On a problem of Lions on real interpolation spaces. The quasi-Banach case

Thomas Kühn

Universität Leipzig, Germany

"XX Encuentro de Análisis Real y Complejo" Cartagena, 26 – 28 May 2022

27 May 2022

Thomas Kühn (Leipzig)

Lions's problem

▲ ● ◆ ● ◆ ● ◆ ● ◆ ● ◆ ○ へ ○
Cartagena, 27 May 2022 1 / 20

Plan of the talk

The talk is based on joint work with Fernando Cobos and Michael Cwikel

- Preliminaries: Quasi-norms and the real interpolation method
- Solution to Lions's problem for quasi-Banach couples
- Application to spaces of operators defined by approximation numbers

(日) (周) (三) (三)

Quasi-normed and *r*-normed spaces

- A quasi-norm resp. an r-norm (0 < r ≤ 1) on a linear space satisfies the norm axioms, but the triangle inequality is replaced by the quasi-triangle inequality: ||x + y|| ≤ C (||x|| + ||y||) for some C ≥ 1
 r-triangle inequality: ||x + y||^r ≤ ||x||^r + ||y||^r
- norm \iff quasi-norm with $C = 1 \iff r$ -norm with r = 1
- A quasi-Banach resp. *r*-Banach space is a linear space which is complete with respect to a quasi-norm resp. *r*-norm.
- Every *r*-norm is an *s*-norm for all 0 < s < r, and also a quasi-norm. (In fact, the quasi-triangle constant is then $C = 2^{1/r-1}$.)
- Aoki-Rolewicz-Theorem. Every quasi-norm with constant C > 1 is equivalent to an *r*-norm, where *r* is defined by $C = 2^{1/r-1}$.
- Example: $(\ell_r, \|.\|_r)$ is an *r*-Banach space, 0 < r < 1.

Real interpolation spaces

- A quasi-Banach couple (A_0, A_1) is formed by two quasi-Banach spaces, both embedded into a common topological Hausdorff space.
- Peetre's K-functional with respect to a quasi-Banach couple (A_0, A_1) is defined for t > 0 and $a \in A_0 + A_1$ by

$$\mathcal{K}(t,a) := \inf\{\|a_0\|_{A_0} + t\|a_1\|_{A_1} : a = a_0 + a_1, a_j \in A_j\}.$$

- The quasi-norms of $A_0 + A_1$ and $A_0 \cap A_1$ are given by $\|a\|_{A_0+A_1} := K(1,a)$, $\|a\|_{A_0\cap A_1} := \max\{\|a\|_{A_0}, \|a\|_{A_1}\}.$
- Let $0 < \theta < 1$, $0 . The real interpolation space <math>(A_0, A_1)_{\theta, p}$ consists of all $a \in A_0 + A_1$ with finite quasi-norm

$$\|a\|_{\theta,p} := \begin{cases} \left(\int_0^\infty \left(t^{-\theta} K(t,a)\right)^p \frac{dt}{t}\right)^{1/p} & \text{if } 0 0} t^{-\theta} K(t,a) & \text{if } p = \infty \,. \end{cases}$$

Equivalent quasi-norms on $(A_0, A_1)_{\theta, p}$

• For every 0 < r < 1 we have the equivalence

$$K(t,a) \sim K_r(t,a) := \inf \left(\|a_0\|_{A_0}^r + t^r \|a_1\|_{A_1}^r
ight)^{1/r} ,$$

where the inf is taken over all decompositions $a = a_0 + a_1, a_j \in A_j$.

• Discretizing the integral and setting $j_m(a) := 2^{-m\theta} K_r(2^m, a)$ we get

$$\|a\|_{\theta,p} \sim \|a\|_{\theta,p;r} := \begin{cases} \left(\sum_{m \in \mathbb{Z}} j_m(a)^p\right)^{1/p} & \text{if } 0$$

If A₀ and A₁ are both r-Banach spaces and 0 < r < p, then ||a||_{θ,p;r} is an r-norm on (A₀, A₁)_{θ,p}, and K_r(1, a) is an r-norm on A₀ + A₁.

Gagliardo couples

Let (A_0, A_1) be a (quasi-)Banach couple.

