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Plan of the talk

The talk is based on joint work with

Fernando Cobos and Michael Cwikel

Preliminaries: Quasi-norms and the real interpolation method

Solution to Lions’s problem for quasi-Banach couples

Application to spaces of operators defined by approximation numbers

Thomas Kühn (Leipzig) Lions’s problem Cartagena, 27 May 2022 2 / 20



Quasi-normed and r -normed spaces

A quasi-norm resp. an r-norm (0 < r ≤ 1) on a linear space satisfies
the norm axioms, but the triangle inequality is replaced by the

quasi-triangle inequality: ‖x + y‖ ≤ C (‖x‖+ ‖y‖) for some C ≥ 1

r -triangle inequality: ‖x + y‖r ≤ ‖x‖r + ‖y‖r

norm ⇐⇒ quasi-norm with C = 1 ⇐⇒ r -norm with r = 1

A quasi-Banach resp. r -Banach space is a linear space which is
complete with respect to a quasi-norm resp. r -norm.

Every r -norm is an s-norm for all 0 < s < r , and also a quasi-norm.
(In fact, the quasi-triangle constant is then C = 21/r−1.)

Aoki-Rolewicz-Theorem. Every quasi-norm with constant C > 1 is
equivalent to an r -norm, where r is defined by C = 21/r−1.

Example: (`r , ‖.‖r ) is an r -Banach space, 0 < r < 1.
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Real interpolation spaces

A quasi-Banach couple (A0, A1) is formed by two quasi-Banach
spaces, both embedded into a common topological Hausdorff space.

Peetre’s K -functional with respect to a quasi-Banach couple (A0,A1)
is defined for t > 0 and a ∈ A0 + A1 by

K (t, a) := inf{‖a0‖A0 + t‖a1‖A1 : a = a0 + a1, aj ∈ Aj} .

The quasi-norms of A0 + A1 and A0 ∩ A1 are given by

‖a‖A0+A1 := K (1, a) , ‖a‖A0∩A1 := max{‖a‖A0 , ‖a‖A1} .

Let 0 < θ < 1, 0 < p ≤ ∞. The real interpolation space (A0,A1)θ,p

consists of all a ∈ A0 + A1 with finite quasi-norm

‖a‖θ,p :=


(∫∞

0

(
t−θK (t, a)

)p dt
t

)1/p
if 0 < p <∞

sup
t>0

t−θK (t, a) if p =∞ .
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Equivalent quasi-norms on (A0,A1)θ,p

For every 0 < r < 1 we have the equivalence

K (t, a) ∼ Kr (t, a) := inf
(
‖a0‖rA0

+ tr‖a1‖rA1

)1/r
,

where the inf is taken over all decompositions a = a0 + a1, aj ∈ Aj .

Discretizing the integral and setting jm(a) := 2−mθKr (2m, a) we get

‖a‖θ,p ∼ ‖a‖θ,p;r :=


( ∑

m∈Z
jm(a)p

)1/p
if 0 < p <∞

sup
m∈Z

jm(a) if p =∞ .

If A0 and A1 are both r -Banach spaces and 0 < r < p, then ‖a‖θ,p;r
is an r -norm on (A0,A1)θ,p , and Kr (1, a) is an r -norm on A0 + A1.
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Gagliardo couples

Let (A0,A1) be a (quasi-)Banach couple.

The Gagliardo completion A∼j of Aj consists of all a ∈ A0 + A1 s.t.

‖a‖A∼
0

:= sup
t>0

K (t, a) = lim
t→∞

K (t, a) <∞ resp.

‖a‖A∼
1

:= sup
t>0

K (t, a)

t
= lim

t→0

K (t, a)

t
<∞ .

In other words: A∼0 = (A0,A1)0,∞ and A∼1 = (A0,A1)1,∞

(A0,A1) is called a Gagliardo couple, if A∼0 = A0 and A∼1 = A1 .

This is a rather mild condition, it is satisfied in many concrete cases.

Example: If 0 < p0 6= p1 ≤ ∞, then (Lp0 , Lp1) is a Gagliardo couple.
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Lions’s problem

Lions’s problem

When does a given family of interpolation spaces effectively depend on its
parameters, i.e. when are all these spaces different from each other?

For Banach couples and the real method with parameters 0 < θ < 1
and 1 ≤ p ≤ ∞ the solution is as follows:

Theorem (Janson, Nilson, Peetre, Zafran 1984)

Let 0 < θ, η < 1 and 1 ≤ p, q ≤ ∞. If (A0,A1) is a Banach couple such

that (∗) A0 ∩ A1 is NOT closed in A0 + A1 , then

(A0,A1)θ,p 6= (A0,A1)η,q unless (θ, p) = (η, q)

Note that condition (∗) is necessary!
Otherwise, due to the J-description of the K -method,
(A0,A1)θ,p = A0 ∩ A1 for all parameters.

