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Introduction

Random polynomials

e For a multi-index o = (v, ... ) € Z" and z = (z1,...,2,) € C”, we let
laf i=|oa| 4+ ...+ |an| and 2% =z - 207 For a = (o, ... o) € NG,
al = ay!- - a,l, where Ng := NU {0}.

e If P: C" — C is a polynomial given by

P(z) = Z cz% zeC",

a€eNg
then its degree deg(P) := max{|al; ¢, # 0}.
e For n € N and m € Ny we denote by 7,,(T") the space of all trigonometric

polynomials

P(z) = Z cz% zeT"
agZn

on the n-dimensional torus T" with deg(P) := max{|«/|; c, # 0} < m.
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Introduction

e The origin of trigonometric random polynomials goes back to the Salem
and Zygmund seminal Acta Math. (1954) paper. They proved that there
exist positive constants ¢, ¢, such that for almost all t € [0, 1] one has

n—1

av/nlogn < sup | Y ri(t)e*| < c/nlogn.

x€[0,27] =0

e The study of random polynomials was continued by Kahane (1960) in the
setting of random polynomials in several variables. In the recent decades
the multidimensional variants of the Kahane-Salem-Zygmund inequalities
(KSZ-inequalities for short) have been of central importance in modern
analysis, as, e.g., Fourier analysis, analytic number theory, or holomorphy
in high dimensions. The multidimensional KSZ-inequality states:

Theorem There exists a positive constant C such that, for each m, n € N with
m > 2 and any trigonometric polynomial }_ ;. coz® in T, (T") there exists
a choice of signs £, = +1 for which

1
2
sup E €aCaz®| < Cy/nlogm ( E ca|2> .
n
€1 Jal<m jal<m
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Introduction

Extended variant of Kahane-Salem-Zygmund inequality

Theorem For every a > 0, for each integers m, n > 2 and for all families of (¢,)a
of independent Bernoulli variables on a probability measure space (2, A, P) and
(ca)a C C, where a € < m and not all of them equal to zero, we have

> el > avatogm (3 1e?)' } < o).

lee|<m loe|<m

P{w € Q; sup
zeTn

where C(a) == 4(#2/(m% - 1))”.

loifég b+ 1) Y2 one has C(a) < 1, so for this a, we get

Z ca(w)caz® nlogm( Z [cal )é}

|aj<m || <m

Remark. For all a > 4(

P{w € Q; sup
zeTn
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Introduction

Theorem (H. P. Boas (2000)) Let 1 < p < o0 and m,n € N with m, n >
there exists a choice of signs (¢, )|a|=m: €o = £1 such that

o If 1 < p<2, then

m!
sup ‘ E €q—2°
al

B0 " jaj=m

< Cy/mnlog m (m!)}=1/P,

o If 2 < p< oo, then

m!
sup ‘ E €q—2%
ol
|ae]=m

zeB (n)
£p

where C > 0 does not depend on m nor on n.
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Abstract random Kahane-Salem-Zygmund (KSZ-) inequalities

Abstract random Kahane-Salem-Zygmund inequalities

e Definition (A. Defant-M. M.) Let X C L°%(€, A, 1) be a Banach function
lattice over a measure space (Q, A, 11). A sequence (v;)ieny C X is said to
satisfy the KSZ-inequality of type (X, (S5"),) provided there exist a function
1 N — (0,00) and a sequence (|| - ||n)nen of semi-norms on K" such that,
for every choice of finitely many vectors (a;(j))}L; € ¢, 1 <i < K the
following inequality holds:

<W(N) sup [|(ai())ia || g

K
s, | S w0n] <o 2,
X YA

1N

e Of special importance for the applications we have in mind, are Rademacher
random variables and the much larger class of subgaussian random variables.
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Abstract random Kahane-Salem-Zygmund (KSZ-) inequalities

KSZ-inequalities by lattice constants

e If X is a Banach lattice, then for each n € N, the M-constant 11,,(X)
is defined by

1n(X) —sup{H sup |XJ|HX Ixillx <1, for1 << }
<<

o Properties: (un(X))n is a non-decreasing sequence with p,(X) € [1, ]
for each n € N; (1n(X))n is a submultiplicative sequence, that is,

Lemn(X) < pm(X)pn(X), myneN;

(22X s non-increasing sequence (Abramovich-Lozanovskii (1973)).

o limy_ oo “”n € {0,1}. This implies p,(X) = n for each n whenever
En(X)

limg oo =~ = L.
e Theorem (Abramovich—Lozanovskii (1973)) If lim,_ @ =0, then
all odd duals of X are KB-spaces.
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Abstract random Kahane-Salem-Zygmund (KSZ-) inequalities

