On a problem of Lions on real interpolation spaces. The quasi-Banach case

Thomas Kühn

Universität Leipzig, Germany
"XX Encuentro de Análisis Real y Complejo"
Cartagena, 26 - 28 May 2022

27 May 2022

Plan of the talk

The talk is based on joint work with
Fernando Cobos and Michael Cwikel

- Preliminaries: Quasi-norms and the real interpolation method
- Solution to Lions's problem for quasi-Banach couples
- Application to spaces of operators defined by approximation numbers

Quasi-normed and r-normed spaces

- A quasi-norm resp. an r-norm $(0<r \leq 1)$ on a linear space satisfies the norm axioms, but the triangle inequality is replaced by the quasi-triangle inequality: $\quad\|x+y\| \leq C(\|x\|+\|y\|)$ for some $C \geq 1$ r-triangle inequality:

$$
\|x+y\|^{r} \leq\|x\|^{r}+\|y\|^{r}
$$

- norm \Longleftrightarrow quasi-norm with $C=1 \quad \Longleftrightarrow \quad r$-norm with $r=1$
- A quasi-Banach resp. r-Banach space is a linear space which is complete with respect to a quasi-norm resp. r-norm.
- Every r-norm is an s-norm for all $0<s<r$, and also a quasi-norm. (In fact, the quasi-triangle constant is then $C=2^{1 / r-1}$.)
- Aoki-Rolewicz-Theorem. Every quasi-norm with constant $C>1$ is equivalent to an r-norm, where r is defined by $C=2^{1 / r-1}$.
- Example: $\left(\ell_{r},\|.\|_{r}\right)$ is an r-Banach space, $0<r<1$.

Real interpolation spaces

- A quasi-Banach couple $\left(A_{0}, A_{1}\right)$ is formed by two quasi-Banach spaces, both embedded into a common topological Hausdorff space.
- Peetre's K-functional with respect to a quasi-Banach couple $\left(A_{0}, A_{1}\right)$ is defined for $t>0$ and $a \in A_{0}+A_{1}$ by

$$
K(t, a):=\inf \left\{\left\|a_{0}\right\|_{A_{0}}+t\left\|a_{1}\right\|_{A_{1}}: a=a_{0}+a_{1}, a_{j} \in A_{j}\right\}
$$

- The quasi-norms of $A_{0}+A_{1}$ and $A_{0} \cap A_{1}$ are given by

$$
\|a\|_{A_{0}+A_{1}}:=K(1, a) \quad, \quad\|a\|_{A_{0} \cap A_{1}}:=\max \left\{\|a\|_{A_{0}},\|a\|_{A_{1}}\right\} .
$$

- Let $0<\theta<1,0<p \leq \infty$. The real interpolation space $\left(A_{0}, A_{1}\right)_{\theta, p}$ consists of all $a \in A_{0}+A_{1}$ with finite quasi-norm

$$
\|a\|_{\theta, p}:= \begin{cases}\left(\int_{0}^{\infty}\left(t^{-\theta} K(t, a)\right)^{p} \frac{d t}{t}\right)^{1 / p} & \text { if } 0<p<\infty \\ \sup _{t>0} t^{-\theta} K(t, a) & \text { if } p=\infty .\end{cases}
$$

Equivalent quasi-norms on $\left(A_{0}, A_{1}\right)_{\theta, p}$

- For every $0<r<1$ we have the equivalence

$$
K(t, a) \sim K_{r}(t, a):=\inf \left(\left\|a_{0}\right\|_{A_{0}}^{r}+t^{r}\left\|a_{1}\right\|_{A_{1}}^{r}\right)^{1 / r},
$$

where the inf is taken over all decompositions $a=a_{0}+a_{1}, a_{j} \in A_{j}$.

