Subgaussian Kahane-Salem-Zygmund inequalities in Banach spaces

Mieczysław Mastyło

Adam Mickiewicz University, Poznań

XX Encuentros de Análisis Real y Complejo

Cartagena, May 26 – 28, 2022

Based on joint work with Andreas Defant

Outline

- Introduction
- 2 Abstract random Kahane-Salem-Zygmund (KSZ-) inequalities
- **3** KSZ-inequalities for subgaussian random variables
- 4 Random Dirichlet polynomials
- 6 Appendix

Random polynomials

- For a multi-index $\alpha = (\alpha_1, \dots \alpha_n) \in \mathbb{Z}^n$ and $z = (z_1, \dots, z_n) \in \mathbb{C}^n$, we let $|\alpha| := |\alpha_1| + \dots + |\alpha_n|$ and $z^{\alpha} := z_1^{\alpha_1} \cdots z_n^{\alpha_n}$. For $\alpha = (\alpha_1, \dots \alpha_n) \in \mathbb{N}_0^n$, $\alpha! := \alpha_1! \cdots \alpha_n!$, where $\mathbb{N}_0 := \mathbb{N} \cup \{0\}$.
- If $P: \mathbb{C}^n \to \mathbb{C}$ is a polynomial given by

$$P(z) = \sum_{\alpha \in \mathbb{N}_0^n} c_{\alpha} z^{\alpha}, \quad z \in \mathbb{C}^n,$$

then its degree $deg(P) := max\{|\alpha|; c_{\alpha} \neq 0\}.$

• For $n \in \mathbb{N}$ and $m \in \mathbb{N}_0$ we denote by $\mathcal{T}_m(\mathbb{T}^n)$ the space of all trigonometric polynomials

$$P(z) = \sum_{\alpha \in \mathbb{Z}^n} c_{\alpha} z^{\alpha}, \quad z \in \mathbb{T}^n$$

on the *n*-dimensional torus \mathbb{T}^n with $\deg(P) := \max\{|\alpha|; c_{\alpha} \neq 0\} \leqslant m$.

• The origin of trigonometric random polynomials goes back to the Salem and Zygmund seminal Acta Math. (1954) paper. They proved that there exist positive constants c_1, c_2 such that for almost all $t \in [0,1]$ one has

$$c_1\sqrt{n\log n}\leqslant \sup_{x\in[0,2\pi]}\left|\sum_{j=0}^{n-1}r_j(t)e^{ijx}\right|\leqslant c_2\sqrt{n\log n}.$$

The study of random polynomials was continued by Kahane (1960) in the setting of random polynomials in several variables. In the recent decades the multidimensional variants of the Kahane-Salem-Zygmund inequalities (KSZ-inequalities for short) have been of central importance in modern analysis, as, e.g., Fourier analysis, analytic number theory, or holomorphy in high dimensions. The multidimensional KSZ-inequality states:

Theorem There exists a positive constant C such that, for each m, $n \in \mathbb{N}$ with $m \geqslant 2$ and any trigonometric polynomial $\sum_{\alpha \in \mathbb{Z}^n} c_\alpha \mathbf{z}^\alpha$ in $\mathcal{T}_m(\mathbb{T}^n)$ there exists a choice of signs $\varepsilon_\alpha = \pm 1$ for which

$$\sup_{\mathbf{z} \in \mathbb{T}^n} \Big| \sum_{|\alpha| \leqslant m} \varepsilon_{\alpha} c_{\alpha} \mathbf{z}^{\alpha} \Big| \leqslant C \sqrt{n \log m} \left(\sum_{|\alpha| \leqslant m} |c_{\alpha}|^2 \right)^{\frac{1}{2}}.$$

