space?
- The elliptic measure should be absolutely continuous w.r.t. the surface measure. But...
 - ... is this actually true in weird domains?
- Relation with some geometrical property?
- Let us give a common answer.

Introduction	Connections with PDE	With connectivity	Removing connectivity
0000	0000	00000	000000

Contents

• Introduction

- Connections with elliptic PDE
- In sets with good connectivity
- Removing connectivity

Introduction	Connections with PDE	With connectivity	Removing connectivity
●000	0000	00000	000000

Section 1

Introduction

Introduction $0 \bullet 00$	Connections with PDE 0000	With connectivity 00000	Removing connectivity

Boundedness of SIOs

- Let $E \subset \mathbb{R}^n$ be closed, with Hausdorff dimension n-1.
- Given K, we associate a Singular Integral Operator (SIO):

$$Tf(x) := \text{p.v.} \int_E K(x-y)f(y)d \mathcal{H}^{n-1}|_E(y) \quad \text{for } x \in E.$$

Introduction $0 \bullet 0 0$	Connections with PDE	With connectivity	Removing connectivity
	0000	00000	000000

Boundedness of SIOs

- Let $E \subset \mathbb{R}^n$ be closed, with Hausdorff dimension n-1.
- Given K, we associate a Singular Integral Operator (SIO):

$$Tf(x) := \text{p.v.} \int_E K(x-y)f(y)d \mathcal{H}^{n-1}|_E(y) \quad \text{for } x \in E.$$

Assuming T is a "nice SIO"

- $K \in \mathscr{C}^{\infty}(\mathbb{R}^n \setminus \{0\}),$
- K is odd,
- ("Hörmander") $|\nabla^{j}K| \leq C_{j} |x|^{-n-j}$ for j = 0, 1, 2...,

Introduction $0 \bullet 00$	Connections with PDE 0000	With connectivity 00000	Removing connectivity 000000
	4 67 6		

Boundedness of SIOs

- Let $E \subset \mathbb{R}^n$ be closed, with Hausdorff dimension n-1.
- Given K, we associate a Singular Integral Operator (SIO):

$$Tf(x) := \text{p.v.} \int_E K(x-y)f(y)d \mathcal{H}^{n-1}|_E(y) \quad \text{for } x \in E.$$

Assuming T is a "nice SIO"

- $K \in \mathscr{C}^{\infty}(\mathbb{R}^n \setminus \{0\}),$
- K is odd,
- ("Hörmander") $|\nabla^{j}K| \leq C_{j} |x|^{-n-j}$ for j = 0, 1, 2...,

do we have that

$$T: L^2(E) \longrightarrow L^2(E)$$
 is bounded?

Interactions: PDE, SIOs, geometry

Introduction 0000	Connections with PDE 0000	With connectivity 00000	Removing connectivity 000000

SIOs and UR sets

• How wild can E be so that

$$Tf(x) := \text{p.v.} \int_E K(x-y)f(y)d \mathcal{H}^{n-1}\big|_E(y) \quad \text{for } x \in E$$

satisfies

 $T: L^2(E) \longrightarrow L^2(E)$ is bounded?

Introduction 0000	Connections with PDE 0000	With connectivity 00000	Removing connectivity 000000

SIOs and UR sets

• How wild can E be so that

$$Tf(x) := \text{p.v.} \int_E K(x-y)f(y)d \mathcal{H}^{n-1}|_E(y) \quad \text{for } x \in E$$

satisfies

$$T: L^2(E) \longrightarrow L^2(E)$$
 is bounded?

Definition (Uniformly rectifiable sets [David, Semmes - 1991]) E is ADR: $every \text{ "nice SIO" } T \text{ is bounded in } L^2(E) \iff E \text{ is } UR.$

Introduction 0000	Connections with PDE 0000	With connectivity 00000	Removing connectivity 000000

SIOs and UR sets

• How wild can E be so that

$$Tf(x) := \text{p.v.} \int_E K(x-y)f(y)d \mathcal{H}^{n-1}|_E(y) \quad \text{for } x \in E$$

satisfies

$$T: L^2(E) \longrightarrow L^2(E)$$
 is bounded?