- Discretizing the integral and setting $j_{m}(a):=2^{-m \theta} K_{r}\left(2^{m}, a\right)$ we get

$$
\|a\|_{\theta, p} \sim\|a\|_{\theta, p ; r}:= \begin{cases}\left(\sum_{m \in \mathbb{Z}} j_{m}(a)^{p}\right)^{1 / p} & \text { if } 0<p<\infty \\ \sup _{m \in \mathbb{Z}} j_{m}(a) & \text { if } p=\infty .\end{cases}
$$

- If A_{0} and A_{1} are both r-Banach spaces and $0<r<p$, then $\|a\|_{\theta, p ; r}$ is an r-norm on $\left(A_{0}, A_{1}\right)_{\theta, p}$, and $K_{r}(1, a)$ is an r-norm on $A_{0}+A_{1}$.

Gagliardo couples

Let $\left(A_{0}, A_{1}\right)$ be a (quasi-) Banach couple.

- The Gagliardo completion A_{j}^{\sim} of A_{j} consists of all $a \in A_{0}+A_{1}$ s.t.

$$
\begin{aligned}
\|a\|_{A_{0}^{\sim}} & :=\sup _{t>0} K(t, a)=\lim _{t \rightarrow \infty} K(t, a)<\infty \quad \text { resp. } \\
\|a\|_{A_{1}^{\sim}} & :=\sup _{t>0} \frac{K(t, a)}{t}=\lim _{t \rightarrow 0} \frac{K(t, a)}{t}<\infty
\end{aligned}
$$

- In other words: $A_{0}^{\sim}=\left(A_{0}, A_{1}\right)_{0, \infty}$ and $A_{1}^{\sim}=\left(A_{0}, A_{1}\right)_{1, \infty}$
- $\left(A_{0}, A_{1}\right)$ is called a Gagliardo couple, if $A_{0}^{\sim}=A_{0}$ and $A_{1}^{\sim}=A_{1}$.
- This is a rather mild condition, it is satisfied in many concrete cases.
- Example: If $0<p_{0} \neq p_{1} \leq \infty$, then $\left(L_{p_{0}}, L_{p_{1}}\right)$ is a Gagliardo couple.

Lions's problem

Lions's problem

When does a given family of interpolation spaces effectively depend on its parameters, i.e. when are all these spaces different from each other?

- For Banach couples and the real method with parameters $0<\theta<1$ and $1 \leq p \leq \infty$ the solution is as follows:

Theorem (Janson, Nilson, Peetre, Zafran 1984)
Let $0<\theta, \eta<1$ and $1 \leq p, q \leq \infty$. If $\left(A_{0}, A_{1}\right)$ is a Banach couple such that $\begin{aligned} &(*) \quad A_{0} \cap A_{1} \text { is NOT closed in } A_{0}+A_{1}, \\ &\left(A_{0}, A_{1}\right)_{\theta, p} \neq\left(A_{0}, A_{1}\right)_{\eta, q} \text { unless }(\theta, p) \text { then } \\ &(\eta, q)\end{aligned}$

- Note that condition $(*)$ is necessary!

Otherwise, due to the J-description of the K-method, $\left(A_{0}, A_{1}\right)_{\theta, p}=A_{0} \cap A_{1}$ for all parameters.

Related results

- J. D. Stafney (Pac. J. Math. 1970)

Similar results for the complex method.

- J. Almira and P. Fernández-Martínez (J. Math. Anal. Appl. 2021) considered the real method for ordered quasi-Banach couples

Subspaces of $\left(A_{0}, A_{1}\right)_{\theta, p}$ - the Banach case

Let $\left(A_{0}, A_{1}\right)$ be a Banach couple, $0<\theta<1$ and $1 \leq p \leq \infty$.

Proposition (Mireille Levy, paper 1979 and PhD 1980)

$\left(A_{0}, A_{1}\right)_{\theta, p}$ closed in $A_{0}+A_{1} \quad \Longrightarrow \quad A_{0} \cap A_{1}$ closed in $A_{0}+A_{1}$
Due to the J-description of $\left(A_{0}, A_{1}\right)_{\theta, p}$, the implication \Longleftarrow is trivial. In the proof duality arguments are used.