Extended variant of Kahane-Salem-Zygmund inequality

Theorem For every a>0, for each integers $m,n\geqslant 2$ and for all families of $(\varepsilon_{\alpha})_{\alpha}$ of independent Bernoulli variables on a probability measure space $(\Omega,\mathcal{A},\mathbb{P})$ and $(c_{\alpha})_{\alpha}\subset\mathbb{C}$, where $\alpha\in\mathbb{Z}^n$, $|\alpha|\leqslant m$ and not all of them equal to zero, we have

$$\mathbb{P}\bigg\{\omega\in\Omega;\ \sup_{z\in\mathbb{T}^n}\Big|\sum_{|\alpha|\leqslant m}\varepsilon_{\alpha}(\omega)c_{\alpha}z^{\alpha}\Big|\geqslant a\,\sqrt{n\log m}\,\Big(\sum_{|\alpha|\leqslant m}|c_{\alpha}|^2\Big)^{\frac{1}{2}}\bigg\}\leqslant C(a)\,,$$

where $C(a) := 4(\pi^2/(m^{\frac{a^2}{16}}-1))^n$.

Remark. For all $a > 4\left(\frac{\log(2\pi^2)}{\log 2} + 1\right)^{1/2}$ one has C(a) < 1, so for this a, we get

$$\mathbb{P}\bigg\{\omega\in\Omega;\ \sup_{z\in\mathbb{T}^n}\Big|\sum_{|\alpha|\leqslant m}\varepsilon_\alpha(\omega)c_\alpha z^\alpha\Big|\leqslant a\,\sqrt{n\log m}\,\Big(\sum_{|\alpha|\leqslant m}|c_\alpha|^2\Big)^\frac12\bigg\}>0\,.$$

Theorem (H. P. Boas (2000)) Let $1 \le p \le \infty$ and $m, n \in \mathbb{N}$ with $m, n \ge 2$. Then there exists a choice of signs $(\varepsilon_{\alpha})_{|\alpha|=m}$, $\varepsilon_{\alpha}=\pm 1$ such that

• If $1 \leqslant p \leqslant 2$, then

$$\sup_{z \in B_{\ell_p^{(n)}}} \Big| \sum_{|\alpha| = m} \varepsilon_\alpha \frac{m!}{\alpha!} z^\alpha \Big| \leqslant C \sqrt{mn \log m} \ (m!)^{1 - 1/p}.$$

• If $2 \leqslant p \leqslant \infty$, then

$$\sup_{z \in B_{\ell_p^{(n)}}} \Big| \sum_{|\alpha| = m} \varepsilon_\alpha \frac{m!}{\alpha!} z^\alpha \Big| \leqslant C \sqrt{mn \log m} \ n^{(1/2 - 1/p)m} (m!)^{1/2},$$

where C > 0 does not depend on m nor on n.

Abstract random Kahane-Salem-Zygmund inequalities

• Definition (A. Defant–M. M.) Let $X \subset L^0(\Omega, \mathcal{A}, \mu)$ be a Banach function lattice over a measure space $(\Omega, \mathcal{A}, \mu)$. A sequence $(\gamma_i)_{i \in \mathbb{N}} \subset X$ is said to satisfy the KSZ-inequality of type $(X, (S^n), \psi)$ provided there exist a function $\psi \colon \mathbb{N} \to (0, \infty)$ and a sequence $(\|\cdot\|_n)_{n \in \mathbb{N}}$ of semi-norms on \mathbb{K}^n such that, for every choice of finitely many vectors $(a_i(j))_{j=1}^N \in \ell_\infty^N$, $1 \leqslant i \leqslant K$ the following inequality holds:

$$\left\| \sup_{1 \leq j \leq N} \left| \sum_{i=1}^K a_i(j) \gamma_i \right| \right\|_X \leq \psi(N) \sup_{1 \leq j \leq N} \left\| (a_i(j))_{i=1}^K \right\|_{S^K},$$

• Of special importance for the applications we have in mind, are Rademacher random variables and the much larger class of subgaussian random variables.