Definition (Uniformly rectifiable sets [David, Semmes - 1991]) E is ADR: $every \text{ "nice SIO" } T \text{ is bounded in } L^2(E) \iff E \text{ is } UR.$

Theorem (Nazarov, Tolsa, Volberg - 2014)

E is ADR:

the Riesz transforms are bounded in $L^2(E) \iff E$ is UR.

Pablo Hidalgo Palencia

Interactions: PDE, SIOs, geometry

Introduction	Connections with PDE	With connectivity	Removing connectivity
000●	0000	00000	000000

UR sets are quantitatively flat

Theorem (David, Semmes - 1991)

E is ADR:

E has Big Pieces of Lipchitz Images \iff E is UR.

Introduction	Connections with PDE	With connectivity	Removing connectivity
000●	0000	00000	000000

UR sets are quantitatively flat

Theorem (David, Semmes - 1991)

E is ADR:

E has Big Pieces of Lipchitz Images $\iff E$ is UR.

• Big Pieces of Lipschitz Images:

$$\begin{aligned} \exists \epsilon > 0, \, M > 0 \quad \text{s.t.} \quad \forall x \in E, r > 0 \quad \exists f_{x,r} : B(0,r) \longrightarrow \mathbb{R}^n \\ \text{s.t.} \quad \|f_{x,r}\|_{\text{Lip}} \le M \quad \text{s.t.} \quad \frac{|E \cap B(x,r) \cap f_{x,r}(B(0,r))|}{r^n} \ge \epsilon. \end{aligned}$$

Introduction	Connections with PDE	With connectivity	Removing connectivity
000●	0000	00000	000000

UR sets are quantitatively flat

Theorem (David, Semmes - 1991)

E is ADR:

E has Big Pieces of Lipchitz Images $\iff E$ is UR.

• Big Pieces of Lipschitz Images:

$$\begin{aligned} \exists \epsilon > 0, \, M > 0 \quad \text{s.t.} \quad \forall x \in E, r > 0 \quad \exists f_{x,r} : B(0,r) \longrightarrow \mathbb{R}^n \\ \text{s.t.} \quad \|f_{x,r}\|_{\text{Lip}} \leq M \quad \text{s.t.} \quad \frac{|E \cap B(x,r) \cap f_{x,r}(B(0,r))|}{r^n} \geq \epsilon. \end{aligned}$$

Theorem (David, Semmes - 1991)

E is ADR:

E has Very Big Pieces of Bilipchitz Images $\iff E$ is UR.

• Very Big Pieces of Bilipschitz Images: same as before, with bilipschitz maps and densities $\geq 1 - \epsilon$.

Pablo Hidalgo Palencia

Interactions: PDE, SIOs, geometry

Introduction	Connections with PDE	With connectivity	Removing connectivity
0000	●000	00000	000000

Section 2

Connections with elliptic PDE

Introduction 0000	Connections with PDE $0 \bullet 00$	With connectivity 00000	Removing connectivity

Elliptic measure

- Let $\Omega \subset \mathbb{R}^n$ be open and $L = -\operatorname{div}(A\nabla)$ with
 - $A = A(\cdot) \in L^{\infty}(\Omega),$
 - (elliptic) $A\xi \cdot \xi \ge \lambda |\xi|^2$.