Theorem (M. Levy)

Let $1 \leq p<\infty$. If $\left(A_{0}, A_{1}\right)_{\theta, p}$ is NOT closed in $A_{0}+A_{1}$, then it contains a complemented subspace isomorphic to ℓ_{p}.

Idea of proof: For every $0<\varepsilon<1$ one can find recursively a sequence $\left(x_{n}\right) \subset\left(A_{0}, A_{1}\right)_{\theta, p}$ that is $(1+\varepsilon)$-equivalent to the unit vector basis in ℓ_{p}. Essential for this construction is the previous proposition.

Subspaces of $\left(A_{0}, A_{1}\right)_{\theta, p}$ - the quasi-Banach case

Let $\left(A_{0}, A_{1}\right)$ be a quasi-Banach couple, $0<\theta<1$ and $0<p \leq \infty$.

Proposition (Cobos-Cwikel-K. 2022)

$$
\left(A_{0}, A_{1}\right)_{\theta, p} \text { closed in } A_{0}+A_{1} \quad \Longrightarrow \quad A_{0}^{\sim} \cap A_{1}^{\sim} \text { closed in } A_{0}+A_{1}
$$

Levy used duality arguments, which are no longer available in the quasi-Banach case. Instead our proof is based on computations with the K-functional, combined with an iterative procedure.

Theorem (Cobos-Cwikel-K. 2022)

Let $\left(A_{0}, A_{1}\right)$ be a Gagliardo couple and $0<p<\infty$. If $\left(A_{0}, A_{1}\right)_{\theta, p}$ is NOT closed in $A_{0}+A_{1}$, then it contains a subspace isomorphic to ℓ_{p}.

Proof: Similar construction as in Levy's paper. But due to the lack of duality, we cannot show that the subspace is complemented.

Lions's problem in the quasi-Banach case

Theorem (Cobos-Cwikel-K. 2022)

Let $\left(A_{0}, A_{1}\right)$ be a quasi-Banach Gagliardo couple such that $A_{0} \cap A_{1}$ is NOT closed in $A_{0}+A_{1}$, and let $0<\theta, \eta<1$ and $0<p, q \leq \infty$. Then

$$
\left(A_{0}, A_{1}\right)_{\theta, p} \neq\left(A_{0}, A_{1}\right)_{\eta, q} \quad \text { unless } \quad(\theta, p)=(\eta, q) .
$$

- This solves Lions's problem in the quasi-Banach setting.
- We need a mild extra assumption: $\left(A_{0}, A_{1}\right)$ is a Gagliardo couple
- Extended range of the parameters: $p<1$ and/or $q<1$ is possible
- Interesting dichotomy: The spaces $\left(A_{0}, A_{1}\right)_{\theta, p}$

$$
\begin{array}{ll}
\text { either all coincide } & \text { (if } A_{0} \cap A_{1} \text { is closed in } A_{0}+A_{1} \text {) } \\
\text { or are all different } & \text { (if } A_{0} \cap A_{1} \text { is not closed in } A_{0}+A_{1} \text {) }
\end{array}
$$

Sketch of the proof

We proceed by contradiction.

- Case 1. First assume that for some $0<\theta<1$ and $0<p<q<\infty$

$$
X:=\left(A_{0}, A_{1}\right)_{\theta, p}=\left(A_{0}, A_{1}\right)_{\theta, q} \quad \text { with equivalence of quasi-norms. }
$$

Then one can construct - as in the proof of the subspace-theorem, taking the parameter ε small enough - a sequence $\left(x_{n}\right) \subset X$ that is equivalent to the unit vector basis in both ℓ_{p} and ℓ_{q}, a contradiction.

- Case 2. Assume now that for some $0<\theta \neq \eta<1$ and $0<p, q \leq \infty$

$$
\left(A_{0}, A_{1}\right)_{\theta, p}=\left(A_{0}, A_{1}\right)_{\eta, q} .
$$

By reiteration it follows that the spaces $\left(A_{0}, A_{1}\right)_{\lambda, r}$ with $\lambda=\frac{\theta+\eta}{2}$ do not depend on r, for $0<r \leq \infty$. Thus we are back in Case 1, and the proof is finished.