KSZ-inequalities by lattice constants

• If X is a Banach lattice, then for each $n \in \mathbb{N}$, the M-constant $\mu_n(X)$ is defined by

$$\mu_n(X) := \sup \left\{ \big\| \sup_{1 \leqslant j \leqslant n} |x_j| \big\|_X : \ \|x_j\|_X \leqslant 1, \text{ for } 1 \leqslant j \leqslant n \right\}.$$

• Properties: $(\mu_n(X))_n$ is a non-decreasing sequence with $\mu_n(X) \in [1, n]$ for each $n \in \mathbb{N}$; $(\mu_n(X))_n$ is a submultiplicative sequence, that is,

$$\mu_{mn}(X) \leqslant \mu_m(X)\mu_n(X), \quad m, n \in \mathbb{N};$$

 $\left(\frac{\mu_n(X)}{n}\right)$ is non-increasing sequence (Abramovich–Lozanovskii (1973)).

- $\lim_{n\to\infty}\frac{\mu_n(X)}{n}\in\{0,1\}$. This implies $\mu_n(X)=n$ for each n whenever $\lim_{n\to\infty}\frac{\mu_n(X)}{n}=1$.
- Theorem (Abramovich–Lozanovskii (1973)) If $\lim_{n\to\infty} \frac{\mu_n(X)}{n} = 0$, then all odd duals of X are KB-spaces.

Proposition (A. Defant–M. M.) Let X be a Banach lattice over $(\Omega, \mathcal{A}, \nu)$ and let $\psi \colon \mathbb{N} \to [1, \infty)$ be given by $\psi(n) := \mu_n(X)$ for each $n \in \mathbb{N}$. Then every sequence $(\gamma_i)_{i \in \mathbb{N}}$ of random variables in X satisfies the KSZ-inequality of type $(X, (S^n), \psi)$ with $S^n := (\mathbb{K}^n, \|\cdot\|_n)$, that is,

$$\left\|\sup_{1\leqslant j\leqslant N}\left|\sum_{i=1}^K a_i(j)\gamma_i\right|\right\|_X\leqslant \psi(N)\sup_{1\leqslant j\leqslant N}\left\|(a_i(j))_{i=1}^K\right\|_{S^K},\quad (a_i(j))_{j=1}^N\in\ell_\infty^N$$

 $S^n := (\mathbb{K}^n, \|\cdot\|_n)$, where the semi norm $\|\cdot\|_n$ (resp., norm $\|\cdot\|_n$, whenever the γ_i are linearly independent) are defined by

$$||z||_n := ||z_1\gamma_1 + \ldots + z_n\gamma_n||_X, \quad z = (z_1, \ldots, z_n) \in \mathbb{K}^n.$$

M-constants for some class of Orlicz spaces

Let $\Phi\colon\mathbb{R}_+\to\mathbb{R}_+$ be an Orlicz function (that is, a convex, increasing and continuous positive function with $\Phi(0)=0$). The Orlicz space $L_\Phi\subset L^0(\Omega,\mathcal{A},\mu)$ is defined to be the space of all f such that $\int_\Omega\Phi(\lambda|f|)\,d\mu<\infty$ for some $\lambda>0$, and it is equipped with the norm

$$\|f\|_{\Phi} := \inf \left\{ \lambda > 0 : \int_{\Omega} \Phi\left(\frac{|f|}{\lambda}\right) d\mu \leqslant 1 \right\}.$$

For $1 \leqslant r < \infty$, the exponential Orlicz function $\varphi_r(t) := e^{t^r} - 1$, $t \geqslant 0$.

Proposition. [A. Defant–M. M.] Let L_{Φ} be an Orlicz space over a probability measure space $(\Omega, \mathcal{A}, \nu)$ with $\Phi(t) = e^{\varphi(t)} - 1$ for all $t \ge 0$, where φ is an Orlicz function on \mathbb{R}_+ such that, for some $\gamma > 0$, $\varphi(st) \le \gamma \varphi(s) \varphi(t)$ for all $s \in (0, 1]$ and t > 0. Then, for each $n \in \mathbb{N}$, one has

$$\mu_n(L_{\Phi}) \leqslant \frac{K}{\varphi^{-1}(\varphi(1)/(1+\log n))}$$
,

where $K = (e-1)\gamma\varphi(1)$.