Proposition (A. Defant-M. M.) Let X be a Banach lattice over (£2,.4,v) and let
¥: N — [1,00) be given by 1(n) := 1,(X) for each n € N. Then every sequence
(7i)ien of random variables in X satisfies the KSZ-inequality of type (X, (S"), )
with S” := (K", || - ||,), that is,

<O(N) sup (3 llsn (@) € €5
X 1SN

K
sup ‘ ai(j)vi
INN ; i

S":= (K", || - ||»), where the semi norm || - ||, (resp., norm || - ||, whenever the -;
are linearly independent) are defined by

Izlln = llzzva + - -+ zovnllx, z=(21,...,2,) €EK".
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Abstract random Kahane-Salem-Zygmund (KSZ-) inequalities

M-constants for some class of Orlicz spaces

Let &: Ry — Ry be an Orlicz function (that is, a convex, increasing and
continuous positive function with ®(0) = 0). The Orlicz space Lo C L°(Q, A, 11)
is defined to be the space of all f such that [, ®(\|f|)dp < oo for some A > 0,
and it is equipped with the norm

- £
Ifllo : |nf{)\>0. /QCD()\)du\l

For 1 < r < oo, the exponential Orlicz function ¢,(t) := et' —1,t>0.

Proposition. [A. Defant—M. M.] Let Lg be an Orlicz space over a probability
measure space (Q,.4,v) with ®(t) = e#(!) — 1 for all t > 0, where ¢ is an Orlicz
function on Ry such that, for some v > 0, ¢(st) < y¢(s)p(t) for all s € (0,1]
and t > 0. Then, for each n € N, one has

K
¢ (p(1)/(1 + logn)) ’

Nn(L¢) <

where K = (e — 1)y¢(1).
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Abstract random Kahane-Salem-Zygmund (KSZ-) inequalities

Corollary For r € [1,00) let L, be an Orlicz space over a probability measure
space (Q,.A,v) with ,(t) = e — 1 for all t > 0. Then for each n € N one has

ialLe,) < (e~ 1)(1 + log n)?

S
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KSZ-inequalities for subgaussian random variables

KSZ-inequalities for subgaussian random variables

Let (2, A,P) be a probability space, and f a random variable. If f is real-valued,
then f is said to be subgaussian, whenever there exists s > 0 such that

s2)\2
E exp(Af) < exp (2), AER,

and if f is complex-valued, whenever there exists s > 0 such that

2|z
E exp(Re(zf) < exp > ) Z€ C.

The best such s is denoted by sg(f).
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KSZ-inequalities for subgaussian random variables

o A real-valued sequence (f,) is called subgaussian if there is s > 0 such that
for any x = (x,) € > of norm one, the random variable f = >~ " x,f, is
subgaussian. The best possible number s is denoted by sg((,)).

e A complex-valued sequence (f,) is said to be subgaussian, whenever (Ref,)

and the imaginary parts (Imf,), is subgaussian.

Examples

o Every sequence (,) of independent, real (resp., complex) normal gaussian
variables is subgaussian with sg((v,)) = 1.

o Every sequences (¢,) of independent Rademacher variables is subgaussian
with sg((s,)) = 1.
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KSZ-inequalities for subgaussian random variables

Theorem (A. Defant-M. M.) Let (7;)ien be a (real or complex) subgaussian
sequence of random variables over (€2, A, P) with s = sg((;)). The following
statements are true for each K, N € N and all a1,...,ax € K& with

a; = (a,—(j))j'\’zl, 1 < i < KZ

(1) There is a constant C; = C(s) > 0 such that

K
Z%‘ai
i=1

(2) If in addition M = sup; ||7i||sc < o0, then for every r € (2,00) there is
a constant C, = C(r,s, M) > 0 such that

K
E Yidi
i=1

e Here /, o, for p € (1,00) denotes the Marcinkiewicz sequence space of all
scalar sequences x = (xx)x € w(N) equipped with the norm
xX{+ . X

[1x[lp.c0 == sup 11
neN nr

where (x/) denotes the decreasing rearrangement of the sequence (|xx|).
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1
;

< CG(1+logN)r sup H (a,-(j))f;’
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! oo
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KSZ-inequalities for subgaussian random variables

Abstract type Kahane—-Salem—Zygmund inequalities

Let P be an m-homogeneous random Bernoulii polynomial over a probability
measure (,.4,P) given by

P(w,z) := Z ca(w)caz®, w,Q,zeC".

|ae]=m

Theorem (F. Bayart (2012)) For an arbitrary n-dimensional Banach space
X, = (C",|| - ]|) and for every r € [2,00) one has

n

IE( sup |P(.7z)|) < C,(n(l+|ogm))% sup |ca|(rc:'!!>’1,zsup (Z‘Zk‘r,>r ,

z€Bx, |a|=m €8x, ")

3

where C, > 0 is a constant only depending on r.
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KSZ-inequalities for subgaussian random variables

Given a real number 1 < X\ < co. A Banach space X A-embeds into a Banach Y
whenever there exists an isomorphic embedding T of X into Y such

ITIxsy 1Tl rpo-x <A

In this case, we call T a A\-embedding of X into Y.