An application

- We want to give an application concerning spaces of operators defined by the behaviour of their approximation numbers.
- But first we need some preparations.

Approximation numbers

- The n-th approximation number of a (bounded linear) operator $T \in \mathcal{L}(X, Y)$ between two Banach spaces X and Y is defined by

$$
a_{n}(T):=\inf \{\|T-A\|: A \in \mathcal{L}(X, Y), \operatorname{rank} A<n\} .
$$

- $\lim _{n \rightarrow \infty} a_{n}(T)=0 \quad \Longrightarrow \quad T$ compact
\Longleftarrow fails by Enflo's counter-example
- The rate of decay of $a_{n}(T)$ as $n \rightarrow \infty$ can be viewed as a measure of the 'degree' of compactness of T.
- For compact operators between Hilbert spaces and all $n \in \mathbb{N}$ one has

$$
a_{n}(T)=s_{n}(T)=\sqrt{\lambda_{n}\left(T^{*} T\right)}=n \text {-th singular number. }
$$

Operator classes defined by approximation numbers

- For $0<p<\infty$ and $0<q \leq \infty$ we consider the class

$$
\mathcal{A}_{p, q}(X, Y):=\left\{T \in \mathcal{L}(X, Y):\left(\left(a_{n}(T)\right)_{n \in \mathbb{N}} \in \ell_{p, q}\right\}\right.
$$

where $\ell_{p, q}$ are the Lorentz sequence spaces.

- $\mathcal{A}_{p, q}(X, Y)$ is a quasi-Banach space w.r.t. the quasi-norm

$$
\|T\|_{p, q}:=\left\{\begin{array}{cl}
\left(\sum_{n \in \mathbb{N}}\left(n^{1 / p-1 / q} a_{n}(T)\right)^{q}\right)^{1 / q} & \text { if } q<\infty \\
\sup _{n \in \mathbb{N}} n^{1 / p} a_{n}(T) & \text { if } q=\infty
\end{array}\right.
$$

In general, the quasi-norm $\|\cdot\|_{p, q}$ is not equivalent to a norm.

- If H and G are Hilbert spaces, then

$$
\mathcal{A}_{p, q}(H, G)=\mathcal{S}_{p, q}(H, G)=\text { Schatten classes }
$$

A problem on the scale $\left\{\mathcal{A}_{p}(X, Y)\right\}_{p>0}$

$$
\ell_{p, p}=\ell_{p} \quad \curvearrowright \quad \text { short notation: } \mathcal{A}_{p}(X, Y):=\mathcal{A}_{p, p}(X, Y)
$$

Problem (Albrecht Pietsch, Sept. 2021)

Show that, for arbitrary infinite-dimensional Banach spaces X and Y, the scale $\left\{\mathcal{A}_{p}(X, Y)\right\}_{p>0} \quad$ is strictly increasing.

This motivated us to consider Lions's problem for quasi-Banach couples.

Remark

If $\operatorname{dim} X<\infty$ and/or $\operatorname{dim} Y<\infty$, then

$$
\mathcal{A}_{p, q}(X, Y)=\mathcal{L}(X, Y) \quad \text { for all } 0<p<\infty \text { and } 0<q \leq \infty
$$

Proof. Every $T \in \mathcal{L}(X, Y)$ has finite rank $\curvearrowright a_{n}(T)=0 \quad \forall n>\operatorname{rank} T$

Real interpolation of the classes $\mathcal{A}_{p}(X, Y)$

Theorem (Hermann König 1978)

Let $0<p_{0}<p_{1}<\infty$.
(i) The K-functional of the couple $\left(\mathcal{A}_{p_{0}}(X, Y), \mathcal{A}_{p_{1}}(X, Y)\right)$ satisfies

$$
\begin{aligned}
& K(t, T) \sim\left(\sum_{n \leq\left\lfloor t^{r}\right\rfloor} a_{n}(T)^{p_{0}}\right)^{1 / p_{0}}+\left(\sum_{n>\left\lfloor t^{r}\right\rfloor} a_{n}(T)^{p_{1}}\right)^{1 / p_{1}}, t>0, \\
& \text { where } \quad 1 / r=1 / p_{0}-1 / p_{1} .
\end{aligned}
$$