Corollary For $r \in [1, \infty)$ let L_{φ_r} be an Orlicz space over a probability measure space $(\Omega, \mathcal{A}, \nu)$ with $\varphi_r(t) = e^{t^r} - 1$ for all $t \geqslant 0$. Then for each $n \in \mathbb{N}$ one has

$$\mu_n(L_{\varphi_r}) \leqslant (e-1)(1+\log n)^{\frac{1}{r}}.$$

KSZ-inequalities for subgaussian random variables

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, and f a random variable. If f is real-valued, then f is said to be subgaussian, whenever there exists $s \ge 0$ such that

$$\mathbb{E}\exp(\lambda f)\leqslant \exp\left(\frac{s^2\lambda^2}{2}\right), \quad \lambda\in\mathbb{R}\,,$$

and if f is complex-valued, whenever there exists $s \ge 0$ such that

$$\mathbb{E} \exp(\operatorname{Re}(zf) \leqslant \exp\left(\frac{s^2|z|^2}{2}\right), \quad z \in \mathbb{C}.$$

The best such s is denoted by sg(f).

- A real-valued sequence (f_n) is called subgaussian if there is $s \ge 0$ such that for any $x = (x_n) \in \ell_2$ of norm one, the random variable $f = \sum_{n=1}^{\infty} x_n f_n$ is subgaussian. The best possible number s is denoted by $sg(f_n)$.
- A complex-valued sequence (f_n) is said to be subgaussian, whenever $(\text{Re}f_n)$ and the imaginary parts $(\text{Im}f_n)$, is subgaussian.

Examples

- Every sequence (γ_n) of independent, real (resp., complex) normal gaussian variables is subgaussian with $sg((\gamma_n)) = 1$.
- Every sequences (ε_n) of independent Rademacher variables is subgaussian with $sg((\varepsilon_n)) = 1$.

Theorem (A. Defant–M. M.) Let $(\gamma_i)_{i\in\mathbb{N}}$ be a (real or complex) subgaussian sequence of random variables over $(\Omega, \mathcal{A}, \mathbb{P})$ with $s = \operatorname{sg}((\gamma_i))$. The following statements are true for each $K, N \in \mathbb{N}$ and all $a_1, \ldots, a_K \in \ell_{\infty}^N$ with $a_i = (a_i(j))_{i=1}^N$, $1 \le i \le K$:

(1) There is a constant $C_2 = C(s) > 0$ such that

$$\left\| \sum_{i=1}^K \gamma_i a_i \right\|_{L_{\varphi_2}(\ell_{\infty}^N)} \leqslant C_2 (1 + \log N)^{\frac{1}{2}} \sup_{1 \leqslant j \leqslant N} \left\| \left(a_i(j) \right)_{i=1}^K \right\|_{\ell_2^K}.$$

(2) If in addition $M = \sup_i \|\gamma_i\|_{\infty} < \infty$, then for every $r \in (2, \infty)$ there is a constant $C_r = C(r, s, M) > 0$ such that

$$\left\| \sum_{i=1}^K \gamma_i a_i \right\|_{L_{\varphi_r}(\ell_\infty^N)} \leqslant C_r (1 + \log N)^{\frac{1}{r}} \sup_{1 \leqslant j \leqslant N} \left\| \left(a_i(j) \right)_{i=1}^K \right\|_{\ell_{r',\infty}^K}.$$

• Here $\ell_{p,\infty}$ for $p \in (1,\infty)$ denotes the Marcinkiewicz sequence space of all scalar sequences $x = (x_k)_k \in \omega(\mathbb{N})$ equipped with the norm

$$||x||_{p,\infty} := \sup_{n \in \mathbb{N}} \frac{x_1^* + \ldots + x_n^*}{n^{1 - \frac{1}{p}}},$$

where (x_k^*) denotes the decreasing rearrangement of the sequence $(|x_k|)$.