Introduction 0000	Connections with PDE 000	With connectivity 00000	Removing connectivity

Elliptic measure

- Let $\Omega \subset \mathbb{R}^n$ be open and $L = -\operatorname{div}(A\nabla)$ with
 - $A = A(\cdot) \in L^{\infty}(\Omega),$
 - (elliptic) $A\xi \cdot \xi \ge \lambda |\xi|^2$.
- We are interested in the PDE

$$\begin{cases} Lu = 0 & \text{in } \Omega \\ u = f & \text{on } \partial \Omega. \end{cases}$$

(1)

Introduction 0000	Connections with PDE $0 \bullet 00$	With connectivity 00000	Removing connectivity

Elliptic measure

- Let $\Omega \subset \mathbb{R}^n$ be open and $L = -\operatorname{div}(A\nabla)$ with
 - $A = A(\cdot) \in L^{\infty}(\Omega),$
 - (elliptic) $A\xi \cdot \xi \ge \lambda |\xi|^2$.
- We are interested in the PDE

$$\begin{cases} Lu = 0 & \text{in } \Omega \\ u = f & \text{on } \partial \Omega. \end{cases}$$
(1)

Theorem (Application of Riesz Rep. Thm.)

The elliptic measure $\{\omega_L^X\}_{X\in\Omega}$ is a family of probabilities in $\partial\Omega$ s.t.

$$u(X) = \int_{\partial \Omega} f(y) d\omega_L^X(y), \qquad X \in \Omega,$$

is the solution of (1) if $f \in \mathscr{C}(\partial \Omega)$.

Introduction	Connections with PDE	With connectivity	Removing connectivity
0000	0000	00000	000000

• It is "reasonable" to expect $\omega_L \ll \sigma$ (recalling $\sigma = \mathcal{H}^{n-1}|_{\partial\Omega}$).

Introduction	Connections with PDE	With connectivity	Removing connectivity
0000	0000	00000	000000

- It is "reasonable" to expect $\omega_L \ll \sigma$ (recalling $\sigma = \mathcal{H}^{n-1}|_{\partial \Omega}$).
- Even in a quantitative way: $\omega_L \in RH_p(\sigma)$.

Introduction	Connections with PDE	With connectivity	Removing connectivity
0000	0000	00000	000000

- It is "reasonable" to expect $\omega_L \ll \sigma$ (recalling $\sigma = \mathcal{H}^{n-1}|_{\partial\Omega}$).
- Even in a quantitative way: $\omega_L \in RH_p(\sigma)$.

$$\left(\int_{Q} \left(\frac{d\omega_{L}}{d\sigma}\right)^{p} d\sigma\right)^{1/p} \lesssim \int_{Q} \frac{d\omega_{L}}{d\sigma} d\sigma.$$

Introduction	Connections with PDE	With connectivity	Removing connectivity
0000	0000	00000	000000

- It is "reasonable" to expect $\omega_L \ll \sigma$ (recalling $\sigma = \mathcal{H}^{n-1}|_{\partial\Omega}$).
- Even in a quantitative way: $\omega_L \in RH_p(\sigma)$.

Theorem (Dahlberg - 1977)

 $\partial \Omega \text{ is Lipschitz} \implies \omega_{-\Delta} \in RH_2(\sigma).$

Introduction	Connections with PDE	With connectivity	Removing connectivity
0000	0000	00000	000000

- It is "reasonable" to expect $\omega_L \ll \sigma$ (recalling $\sigma = \mathcal{H}^{n-1}|_{\partial\Omega}$).
- Even in a quantitative way: $\omega_L \in RH_p(\sigma)$.

Theorem (Dahlberg - 1977)

 $\partial \Omega \text{ is Lipschitz} \implies \omega_{-\Delta} \in RH_2(\sigma).$

• However...

Theorem (Caffarelli, Fabes, Kenig - 1981)

 $\exists L \ s.t. \ \omega_L \perp \sigma \ in \ the \ unit \ ball.$

Introduction 0000	Connections with PDE $000 \bullet$	With connectivity 00000	Removing connectivity 000000
Beyond Lips	chitz		

Introduction	Connections with PDE $000 \bullet$	With connectivity	Removing connectivity
0000		00000	000000
Beyond Lips	chitz		

• No parametrization \rightsquigarrow no change of variables.

Introduction 0000	Connections with PDE $000 \bullet$	With connectivity 00000	Removing connectivity 000000
Beyond Lip	schitz		

- No parametrization \rightsquigarrow no change of variables.
- Maybe $\omega_L \in RH_2(\sigma)$ is too much.