• The Gagliardo completion A_i^{\sim} of A_j consists of all $a \in A_0 + A_1$ s.t.

$$\|a\|_{\mathcal{A}_0^{\sim}}:=\sup_{t>0}K(t,a)=\lim_{t o\infty}K(t,a)<\infty\quad ext{resp.}$$

$$\|a\|_{\mathcal{A}_1^\sim}:=\sup_{t>0}rac{\mathcal{K}(t,a)}{t}=\lim_{t o 0}rac{\mathcal{K}(t,a)}{t}<\infty\,.$$

• In other words: $A_0^{\sim} = (A_0, A_1)_{0,\infty}$ and $A_1^{\sim} = (A_0, A_1)_{1,\infty}$

- (A_0, A_1) is called a Gagliardo couple, if $A_0^{\sim} = A_0$ and $A_1^{\sim} = A_1$.
- This is a rather mild condition, it is satisfied in many concrete cases.
- Example: If $0 < p_0 \neq p_1 \leq \infty$, then (L_{p_0}, L_{p_1}) is a Gagliardo couple.

Lions's problem

Lions's problem

When does a given family of interpolation spaces effectively depend on its parameters, i.e. when are all these spaces different from each other?

 For Banach couples and the real method with parameters 0 < θ < 1 and 1 ≤ p ≤ ∞ the solution is as follows:

Theorem (Janson, Nilson, Peetre, Zafran 1984)

Let $0 < \theta, \eta < 1$ and $1 \le p, q \le \infty$. If (A_0, A_1) is a Banach couple such

that (*) $A_0 \cap A_1$ is NOT closed in $A_0 + A_1$, then

 $(A_0, A_1)_{\theta, p} \neq (A_0, A_1)_{\eta, q}$ unless $(\theta, p) = (\eta, q)$

Note that condition (*) is necessary!
 Otherwise, due to the *J*-description of the *K*-method,
 (A₀, A₁)_{θ,p} = A₀ ∩ A₁ for all parameters.

Thomas Kühn (Leipzig)

Lions's problem

Cartagena, 27 May 2022 7 / 20

Related results

- J. D. Stafney (Pac. J. Math. 1970)
 Similar results for the complex method.
- J. Almira and P. Fernández-Martínez (J. Math. Anal. Appl. 2021) considered the real method for ordered quasi-Banach couples

• • = • • = •

Subspaces of $(A_0, A_1)_{\theta, p}$ - the Banach case

Let (A_0, A_1) be a Banach couple, $0 < \theta < 1$ and $1 \le p \le \infty$.

Proposition (Mireille Levy, paper 1979 and PhD 1980)

 $(A_0, A_1)_{\theta, p}$ closed in $A_0 + A_1 \implies A_0 \cap A_1$ closed in $A_0 + A_1$

Due to the *J*-description of $(A_0, A_1)_{\theta,p}$, the implication \Leftarrow is trivial.

In the proof duality arguments are used.

Theorem (M. Levy)

Let $1 \le p < \infty$. If $(A_0, A_1)_{\theta,p}$ is NOT closed in $A_0 + A_1$, then it contains a complemented subspace isomorphic to ℓ_p .

Idea of proof: For every $0 < \varepsilon < 1$ one can find recursively a sequence $(x_n) \subset (A_0, A_1)_{\theta, p}$ that is $(1 + \varepsilon)$ -equivalent to the unit vector basis in ℓ_p . Essential for this construction is the previous proposition.

Subspaces of $(A_0, A_1)_{\theta,p}$ - the quasi-Banach case

Let (A_0, A_1) be a quasi-Banach couple, $0 < \theta < 1$ and 0 .

Proposition (Cobos-Cwikel-K. 2022)

 $(A_0, A_1)_{\theta, p}$ closed in $A_0 + A_1 \implies A_0^{\sim} \cap A_1^{\sim}$ closed in $A_0 + A_1$

Levy used duality arguments, which are no longer available in the quasi-Banach case. Instead our proof is based on computations with the K-functional, combined with an iterative procedure.

Theorem (Cobos-Cwikel-K. 2022)

Let (A_0, A_1) be a Gagliardo couple and $0 . If <math>(A_0, A_1)_{\theta, p}$ is NOT closed in $A_0 + A_1$, then it contains a subspace isomorphic to ℓ_p .

Proof: Similar construction as in Levy's paper. But due to the lack of duality, we cannot show that the subspace is complemented.

Lions's problem in the quasi-Banach case

Theorem (Cobos-Cwikel-K. 2022)

Let (A_0, A_1) be a quasi-Banach Gagliardo couple such that $A_0 \cap A_1$ is NOT closed in $A_0 + A_1$, and let $0 < \theta, \eta < 1$ and $0 < p, q \le \infty$. Then

 $(A_0,A_1)_{\theta,p} \neq (A_0,A_1)_{\eta,q}$ unless $(\theta,p) = (\eta,q)$.