Abstract type Kahane–Salem–Zygmund inequalities

Let P be an m-homogeneous random Bernoulii polynomial over a probability measure $(\Omega, \mathcal{A}, \mathbb{P})$ given by

$$P(\omega,z) := \sum_{|\alpha|=m} \varepsilon_{\alpha}(\omega) c_{\alpha} z^{\alpha}, \quad \omega, \Omega, z \in \mathbb{C}^{n}.$$

Theorem (F. Bayart (2012)) For an arbitrary *n*-dimensional Banach space $X_n = (\mathbb{C}^n, \|\cdot\|)$ and for every $r \in [2, \infty)$ one has

$$\mathbb{E}\Big(\sup_{z\in B_{X_n}}\big|P(\cdot,z)\big|\Big)\leqslant C_r\big(n(1+\log m)\big)^{\frac{1}{r}}\sup_{|\alpha|=m}|c_\alpha|\Big(\frac{\alpha!}{m!}\Big)^{\frac{1}{r'}}\sup_{z\in B_{X_n}}\Big(\sum_{k=1}^n|z_k|^{r'}\Big)^{\frac{m}{r'}},$$

where $C_r > 0$ is a constant only depending on r.

Given a real number $1 \leqslant \lambda < \infty$. A Banach space X λ -embeds into a Banach Y whenever there exists an isomorphic embedding T of X into Y such

$$||T||_{X\to Y}||T^{-1}||_{T(X)\to X}\leqslant \lambda.$$

In this case, we call T a λ -embedding of X into Y.

Theorem [A. Defant–M. M.] For every $r \in [2, \infty)$ there is a constant $C_r > 0$ such that, for every Banach space E, for every λ -embedding $I: E \to \ell_{\infty}^{N}$, and for every choice of $x_1, \ldots, x_K \in E$, we have

$$\left\| \sum_{i=1}^{K} \gamma_{i} x_{i} \right\|_{L_{\varphi_{r}}(E)} \leqslant C_{r} \|I^{-1}\| (1 + \log N)^{\frac{1}{r}} \sup_{1 \leqslant j \leqslant N} \left\| (I(x_{i})(j))_{i=1}^{K} \right\|_{S_{r'}^{K}},$$

Theorem (A. Defant–M. M.) For every $2 \le r < \infty$, there exists a constant $C_r > 0$ such that, for any choice of polynomials $P_1, \ldots, P_K \in \mathcal{T}_m(\mathbb{C}^n)$, we have

$$\left\| \sup_{z \in \mathbb{T}^n} \left| \sum_{i=1}^K \varepsilon_i P_i(z) \right| \right\|_{L_{\varphi_2}} \leqslant C_2 \left(n(1 + \log m) \right)^{\frac{1}{2}} \sup_{z \in \mathbb{T}^n} \left\| (P_i(z))_{i=1}^K \right\|_{\ell_2},$$

and for $2 < r < \infty$

$$\left\|\sup_{z\in\mathbb{T}^n}\left|\sum_{i=1}^K\varepsilon_iP_i(z)\right|\right\|_{L_{\varphi_r}}\leqslant C_r\big(n(1+\log m)\big)^{\frac{1}{r}}\sup_{z\in\mathbb{T}^n}\left\|(P_i(z))_{i=1}^K\right\|_{\ell_{r',\infty}}.$$

Theorem (Defant–M. M.) For every $r \in [2, \infty)$ there is a constant $C_r > 0$ such that for each $m \in \mathbb{N}_0$, $n \in \mathbb{N}$, every complex *n*-dimensional Banach space X, and every choice of polynomials $P_1, \ldots, P_K \in \mathcal{P}_m(X)$, we have

$$\left\| \sup_{z \in B_X} \left| \sum_{i=1}^K \gamma_i P_i(z) \right| \right\|_{L_{\varphi_r}} \leqslant C_r \left(n(1 + \log m) \right)^{\frac{1}{r}} \sup_{z \in B_X} \left\| (P_i(z))_{i=1}^K \right\|_{S_{r'}^K},$$

where $S_{r'}^K := \ell_2^K$ for r = 2 and $S_{r'}^K := \ell_{r',\infty}^K$ for $r \in (2,\infty)$.