Introduction	Connections with PDE $000 \bullet$	With connectivity	Removing connectivity
0000		00000	000000
Beyond Lip	schitz		

- No parametrization \rightsquigarrow no change of variables.
- Maybe $\omega_L \in RH_2(\sigma)$ is too much.

•
$$A_{\infty}(\sigma) = \bigcup_{1 < q < \infty} RH_q(\sigma).$$

Introduction 0000	Connections with PDE $000 \bullet$	With connectivity 00000	Removing connectivity 000000
Beyond Lipschitz			

- No parametrization \rightsquigarrow no change of variables.
- Maybe $\omega_L \in RH_2(\sigma)$ is too much.

•
$$A_{\infty}(\sigma) = \bigcup_{1 < q < \infty} RH_q(\sigma).$$

Theorem (using [Caffarelli, Fabes, Mortola, Salsa - 1981])

 $\partial \Omega$ Lipschitz + L symmetric: L^p -solvability for L for some $p < \infty \iff \omega_L \in A_\infty(\sigma)$.

Introduction 0000	Connections with PDE $000 \bullet$	With connectivity 00000	Removing connectivity 000000
Beyond Lip	schitz		

- No parametrization \rightsquigarrow no change of variables.
- Maybe $\omega_L \in RH_2(\sigma)$ is too much.

•
$$A_{\infty}(\sigma) = \bigcup_{1 < q < \infty} RH_q(\sigma).$$

Theorem (using [Caffarelli, Fabes, Mortola, Salsa - 1981])

 $\partial \Omega$ Lipschitz + L symmetric: L^p -solvability for L for some $p < \infty \iff \omega_L \in A_\infty(\sigma)$.

• L^p -solvability for L: solvability, with interior estimates, of

$$\begin{cases} Lu = 0 & \text{in } \Omega \\ u = f \in L^p(\partial\Omega) & \text{on } \partial\Omega. \end{cases}$$

Interactions: PDE, SIOs, geometry

Introduction	Connections with PDE	With connectivity	Removing connectivity
0000	0000	00000	000000

Section 3

In sets with good connectivity

Introduction	Connections with PDE	With connectivity 00000	Removing connectivity
0000	0000		000000

Definitions: ADR and Corkscrews

• $\partial \Omega$ is **ADR** (Ahlfors-David regular): for any $x \in \partial \Omega$, $0 < r \lesssim \text{diam}(\partial \Omega)$:

 $\sigma(\partial \Omega \cap B(x,r)) \approx r^{n-1},$

(recall $\sigma := \mathcal{H}^{n-1}|_{\partial\Omega}$).

Introduction	Connections with PDE	With connectivity $0 \bullet 000$	Removing connectivity
0000	0000		000000

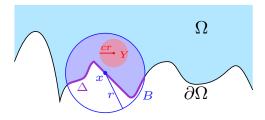
Definitions: ADR and Corkscrews

• $\partial \Omega$ is **ADR** (Ahlfors-David regular): for any $x \in \partial \Omega$, $0 < r \lesssim \text{diam}(\partial \Omega)$:

 $\sigma(\partial \Omega \cap B(x,r)) \approx r^{n-1},$

(recall $\sigma := \mathcal{H}^{n-1}|_{\partial\Omega}$).

• Ω has (interior) corkscrews: $\exists c \in (0,1)$ such that $\forall x \in \partial \Omega, r > 0 \quad \exists Y = Y(x,r) \quad \text{s.t.} \quad B(Y,cr) \subset B(x,r) \cap \Omega.$



Introduction	Connections with PDE	With connectivity $0 \bullet 000$	Removing connectivity
0000	0000		000000

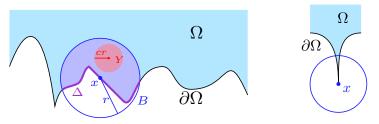
Definitions: ADR and Corkscrews

• $\partial \Omega$ is **ADR** (Ahlfors-David regular): for any $x \in \partial \Omega$, $0 < r \lesssim \text{diam}(\partial \Omega)$:

 $\sigma(\partial \Omega \cap B(x,r)) \approx r^{n-1},$

(recall $\sigma := \mathcal{H}^{n-1}|_{\partial\Omega}$).