(ii) Let $0<\theta<1$ and $0<q \leq \infty$. Then

$$
\left(\mathcal{A}_{p_{0}}(X, Y), \mathcal{A}_{p_{1}}(X, Y)\right)_{\theta, q}=\mathcal{A}_{p, q}(X, Y) \quad, \quad \frac{1}{p}=\frac{1-\theta}{p_{0}}+\frac{\theta}{p_{1}} .
$$

By reiteration, even $\left(\mathcal{A}_{p_{0}, q_{0}}(X, Y), \mathcal{A}_{p_{1}, q_{1}}(X, Y)\right)_{\theta, q}=\mathcal{A}_{p, q}(X, Y)$ holds.

Further properties

Let $0<p_{0}<p_{1}<\infty$. König's interpolation formula implies

Lemma (Cobos, Cwikel, K., 2022)

$\left(\mathcal{A}_{p_{0}}(X, Y), \mathcal{A}_{p_{1}}(X, Y)\right)$ is a quasi-Banach Gagliardo couple.
Since $\mathcal{A}_{p_{0}} \subset \mathcal{A}_{p_{1}}$, we have $\quad \mathcal{A}_{p_{0}}=\mathcal{A}_{p_{0}} \cap \mathcal{A}_{p_{1}}, \mathcal{A}_{p_{1}}=\mathcal{A}_{p_{0}}+\mathcal{A}_{p_{1}}$.

```
Lemma (Cobos-Cwikel-K. 2022)
If 1/ po - 1/ p1>1 then }\mp@subsup{\mathcal{A}}{\mp@subsup{p}{0}{}}{}(X,Y)\mathrm{ is not closed in }\mp@subsup{\mathcal{A}}{\mp@subsup{p}{1}{}}{}(X,Y)
```

Proof: By Dvoretzky's theorem one can construct a sequence of finite-rank operators $T_{n} \in \mathcal{L}(X, Y)$, such that $\lim _{n \rightarrow \infty} \frac{\left\|T_{n}\right\|_{p_{0}}}{\left\|T_{n}\right\|_{p_{1}}}=\infty$, hence the quasi-norms $\|\cdot\|_{p_{0}}$ and $\|\cdot\|_{p_{1}}$ are not equivalent on $\mathcal{A}_{p_{0}}$, and therefore $\mathcal{A}_{p_{0}}(X, Y)$ cannot be closed in $\mathcal{A}_{p_{1}}(X, Y)$.

Solutions to Pietsch's problem

Combining these two lemmata gives the following more general result.

Theorem (Cobos-Cwikel-K. 2022)

Let X and Y be arbitrary infinite-dimensional Banach spaces. Then

$$
\mathcal{A}_{p_{0}, q_{0}}(X, Y) \neq \mathcal{A}_{p_{1}, q_{1}}(X, Y) \quad \text { unless } \quad\left(p_{0}, q_{0}\right)=\left(p_{1}, q_{1}\right) .
$$

In particular, the scale $\left\{\mathcal{A}_{p}(X, Y)\right\}_{p>0}$ is strictly increasing.
In fact, the spaces $\mathcal{A}_{p, q}(X, Y)$ are lexicographically ordered, similarly to the ordering of the Lorentz sequence spaces $\ell_{p, q}$, i.e.

$$
\mathcal{A}_{p_{0}, q_{0}}(X, Y) \hookrightarrow \mathcal{A}_{p_{1}, q_{1}}(X, Y) \text {, if }\left\{\begin{array}{l}
p_{0}<p_{1} \quad \text { or } \\
p_{0}=p_{1} \text { and } q_{0}<q_{1}
\end{array}\right.
$$

Moreover, all these embeddings are strict.

Dear Fernando,

Congratulations once again to your 65th birthday and all my best wishes for many years to come!

Thank you for your attention!