The proof is based on the following result.

Proposition (A. Defant–M. M.) Let X be an n-dimensional Banach space, and $K \subset B_X$ a convex and compact subset, which satisfies a Markov–Fréchet inequality with exponent ν and constant M. For each $m \in \mathbb{N}$ there exists a subset $F \subset K$ such that

$$||P||_{\mathcal{K}} \leqslant 2 \sup_{z \in F} |P(z)||_{F}, \quad P \in \mathcal{P}_{m}(X),$$

with card $F \leq N$, where $N = (1 + 2Mm^{\nu})^n$ if X is real and $N = (1 + 2Mm^{\nu})^{2n}$ if X is complex space. In other words the Banach space $\mathcal{P}_m(X)$, 2-embeds into ℓ_{∞}^N .

Given a Banach space X and a nonempty compact subset $K \subset B_X$.

Definition. We say that K satisfies a Markov–Fréchet inequality whenever there is an exponent $\nu \geqslant 0$, and a constant M > 0 such that for all $P \in \mathcal{P}(X)$ one has

$$\sup_{z \in \mathcal{K}} \|\nabla P(z)\|_{X^*} \leqslant M (\deg P)^{\nu} \sup_{z \in \mathcal{K}} |P(z)|,$$

where $\nabla P(z) \in X^*$ denotes the Fréchet derivative of P in $z \in K$. If this inequality only holds for a subclass \mathcal{P} of $\mathcal{P}(X)$, then we say that K satisfies a Markov-Fréchet inequality for \mathcal{P} with exponent ν and constant M.

Theorem (Harris (1997)) Let X be a complex Banach space. Then B_X satisfies a Markov–Fréchet inequality with constant e and exponent $\nu=1$.

Random Dirichlet polynomials

Combining Bohr's vision of ordinary Dirichlet series and the mentioned results, we provide some new KSZ-inequalities for random Dirichlet polynomials.

Given a finite subset $A \subset \mathbb{N}$, we denote by \mathcal{D}_A the Banach space of all Dirichlet polynomials D given by

$$D(s) := \sum_{n \in A} a_n n^{-s}, \quad s \in \mathbb{C},$$

with $\{a_n\}_{n\in A}\subset \mathbb{C}$. Since each such Dirichlet polynomial defines a bounded and holomorphic function on the right half-plane in \mathbb{C} , the space \mathcal{D}_A forms a Banach space equipped with the norm

$$||D||_{\infty} := \sup_{\text{Res}>0} \left| \sum_{n=1}^{N} a_n n^{-s} \right| = \sup_{t \in \mathbb{R}} \left| \sum_{n=1}^{N} a_n n^{-it} \right|.$$

Remark We note that the particular cases $a_n=1$ and $a_n=(-1)^n$ play a crucial role within the study of the Riemann zeta-function $\zeta\colon\mathbb{C}\setminus\{1\}\to\mathbb{C}$. In fact, in recent times, techniques related to random inequalities for Dirichlet polynomials have gained more and more importance. This may be illustrated by a deep classical result of Turán (1962), which states that the truth of the famous Lindelöf's conjecture:

$$\zetaig(1/2+itig)=\mathcal{O}_arepsilon(t^arepsilon), \hspace{0.5cm} t\in\mathbb{R}\,,$$

with an arbitrarily small $\varepsilon > 0$, is equivalent to the validity of the inequality:

$$\left|\sum_{n=1}^{N} \frac{(-1)^n}{n^{it}}\right| \leqslant C N^{\frac{1}{2} + \varepsilon} (2 + |t|)^{\varepsilon}, \quad t \in \mathbb{R}$$

for an arbitrarily small $\varepsilon > 0$ and with $C = C(\varepsilon)$.