- This solves Lions's problem in the quasi-Banach setting.
- We need a mild extra assumption: (A_0, A_1) is a Gagliardo couple
- Extended range of the parameters: p < 1 and/or q < 1 is possible
- Interesting dichotomy: The spaces (A₀, A₁)_{θ,p}
 either all coincide (if A₀ ∩ A₁ is closed in A₀ + A₁)
 or are all different (if A₀ ∩ A₁ is not closed in A₀ + A₁)

Sketch of the proof

We proceed by contradiction.

• Case 1. First assume that for some $0 < \theta < 1$ and 0

 $X := (A_0, A_1)_{\theta, p} = (A_0, A_1)_{\theta, q}$ with equivalence of quasi-norms.

Then one can construct – as in the proof of the subspace-theorem, taking the parameter ε small enough – a sequence $(x_n) \subset X$ that is equivalent to the unit vector basis in both ℓ_p and ℓ_q , a contradiction.

• Case 2. Assume now that for some $0 < \theta \neq \eta < 1$ and $0 < p, q \leq \infty$

$$(A_0, A_1)_{\theta, p} = (A_0, A_1)_{\eta, q}$$

By reiteration it follows that the spaces $(A_0, A_1)_{\lambda,r}$ with $\lambda = \frac{\theta + \eta}{2}$ do not depend on r, for $0 < r \le \infty$. Thus we are back in Case 1, and the proof is finished.

Thomas Kühn (Leipzig)

An application

- We want to give an application concerning spaces of operators defined by the behaviour of their approximation numbers.
- But first we need some preparations.

3

A B A A B A

Approximation numbers

• The *n*-th approximation number of a (bounded linear) operator $T \in \mathcal{L}(X, Y)$ between two Banach spaces X and Y is defined by

$$a_n(T) := \inf\{\|T - A\| : A \in \mathcal{L}(X, Y), \operatorname{rank} A < n\}.$$

- $\lim_{n \to \infty} a_n(T) = 0 \implies T$ compact \Leftarrow fails by Enflo's counter-example
- The rate of decay of a_n(T) as n → ∞ can be viewed as a measure of the 'degree' of compactness of T.
- For compact operators between Hilbert spaces and all $n \in \mathbb{N}$ one has

$$a_n(T) = s_n(T) = \sqrt{\lambda_n(T^*T)} = n$$
-th singular number.

Operator classes defined by approximation numbers

• For $0 and <math>0 < q \le \infty$ we consider the class

$$\mathcal{A}_{p,q}(X,Y) := \left\{ T \in \mathcal{L}(X,Y) : \left((a_n(T))_{n \in \mathbb{N}} \in \ell_{p,q} \right\} \right\},$$

where $\ell_{p,q}$ are the Lorentz sequence spaces.

• $\mathcal{A}_{p,q}(X, Y)$ is a quasi-Banach space w.r.t. the quasi-norm

$$\|T\|_{p,q} := \begin{cases} \left(\sum_{n \in \mathbb{N}} \left(n^{1/p - 1/q} a_n(T)\right)^q\right)^{1/q} & \text{if } q < \infty \\ \sup_{n \in \mathbb{N}} n^{1/p} a_n(T) & \text{if } q = \infty \end{cases}$$

In general, the quasi-norm $\|.\|_{p,q}$ is not equivalent to a norm.

• If H and G are Hilbert spaces, then

$$\mathcal{A}_{p,q}(H,G) = \mathcal{S}_{p,q}(H,G) =$$
Schatten classes .

Thomas Kühn (Leipzig)

A problem on the scale $\{\mathcal{A}_p(X, Y)\}_{p>0}$

$$\ell_{
ho,
ho} = \ell_{
ho}$$
 short notation: $\mathcal{A}_{
ho}(X,Y) := \mathcal{A}_{
ho,
ho}(X,Y)$

Problem (Albrecht Pietsch, Sept. 2021)

Show that, for arbitrary infinite-dimensional Banach spaces X and Y,

the scale $\{A_p(X, Y)\}_{p>0}$ is strictly increasing.

This motivated us to consider Lions's problem for quasi-Banach couples.