Thomas Kühn (Leipzig) Lions’s problem Cartagena, 27 May 2022 7 / 20



Related results

J. D. Stafney (Pac. J. Math. 1970)

Similar results for the complex method.

J. Almira and P. Fernández-Mart́ınez (J. Math. Anal. Appl. 2021)

considered the real method for ordered quasi-Banach couples
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Subspaces of (A0,A1)θ,p - the Banach case

Let (A0,A1) be a Banach couple, 0 < θ < 1 and 1 ≤ p ≤ ∞.

Proposition (Mireille Levy, paper 1979 and PhD 1980)

(A0,A1)θ,p closed in A0 + A1 =⇒ A0 ∩ A1 closed in A0 + A1

Due to the J-description of (A0,A1)θ,p, the implication ⇐= is trivial.

In the proof duality arguments are used.

Theorem (M. Levy)

Let 1 ≤ p <∞. If (A0,A1)θ,p is NOT closed in A0 + A1, then it contains
a complemented subspace isomorphic to `p.

Idea of proof: For every 0 < ε < 1 one can find recursively a sequence
(xn) ⊂ (A0,A1)θ,p that is (1 + ε)-equivalent to the unit vector basis in `p.
Essential for this construction is the previous proposition.
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Subspaces of (A0,A1)θ,p - the quasi-Banach case

Let (A0,A1) be a quasi-Banach couple, 0 < θ < 1 and 0 < p ≤ ∞.

Proposition (Cobos-Cwikel-K. 2022)

(A0,A1)θ,p closed in A0 + A1 =⇒ A∼0 ∩ A∼1 closed in A0 + A1

Levy used duality arguments, which are no longer available in the
quasi-Banach case. Instead our proof is based on computations with the
K -functional, combined with an iterative procedure.

Theorem (Cobos-Cwikel-K. 2022)

Let (A0,A1) be a Gagliardo couple and 0 < p <∞. If (A0,A1)θ,p is NOT
closed in A0 + A1, then it contains a subspace isomorphic to `p.

Proof: Similar construction as in Levy’s paper. But due to the lack of
duality, we cannot show that the subspace is complemented.
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Lions’s problem in the quasi-Banach case

Theorem (Cobos-Cwikel-K. 2022)

Let (A0,A1) be a quasi-Banach Gagliardo couple such that A0 ∩ A1 is
NOT closed in A0 + A1 , and let 0 < θ, η < 1 and 0 < p, q ≤ ∞. Then

(A0,A1)θ,p 6= (A0,A1)η,q unless (θ, p) = (η, q) .

This solves Lions’s problem in the quasi-Banach setting.

We need a mild extra assumption: (A0,A1) is a Gagliardo couple

Extended range of the parameters: p < 1 and/or q < 1 is possible

Interesting dichotomy: The spaces (A0,A1)θ,p

either all coincide (if A0 ∩ A1 is closed in A0 + A1)

or are all different (if A0 ∩ A1 is not closed in A0 + A1)

Thomas Kühn (Leipzig) Lions’s problem Cartagena, 27 May 2022 11 / 20



Sketch of the proof

We proceed by contradiction.

Case 1. First assume that for some 0 < θ < 1 and 0 < p < q <∞

X := (A0,A1)θ,p = (A0,A1)θ,q with equivalence of quasi-norms .

Then one can construct – as in the proof of the subspace-theorem,
taking the parameter ε small enough – a sequence (xn) ⊂ X that is
equivalent to the unit vector basis in both `p and `q, a contradiction.

Case 2. Assume now that for some 0 < θ 6= η < 1 and 0 < p, q ≤ ∞

(A0,A1)θ,p = (A0,A1)η,q .

By reiteration it follows that the spaces (A0,A1)λ,r with λ = θ+η
2 do

not depend on r , for 0 < r ≤ ∞. Thus we are back in Case 1, and
the proof is finished.
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An application

We want to give an application concerning spaces of operators

defined by the behaviour of their approximation numbers.

But first we need some preparations.
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Approximation numbers

The n-th approximation number of a (bounded linear) operator
T ∈ L(X ,Y ) between two Banach spaces X and Y is defined by

an(T ) := inf{‖T − A‖ : A ∈ L(X ,Y ), rank A < n} .

lim
n→∞

an(T ) = 0 =⇒ T compact

⇐= fails by Enflo’s counter-example

The rate of decay of an(T ) as n→∞ can be viewed as a measure of

the ’degree’ of compactness of T .