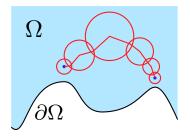
• Ω has (interior) corkscrews: $\exists c \in (0, 1)$ such that $\forall x \in \partial \Omega, r > 0 \quad \exists Y = Y(x, r) \quad \text{s.t.} \quad B(Y, cr) \subset B(x, r) \cap \Omega.$



Introduction 0000	Connections with PDE 0000	With connectivity 00000	Removing connectivity

Definitions: Harnack chains and 1-sided CAD

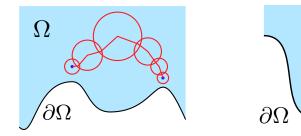
• Ω has **Harnack chains**: "any $X, Y \in \Omega$ can be connected by $\lesssim \frac{|X - Y|}{\min\{\operatorname{dist}(X, \partial \Omega), \operatorname{dist}(Y, \partial \Omega)\}}$ interior balls".



Introduction 0000	Connections with PDE 0000	With connectivity 00000	Removing connectivity

Definitions: Harnack chains and 1-sided CAD

• Ω has **Harnack chains**: "any $X, Y \in \Omega$ can be connected by $\lesssim \frac{|X - Y|}{\min\{\operatorname{dist}(X, \partial \Omega), \operatorname{dist}(Y, \partial \Omega)\}}$ interior balls".



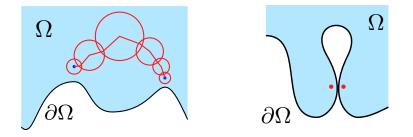
Interactions: PDE, SIOs, geometry

 Ω

Introduction 0000	Connections with PDE 0000	With connectivity 00000	Removing connectivity

Definitions: Harnack chains and 1-sided CAD

• Ω has **Harnack chains**: "any $X, Y \in \Omega$ can be connected by $\lesssim \frac{|X - Y|}{\min\{\operatorname{dist}(X, \partial \Omega), \operatorname{dist}(Y, \partial \Omega)\}}$ interior balls".



• Ω is 1-sided CAD (chorded-arc domain) [Jerison, Kenig - 1982]: $\partial\Omega$ is ADR + Ω has interior corkscrews + Ω has Harnack chains.

Interactions: PDE, SIOs, geometry

ICMAT

Introduction	Connections with PDE	With connectivity	Removing connectivity

In 1-sided CAD

Theorem (Compendium of papers)

If Ω is 1-sided CAD (i.e. $\partial \Omega$ is ADR + Ω has Corkscrews + Ω has Harnack chains):

$\omega_L \in A_{\infty}(\sigma) \iff L \text{ sat. } CME$

For general L: [Cavero, Hofmann, Martell, Toro - 2020].

Pablo Hidalgo Palencia

Interactions: PDE, SIOs, geometry

Introduction	Connections with PDE	With connectivity $000 \bullet 0$	Removing connectivity
0000	0000		000000

In 1-sided CAD

Theorem (Compendium of papers)

If Ω is 1-sided CAD (i.e. $\partial \Omega$ is ADR + Ω has Corkscrews + Ω has Harnack chains):

 $\omega_L \in A_{\infty}(\sigma) \iff L \text{ sat. } CME$

• L satisfies CME: for bounded solutions of Lu = 0

$$\sup_{\substack{x \in \partial \Omega \\ 0 < r < \infty}} \frac{1}{r^n} \iint_{B(x,r) \cap \Omega} |\nabla u|^2 \operatorname{dist}(\cdot, \partial \Omega) dX \le C \|u\|_{\infty}^2.$$

For general L: [Cavero, Hofmann, Martell, Toro - 2020].