Theorem [A. Defant-M. M.] For every r € [2,00) there is a constant C, > 0 such
that, for every Banach space E, for every A-embedding /: E — ¢, and for every
choice of xy,...,xx € E, we have

K
E YiXi
i=1

1
-

<G (A +log N)7 sup [|(1(x) (1)) [l g »
L, (E) 1IN v
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KSZ-inequalities for subgaussian random variables

Theorem (A. Defant-M. M.) For every 2 < r < oo, there exists a constant C, > 0
such that, for any choice of polynomials P, ..., Px € T,,(C"), we have

ZsP ’

and for 2 < r < oo

< C2(n(1 + log m))% Séijn ||(P,-(z)),K:1HZ2 ,

sup
zeTn

kP2

K

sup Ze;P,-(z)‘

zeTr i—1

< G (n(1 + log m))% ZSELI]PN H(P:(Z)) -

L‘Pr
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KSZ-inequalities for subgaussian random variables

Theorem (Defant-M. M.) For every r € [2,00) there is a constant C, > 0 such
that for each m € Ny, n € N, every complex n-dimensional Banach space X, and
every choice of polynomials Py, ..., Px € P,(X), we have

K
sup Z’y,-P,-(z)’

zeBx i—1

< C,(n(l + log m))% Sequ H(P,-(z)),K:lHS,5 ,
z X r

Lv’r

where S/ .= (§ for r =2 and Sf .= (5 __ for r € (2,0).
The proof is based on the following result.

Proposition (A. Defant-M. M.) Let X be an n-dimensional Banach space, and

K C Bx a convex and compact subset, which satisfies a Markov—Fréchet
inequality with exponent v and constant M. For each m € N there exists a subset
F C K such that

IPllx < QSUI@\P(Z)HH P e Pm(X),
ze

with card F < N, where N = (1 4 2Mm”)" if X is real and N = (1 + 2Mm”)*" if
X is complex space. In other words the Banach space P,,,(X), 2-embeds into /..
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KSZ-inequalities for subgaussian random variables

Given a Banach space X and a nonempty compact subset K C Bx.

Definition. We say that K satisfies a Markov—Fréchet inequality whenever there is
an exponent v > 0, and a constant M > 0 such that for all P € P(X) one has

sup [[VP(z)|x- < M(degP)" sup |P(2)],
zeK zeK

where VP(z) € X* denotes the Fréchet derivative of P in z € K. If this
inequality only holds for a subclass P of P(X), then we say that K satisfies
a Markov-Fréchet inequality for P with exponent v and constant M.

Theorem (Harris (1997)) Let X be a complex Banach space. Then By satisfies
a Markov—Fréchet inequality with constant e and exponent v = 1.

M. Mastyto (UAM) ISubgaussian Kahane-Salem -Zygmund inequalities in | 22/33



Random Dirichlet polynomials

Random Dirichlet polynomials

Combining Bohr's vision of ordinary Dirichlet series and the mentioned results, we
provide some new KSZ—-inequalities for random Dirichlet polynomials.

Given a finite subset A C N, we denote by D, the Banach space of all Dirichlet
polynomials D given by

D(s) := Z apnn°, seC,

neA

with {a,},eca C C. Since each such Dirichlet polynomial defines a bounded and
holomorphic function on the right half-plane in C, the space D4 forms a Banach
space equipped with the norm

N

N
[|D]|oc := sup ‘Zann‘s‘ :sup‘Zann"’f .
n=1

Res>0 —1 teR
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Random Dirichlet polynomials

Remark We note that the particular cases a, = 1 and a, = (—1)" play a crucial
role within the study of the Riemann zeta-function ¢: C\ {1} — C. In fact, in
recent times, techniques related to random inequalities for Dirichlet polynomials
have gained more and more importance. This may be illustrated by a deep
classical result of Turdn (1962), which states that the truth of the famous
Lindeldf’s conjecture:

¢(1/2+it) = O(t°), teR,
with an arbitrarily small £ > 0, is equivalent to the validity of the inequality:

—1)"
> E)

n=1

< CNH(24[t))5, teR

for an arbitrarily small € > 0 and with C = C(¢).
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Random Dirichlet polynomials

In order to formulate our main result we need two characteristics of the finite set
A C N defining Da. As usual, for x > 2, we denote by 7(x) the number of all
primes in the interval [2, x|, and by Q(n) the number of prime divisors of n € N
counted accorded to their multiplicities. We define

MN(A) .= Tg}\(ﬂ(n), Q(A) = Tg}\(ﬂ(n).