For compact operators between Hilbert spaces and all n ∈ N one has

an(T ) = sn(T ) =
√
λn(T ∗T ) = n-th singular number .
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Operator classes defined by approximation numbers

For 0 < p <∞ and 0 < q ≤ ∞ we consider the class

Ap,q(X ,Y ) :=
{

T ∈ L(X ,Y ) :
(
(an(T )

)
n∈N ∈ `p,q

}
,

where `p,q are the Lorentz sequence spaces.

Ap,q(X ,Y ) is a quasi-Banach space w.r.t. the quasi-norm

‖T‖p,q :=


(∑

n∈N
(
n1/p−1/qan(T )

)q)1/q
if q <∞

supn∈N n1/pan(T ) if q =∞ .

In general, the quasi-norm ‖.‖p,q is not equivalent to a norm .

If H and G are Hilbert spaces, then

Ap,q(H,G ) = Sp,q(H,G ) = Schatten classes .
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A problem on the scale {Ap(X ,Y )}p>0

`p,p = `p y short notation: Ap(X ,Y ) := Ap,p(X ,Y )

Problem (Albrecht Pietsch, Sept. 2021)

Show that, for arbitrary infinite-dimensional Banach spaces X and Y ,

the scale
{
Ap(X ,Y )

}
p>0

is strictly increasing.

This motivated us to consider Lions’s problem for quasi-Banach couples.

Remark

If dim X <∞ and/or dim Y <∞, then

Ap,q(X ,Y ) = L(X ,Y ) for all 0 < p <∞ and 0 < q ≤ ∞ .

Proof. Every T ∈ L(X ,Y ) has finite rank y an(T ) = 0 ∀ n > rank T
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Real interpolation of the classes Ap(X ,Y )

Theorem (Hermann König 1978)

Let 0 < p0 < p1 <∞ .

(i) The K -functional of the couple (Ap0(X ,Y ),Ap1(X ,Y )) satisfies

K (t,T ) ∼
( ∑

n≤btr c

an(T )p0
)1/p0

+
( ∑

n>btr c

an(T )p1
)1/p1

, t > 0 ,

where 1/r = 1/p0 − 1/p1.

(ii) Let 0 < θ < 1 and 0 < q ≤ ∞ . Then

(
Ap0(X ,Y ),Ap1(X ,Y )

)
θ,q

= Ap,q(X ,Y ) ,
1

p
=

1− θ
p0

+
θ

p1
.

By reiteration, even
(
Ap0,q0(X ,Y ),Ap1,q1(X ,Y )

)
θ,q

= Ap,q(X ,Y ) holds.
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Further properties

Let 0 < p0 < p1 <∞ . König’s interpolation formula implies

Lemma (Cobos, Cwikel, K., 2022)

(Ap0(X ,Y ),Ap1(X ,Y )) is a quasi-Banach Gagliardo couple.

Since Ap0 ⊂ Ap1 , we have Ap0 = Ap0 ∩ Ap1 , Ap1 = Ap0 +Ap1 .

Lemma (Cobos-Cwikel-K. 2022)

If 1/p0 − 1/p1 > 1 then Ap0(X ,Y ) is not closed in Ap1(X ,Y ) .

Proof: By Dvoretzky’s theorem one can construct a sequence of finite-rank

operators Tn ∈ L(X ,Y ), such that lim
n→∞

‖Tn‖p0
‖Tn‖p1

=∞ , hence the

quasi-norms ‖.‖p0 and ‖.‖p1 are not equivalent on Ap0 , and

therefore Ap0(X ,Y ) cannot be closed in Ap1(X ,Y ) .
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Solutions to Pietsch’s problem

Combining these two lemmata gives the following more general result.

Theorem (Cobos-Cwikel-K. 2022)

Let X and Y be arbitrary infinite-dimensional Banach spaces. Then

Ap0,q0(X ,Y ) 6= Ap1,q1(X ,Y ) unless (p0, q0) = (p1, q1) .

In particular, the scale {Ap(X ,Y )}p>0 is strictly increasing.

In fact, the spaces Ap,q(X ,Y ) are lexicographically ordered, similarly to
the ordering of the Lorentz sequence spaces `p,q, i.e.

Ap0,q0(X ,Y ) ↪→ Ap1,q1(X ,Y ) , if

{
p0 < p1 or

p0 = p1 and q0 < q1 .

Moreover, all these embeddings are strict.
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Dear Fernando,

Congratulations once again to your 65th birthday

and all my best wishes for many years to come!

Thank you for your attention!
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