Pablo Hidalgo Palencia

Interactions: PDE, SIOs, geometry

Introduction 0000	Connections with PDE	With connectivity	Removing connectivity

In 1-sided CAD

Theorem (Compendium of papers)

If Ω is 1-sided CAD (i.e. $\partial\Omega$ is $ADR + \Omega$ has Corkscrews $+ \Omega$ has Harnack chains): L^p -solvability for $L \stackrel{L \text{ good}}{\iff} \omega_L \in A_{\infty}(\sigma) \iff L$ sat. $CME \stackrel{L \text{ good}}{\rightleftharpoons} \partial\Omega$ UR

• L satisfies CME: for bounded solutions of Lu = 0

$$\sup_{\substack{x \in \partial \Omega \\ 0 < r < \infty}} \frac{1}{r^n} \iint_{B(x,r) \cap \Omega} |\nabla u|^2 \operatorname{dist}(\cdot, \partial \Omega) dX \le C \|u\|_{\infty}^2$$

 For −Δ: [Hofmann, Martell, Uriarte-Tuero - 2014], [Azzam, Hofmann, Martell, Nyström, Toro - 2017], David, Jerison, Semmes...
 For nice L: [Hofmann, Martell, Mayboroda, Toro, Zhao - 2021]. Precedents: [Kenig, Pipher - 2001], [Hofmann, Martell, Toro - 2017].
 For general L: [Cavero, Hofmann, Martell, Toro - 2020].
 Pablo Hidalgo Palencia Interactions: PDE, SIOs, geometry ICMAT

Introduction	Connections with PDE	With connectivity	Removing connectivity
0000	0000		000000

Nice operators

- "Nice" operators \rightsquigarrow Fefferman-Kenig-Pipher operators L:
 - $A \in \operatorname{Lip}_{\operatorname{loc}}(\Omega)$,
 - $|\nabla A| \operatorname{dist}(\cdot, \partial \Omega) \in L^{\infty}$ and

٢

$$\sup_{\substack{x\in\partial\Omega\\0< r<\mathrm{diam}(\partial\Omega)}}\frac{1}{r^n}\iint_{B(x,r)\cap\Omega}|\nabla A|^2\operatorname{dist}(\cdot,\partial\Omega)dX<\infty$$

Introduction	Connections with PDE	With connectivity	Removing connectivity
0000	0000	00000	•00000

Section 4

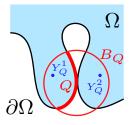
Removing connectivity

Introduction	Connections with PDE	With connectivity	Removing connectivity
0000	0000	00000	00000

Remove Harnack chains and use really general operators.

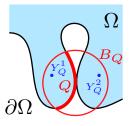
Introduction	Connections with PDE	With connectivity	Removing connectivity
0000	0000	00000	000000

Remove Harnack chains and use really general operators. • Some regions are close within \mathbb{R}^n , but far within Ω .



Introduction	Connections with PDE	With connectivity	Removing connectivity
0000	0000	00000	000000

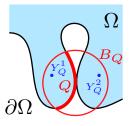
Remove Harnack chains and use really general operators. • Some regions are close within \mathbb{R}^n , but far within Ω .



• L behaves well there?

Introduction	Connections with PDE	With connectivity	Removing connectivity
0000	0000	00000	000000

Remove Harnack chains and use really general operators. • Some regions are close within \mathbb{R}^n , but far within Ω .



- L behaves well there?
- We do not have the "full" CFMS estimate. Only

$$\frac{G_L(X, Y_Q^i)}{\operatorname{dist}(Y_Q^i, \partial \Omega)} \lesssim \frac{\omega_L^X(Q)}{\sigma(Q)}$$

Introduction	Connections with PDE	With connectivity 00000	Removing connectivity
0000	0000		000000

What was known without connectivity

Theorem (Compendium of papers)