In order to formulate our main result we need two characteristics of the finite set $A \subset \mathbb{N}$ defining \mathcal{D}_A . As usual, for $x \geq 2$, we denote by $\pi(x)$ the number of all primes in the interval [2,x], and by $\Omega(n)$ the number of prime divisors of $n \in \mathbb{N}$ counted accorded to their multiplicities. We define

$$\Pi(A) := \max_{n \in A} \pi(n), \qquad \Omega(A) := \max_{n \in A} \Omega(n).$$

Theorem (A. Defant–M. M.) For every $r \in [2, \infty)$ there is a constant $C_r > 0$ such that for any finite set $A \subset \mathbb{N}$ and any choice of Dirichlet polynomials $D_1, \ldots, D_K \in \mathcal{D}_A$, we have

$$\left\| \sup_{t \in \mathbb{R}} \left| \sum_{j=1}^{K} \gamma_{j} D_{j}(t) \right| \right\|_{L_{\varphi_{r}}} \leqslant C_{r} \left(1 + \Pi(A) \left(1 + 20 \log \Omega(A) \right) \right)^{\frac{1}{r}} \sup_{t \in \mathbb{R}} \left\| (D_{j}(t))_{j=1}^{K} \right\|_{S_{r'}}.$$

Corollary. For every $r \in [2, \infty)$ there is a constant $C_r > 0$ such that such, for every Dirichlet random polynomial $\sum_{n \in A} \gamma_n a_n n^{-it}$ in \mathcal{D}_A one has

$$\left\|\sup_{t\in\mathbb{R}}\left|\sum_{n\in A}\gamma_na_nn^{-it}\right|\right\|_{L_{\varphi_r}}\leqslant C_r\Big(1+\Pi(A)\big(1+20\log\Omega(A)\big)\Big)^{\frac{1}{r}}\left\|(a_n)_{n\in A}\right\|_{S_{r'}}.$$

Idea of proof:

• We embed \mathcal{D}_A into a certain space of trigonometric polynomials, controlling the degree as well as the number of variables of the polynomials in this space. To achieve this, we use the so-called Bohr lift:

$$\mathcal{B}_A \colon \mathcal{D}_A \to \mathcal{T}_{\Omega(A)}\big(\mathbb{T}^{\Pi(A)}\big) \,, \ \sum_{n \in A} a_n n^{-\mathfrak{s}} \mapsto \sum_{\alpha : \mathfrak{p}^\alpha \in A} a_{\mathfrak{p}^\alpha} z^\alpha \,.$$

By Kronecker's theorem on Diophantine approximation we know that the continuous homomorphism

$$\beta \colon \mathbb{R} \to \mathbb{T}^{\Pi(A)}, \ t \to (\mathfrak{p}_k^{it})_{k=1}^{\Pi(A)}$$

has dense range. This implies that \mathcal{L}_A is an isometry into.

• There is a subset $F \subset \mathbb{T}^{\Pi(A)}$ with $\operatorname{card}(F) \leqslant N = (1 + 20 \Omega(A))^{\Pi(A)}$ such that

$$I \colon \mathcal{T}_{\Omega(A)}(\mathbb{T}^{\Pi(A)}) \hookrightarrow \ell_{\infty}^{N}, \ \ I(P) := (P(z_{i}))_{i \in F},$$

is a 2-isomorphic embedding. Combining all this we obtain the following embedding theorem.