Remark

If dim $X < \infty$ and/or dim $Y < \infty$, then

 $\mathcal{A}_{p,q}(X,Y) = \mathcal{L}(X,Y) \quad \text{for all } 0$

Proof. Every $T \in \mathcal{L}(X, Y)$ has finite rank $\curvearrowright a_n(T) = 0 \quad \forall n > \text{rank } T$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Real interpolation of the classes $\mathcal{A}_{\rho}(X, Y)$

Theorem (Hermann König 1978)

Let $0 < p_0 < p_1 < \infty$.

(i) The K-functional of the couple $(\mathcal{A}_{p_0}(X, Y), \mathcal{A}_{p_1}(X, Y))$ satisfies

$$K(t,T)\sim \Big(\sum_{n\leq \lfloor t^r\rfloor}a_n(T)^{p_0}\Big)^{1/p_0}+\Big(\sum_{n>\lfloor t^r\rfloor}a_n(T)^{p_1}\Big)^{1/p_1},t>0,$$

where $1/r = 1/p_0 - 1/p_1$.

(ii) Let 0 < heta < 1 and $0 < q \le \infty$. Then

 $\left(\mathcal{A}_{p_0}(X,Y),\mathcal{A}_{p_1}(X,Y)\right)_{\theta,q}=\mathcal{A}_{p,q}(X,Y)\quad,\quad \frac{1}{p}=\frac{1-\theta}{p_0}+\frac{\theta}{p_1}\,.$

By reiteration, even $(\mathcal{A}_{p_0,q_0}(X,Y),\mathcal{A}_{p_1,q_1}(X,Y))_{\theta,q} = \mathcal{A}_{p,q}(X,Y)$ holds.

- 31

Further properties

Let $0 < p_0 < p_1 < \infty$. König's interpolation formula implies

Lemma (Cobos, Cwikel, K., 2022)

 $(\mathcal{A}_{p_0}(X, Y), \mathcal{A}_{p_1}(X, Y))$ is a quasi-Banach Gagliardo couple.

Since $\mathcal{A}_{p_0} \subset \mathcal{A}_{p_1}$, we have $\mathcal{A}_{p_0} = \mathcal{A}_{p_0} \cap \mathcal{A}_{p_1}$, $\mathcal{A}_{p_1} = \mathcal{A}_{p_0} + \mathcal{A}_{p_1}$.

Lemma (Cobos-Cwikel-K. 2022)

If $1/p_0 - 1/p_1 > 1$ then $\mathcal{A}_{p_0}(X, Y)$ is not closed in $\mathcal{A}_{p_1}(X, Y)$.

Proof: By Dvoretzky's theorem one can construct a sequence of finite-rank operators $T_n \in \mathcal{L}(X, Y)$, such that $\lim_{n \to \infty} \frac{\|T_n\|_{p_0}}{\|T_n\|_{p_1}} = \infty$, hence the quasi-norms $\|.\|_{p_0}$ and $\|.\|_{p_1}$ are not equivalent on \mathcal{A}_{p_0} , and therefore $\mathcal{A}_{p_0}(X, Y)$ cannot be closed in $\mathcal{A}_{p_1}(X, Y)$.

Solutions to Pietsch's problem

Combining these two lemmata gives the following more general result.

Theorem (Cobos-Cwikel-K. 2022)

Let X and Y be arbitrary infinite-dimensional Banach spaces. Then

$$\mathcal{A}_{p_0,q_0}(X,Y) \neq \mathcal{A}_{p_1,q_1}(X,Y) \quad \textit{unless} \quad (p_0,q_0) = (p_1,q_1) \,.$$

In particular, the scale $\{A_p(X, Y)\}_{p>0}$ is strictly increasing.

In fact, the spaces $\mathcal{A}_{p,q}(X, Y)$ are lexicographically ordered, similarly to the ordering of the Lorentz sequence spaces $\ell_{p,q}$, i.e.

$$\mathcal{A}_{p_0,q_0}(X,Y) \hookrightarrow \mathcal{A}_{p_1,q_1}(X,Y)$$
 , if $egin{cases} p_0 < p_1 & ext{or} \ p_0 = p_1 & ext{and} & q_0 < q_1 \,. \end{cases}$

Moreover, all these embeddings are strict.

Thomas Kühn (Leipzig)

イロト 不得下 イヨト イヨト

Dear Fernando,

Congratulations once again to your 65th birthday and all my best wishes for many years to come!

Thank you for your attention!

Thomas Kühn (Leipzig)

Lions's problem

Cartagena, 27 May 2022