 $\partial \Omega$ is $ADR + \Omega$ has Corkscrews:

$$L^{p}\text{-solvability} \stackrel{L=-\Delta}{\longleftrightarrow} \omega_{L} \in A_{\infty}^{\text{weak}}(\sigma) \underset{\text{connectivity}}{\overset{always}{\longleftrightarrow}} L \text{ sat. } CME \underset{L \text{ symm.}}{\overset{good}{\longleftrightarrow}} \partial \Omega \ UR$$

For -Δ: [Hofmann, Martell, Mayboroda - 2016], [Hofmann, Le, Martell, Nyström - 2017], [Azzam, Hofmann, Martell, Mourgoglou, Tolsa - 2020].
For "nice" and "symmetric" L: [Azzam, Garnett, Mourgoglou, Tolsa - 2021].
Pable Hidalgo Palencia Interactions: PDE, SIOs, geometry ICMAT

Introduction	Connections with PDE	With connectivity	Removing connectivity
0000	0000	00000	000000

Theorem (Cao, H., Martell - 2022)

- $\partial \Omega$ is $ADR + \Omega$ has Corkscrews. TFAE:
 - **(1)** ω_L admits a corona decomposition.
 - **2** G_L admits a corona decomposition.
 - **3** L satisfies Partial Carleson measure estimates.

Introduction	Connections with PDE	With connectivity	Removing connectivity
0000	0000	00000	000000

Theorem (Cao, H., Martell - 2022)

 $\partial \Omega$ is $ADR + \Omega$ has Corkscrews. TFAE:

(1) ω_L admits a corona decomposition.

2 G_L admits a corona decomposition.

3 L satisfies Partial Carleson measure estimates.

• Corona \approx some property is true in most parts and scales at $\partial \Omega$.

Introduction	Connections with PDE	With connectivity	Removing connectivity
0000	0000	00000	000000

Theorem (Cao, H., Martell - 2022)

 $\partial \Omega$ is $ADR + \Omega$ has Corkscrews. TFAE:

(1) ω_L admits a corona decomposition.

- **2** G_L admits a corona decomposition.
- **3** L satisfies Partial Carleson measure estimates.
- Corona ≈ some property is true in most parts and scales at ∂Ω.
 Corona for ω_L: D = ⊔S and

$$\frac{\omega_L^{X_{\mathbf{S}}}(Q)}{\sigma(Q)} \approx \frac{\omega_L^{X_{\mathbf{S}}}(Q')}{\sigma(Q')} \quad \forall Q, Q' \in \mathbf{S}.$$

Introduction	Connections with PDE	With connectivity	Removing connectivity
0000	0000	00000	000000

Theorem (Cao, H., Martell - 2022)

 $\partial \Omega$ is $ADR + \Omega$ has Corkscrews. TFAE:

(1) ω_L admits a corona decomposition.

- **2** G_L admits a corona decomposition.
- L satisfies Partial Carleson measure estimates. 3
- Corona \approx some property is true in most parts and scales at $\partial \Omega$. ٠ Corona for ω_L : $\mathbb{D} = \sqcup \mathbf{S}$ and

$$\frac{\omega_L^{X_{\mathbf{S}}}(Q)}{\sigma(Q)} \approx \frac{\omega_L^{X_{\mathbf{S}}}(Q')}{\sigma(Q')} \quad \forall Q, Q' \in \mathbf{S}.$$

• Corona for G_L : $\mathbb{D} = \sqcup \mathbf{S}$ and

$$\sup_{\substack{X \in B_Q \\ \text{dist}(X,\partial\Omega) \gtrsim \ell(Q)}} \frac{G_L(X_{\mathbf{S}}, X)}{\text{dist}(X,\partial\Omega)} \approx \frac{\omega_L^{X_{\mathbf{S}}}(Q')}{\sigma(Q')} \quad \forall Q, Q' \in \mathbf{S}.$$

Pablo Hidalgo Palencia

Interactions: PDE, SIOs, geometry

Introduction	Connections with PDE	With connectivity	Removing connectivity
0000	0000	00000	

Perturbation result

Theorem (Cao, H., Martell - 2022)

 $\partial \Omega$ is $ADR + \Omega$ has Corkscrews: Corona decomposition for ω_L , for G_L and CME for L are stable under some perturbations of L.