In the following example we consider interesting subclass of Dirichlet polynomials of length N, each given by a particular finite subset $A \subset \mathbb{N}$:

Example. For $N \in \mathbb{N}$ and $2 \leqslant x \leqslant N$ define

$$A(N,x) := \{1 \leqslant n \leqslant N : \pi(n) \leqslant x\}.$$

Then $\mathcal{D}_{A(N,x)}$ is the space of all Dirichlet polynomials of length N, which only 'depend on $\pi(x)$ -many primes'. Using remarkable estimates for $\pi(x)$ due to Costa Periera (1985):

$$\frac{x \log 2}{\log x} < \pi(x), \quad x \geqslant 5 \quad \text{and} \quad \pi(x) < \frac{5x}{3 \log x}, \quad x > 1,$$

we get $\Pi(A(N,x)) \leqslant \pi(x) < \frac{5x}{3\log x}$. Since for each $1 \leqslant n = p^{\alpha} \leqslant N$ with $\alpha \in \mathbb{N}^{\pi(x)}$ we have $2^{|\alpha|} \leqslant N$, it follows that

$$\Omega(A(N,x)) \leqslant \frac{\log N}{\log 2}.$$

With these estimates for $\Pi(A(N,x))$ and $\Omega(A(N,x))$ our KSZ-inequalities extend Queffélec's results (1995).

In the special case x = N, we denote by \mathcal{D}_N the Banach space of all Dirichlet polynomials of length N, in other words, $\mathcal{D}_N = \mathcal{D}_{A(N)}$ with $A(N) = \{1, \dots, N\}$. Then

$$\Pi(A(N)) < \frac{5N}{3\log N}, \quad \Omega(A(N)) \leqslant \frac{\log N}{\log 2}.$$

It is worth noting that in the case $N = p_n$, the *n*th prime, one has $\Pi(A(N)) = n$.

Random multilinear forms in Banach spaces

Given Banach spaces X_1, \ldots, X_m , the Banach space $\mathcal{L}_m(X_1, \ldots, X_m)$ of all m-linear bounded forms L on $X_1 \times \cdots \times X_m$ is equipped with the norm

$$||L|| := \sup \{|L(x_1, \dots, x_m)| : x_j \in B_{X_j}, 1 \leqslant j \leqslant m\}.$$

Theorem (A. Defant–M. M.) For every $r \in [2, \infty)$ there is a constant $C_r > 0$ such that, for every choice of finite dimensional Banach spaces X_j with $\dim X_j = n_j$, $1 \le j \le m$, and m-linear mappings $L_1, \ldots, L_K \in \mathcal{L}_m(X_1, \ldots, X_m)$, one has

$$\left\| \sup_{(z_{1},...,z_{m})\in B_{X_{1}\times...\times X_{m}}} \left| \sum_{i=1}^{K} \gamma_{i} L_{i}(z_{1},...,z_{m}) \right| \right\|_{L_{\varphi_{r}}}$$

$$\leq C_{r} \left(\sum_{j=1}^{m} n_{j} (1 + \log m) \right)^{\frac{1}{r}} \sup_{(z_{1},...,z_{m})\in B_{X_{1}\times...\times X_{m}}} \left\| (L_{i}(z_{1},...,z_{m}))_{i=1}^{K} \right\|_{S_{r'}^{K}},$$

The proof of the above theorem is based on the following result.

Proposition (A. Defant – M. M.) Let X_j with $\dim X_j = n_j, 1 \le j \le m$ be finite dimensional (real or complex) Banach spaces. Then there is a subset $F \subset \prod_{i=1}^m B_{X_i}$ of cardinality

$$\operatorname{card}(F) \leqslant \prod_{j=1}^{m} (1+2m)^{2n_j}$$

such that for every $L \in \mathcal{L}_m(X_1, \dots, X_m)$,

$$||L||_{\infty} \leqslant 2 \sup_{(z_1,\ldots,z_m)\in F} |L(z_1,\ldots,z_m)|.$$

If all Banach spaces X_i are real, we may replace the exponents $2n_i$ by n_i .