Theorem (A. Defant-M. M.) For every r € [2,00) there is a constant C, > 0 such
that for any finite set A C N and any choice of Dirichlet polynomials
Dl,...,DK € Dp, we have

< ¢ (1+ N1 +2010g(4)) ) sup (D)l

LS

Lo,
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Corollary. For every r € [2,00) there is a constant C, > 0 such that such, for
every Dirichlet random polynomial >~ _, Ynann~ 't in Dy one has

sup ’ Z%an it

sup < c,(1 +M(A)(1 +20log Q(A))) [l(@n)nealls, -

L#’r

Idea of proof:

e We embed D, into a certain space of trigonometric polynomials, controlling
the degree as well as the number of variables of the polynomials in this space.
To achieve this, we use the so-called Bohr lift:

Ba: Dp — %(A)(TH(A)), Z ann” " Z apaz(’

neA apreA
By Kronecker’'s theorem on Diophantine approximation we know that the
continuous homomorphism

ity (A
B:R— T ¢ (p,f)k(zl)

has dense range. This implies that L4 is an isometry into.
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Random Dirichlet polynomials

e Thereis a subset F T4 with card(F) < N = (1+20Q(A))™4) such that
I Taway(TMW) < £, 1(P) := (P(2))ieF,

is a 2-isomorphic embedding. Combining all this we obtain the following
embedding theorem.

In the following example we consider interesting subclass of Dirichlet polynomials
of length N, each given by a particular finite subset A C N:

Example. For N € N and 2 < x < N define
AN, x):={1<n<N: w(n) <x}.

Then Dy« is the space of all Dirichlet polynomials of length N, which only
'depend on 7(x)-many primes’. Using remarkable estimates for m(x) due to
Costa Periera (1985):
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Random Dirichlet polynomials

x log 2 5x
>5 d : 1,
log x <7w(x), x and 7(x) < Jlogx x >
we get M(A(N, x)) < m(x ) < 3|ogx Since for each 1 < n = p® < N with
a € N™™) we have 2/%l < N, it follows that
log N
Q(A(N <

With these estimates for M(A(N, x)) and Q(A(N, x)) our KSZ—inequalities extend
Queffélec’s results (1995).
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Random Dirichlet polynomials

In the special case x = N, we denote by Dy the Banach space of all Dirichlet
polynomials of length N, in other words, Dy = Dy with A(N) = {1,..., N},

Then 5N 0w N
AN)) < 28

3log N’ (AN)) < log?2 ~
It is worth noting that in the case N = p,, the nth prime, one has M(A(N)) = n.

M(A(N)) <
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Appendix

Random multilinear forms in Banach spaces

Given Banach spaces Xi, ..., X, the Banach space £,,(X1,..., X},) of all
m-linear bounded forms L on Xi X - -+ X X, is equipped with the norm

L] :=sup {|L(x1,...,xm)| : X € Bx,, 1 <j < m}.
Theorem (A. Defant-M. M.) For every r € [2,00) there is a constant C, > 0 such

that, for every choice of finite dimensional Banach spaces X; with dimX; = n;,
1 <j < m, and m-linear mappings L1,...,Lx € L,(Xi,...,Xy), one has

l

K
Z’y,’L,'(Zl, e ,Zm)‘
i=1

sup
(Z15+-,Zm)EBxX; 5 -+ % Xim wr
m 1
< (X1 +10gm) sup  [|(Litzs - zm) g
= (215+++,Zm) €BXy 5 -+ X Xim g
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Appendix

The proof of the above theorem is based on the following result.

Proposition (A. Defant—M. M.) Let X; with dim X; = n;,1 < j < m be
finite dimensional (real or complex) Banach spaces. Then there is a subset
FcC HJm:l Bx; of cardinality

card(F) < H (1+ 2m)2nj

-
=

such that for every L € L,,(X1,..., Xn),

ILloo <2 sup |L(z1,...,2Zm)|-
(z1y-..,zm)EF

If all Banach spaces X are real, we may replace the exponents 2n; by n;.
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