Introduction	Connections with PDE	With connectivity	Removing connectivity
0000	0000	00000	0000●0

Perturbation result

Theorem (Cao, H., Martell - 2022)

 $\partial \Omega$ is $ADR + \Omega$ has Corkscrews: Corona decomposition for ω_L , for G_L and CME for L are stable under some perturbations of L.

• Perturbations in the sense of Fefferman-Kenig-Pipher:

 $\sup_{\substack{x\in\partial\Omega\\0< r<\operatorname{diam}(\partial\Omega)}}\frac{1}{\sigma(B(x,r)\cap\partial\Omega)}\iint_{B(x,r)\cap\Omega}\sup_{Y\in B(X,\frac{\delta(X)}{2})}\frac{|A_0(Y)-A_1(Y)|^2}{\operatorname{dist}(X,\partial\Omega)}dX<\infty.$

Introduction	Connections with PDE	With connectivity	Removing connectivity
0000	0000	00000	000000

Perturbation result

Theorem (Cao, H., Martell - 2022)

 $\partial \Omega$ is $ADR + \Omega$ has Corkscrews: Corona decomposition for ω_L , for G_L and CME for L are stable under some perturbations of L.

• Perturbations in the sense of Fefferman-Kenig-Pipher:

 $\sup_{\substack{x\in\partial\Omega\\0< r<\mathrm{diam}(\partial\Omega)}}\frac{1}{\sigma(B(x,r)\cap\partial\Omega)} \iint_{B(x,r)\cap\Omega} \sup_{Y\in B(X,\frac{\delta(X)}{2})}\frac{|A_0(Y)-A_1(Y)|^2}{\mathrm{dist}(X,\partial\Omega)}dX <\infty.$

Corollary (Cao, H., Martell - 2022)

 $\begin{array}{l} \partial\Omega \ \text{is } ADR + \Omega \ \text{has } Corkscrews + L \ \text{close to } -\Delta: \\ L \ \text{satisfies } Partial \ CME \implies \partial\Omega \ \text{is } UR. \end{array}$

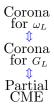
Pablo Hidalgo Palencia

Interactions: PDE, SIOs, geometry

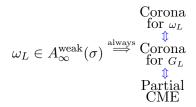
ICMAT

Introduction 0000	Connections with PDE 0000	With connectivity 00000	Removing connectivity $00000 \bullet$
· ·			

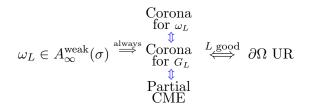
Introduction	Connections with PDE	With connectivity 00000	Removing connectivity
0000	0000		00000●
_			



Introduction	Connections with PDE	With connectivity 00000	Removing connectivity
0000	0000		00000●
<u> </u>			



Introduction	Connections with PDE	With connectivity	Removing connectivity 00000
0000	0000	00000	
Overview			



Introduction	Connections with PDE	With connectivity 00000	Removing connectivity
0000	0000		00000●

$$L^{p}\text{-solvability for } L \xrightarrow{??} \omega_{L} \in A_{\infty}^{\text{weak}}(\sigma) \xrightarrow[]{always}{\underset{??}{\overset{\text{always}}{\longleftrightarrow}}} \begin{array}{c} \text{Corona} \\ & & \downarrow \\ \text{Corona} \\ & & \text{for } G_{L} \\ & & \downarrow \\ \text{Partial} \\ \text{CME} \end{array} \xrightarrow{l \text{ good}} \partial \Omega \text{ UR}$$

Connections between the solvability of the Dirichlet problem and flatness of the boundary for PDE in sets without connectivity

> Pablo Hidalgo Palencia (pablo.hidalgo@icmat.es)

Joint work with Mingming Cao and José María Martell

XX Encuentro de Análisis Real y Complejo Cartagena, 26 May 2022