Differentiable extensions with uniformly continuous derivatives

Carlos Mudarra

University of Jyväskylä

Based on joint works with Daniel Azagra and Erwan Le Gruyer
XX Encuentros de Análisis Real y Complejo
Cartagena, May 2022

- Let X be a Banach space. $C^{1, \omega}(X)$ is the space of functions $F: X \rightarrow \mathbb{R}$ such that F is Fréchet differentiable in X, and $D F: X \rightarrow X^{*}$ is uniformly continuous with

$$
M_{\omega}(D F):=\sup _{x, y \in X ; x \neq y} \frac{\|D F(x)-D F(y)\|_{*}}{\omega(\|x-y\|)}<\infty
$$

- Let X be a Banach space. $C^{1, \omega}(X)$ is the space of functions $F: X \rightarrow \mathbb{R}$ such that F is Fréchet differentiable in X, and $D F: X \rightarrow X^{*}$ is uniformly continuous with

$$
M_{\omega}(D F):=\sup _{x, y \in X ; x \neq y} \frac{\|D F(x)-D F(y)\|_{*}}{\omega(\|x-y\|)}<\infty
$$

- A modulus of continuity $\omega:[0, \infty) \rightarrow[0, \infty)$ is a concave increasing function with $\omega(0)=0$ and $\omega(\infty)=\infty$.

Problem ($C^{1, \omega}$ extension of 1-jets)

Let X be a Hilbert space. Let $E \subset X$ be arbitrary, let $(f, G): E \rightarrow \mathbb{R} \times X$ be a 1-jet, and let ω be a modulus of continuity.

- Find necessary and sufficient conditions on (f, G) for the existence of an $F \in C^{1, \omega}(X)$ such that $(F, \nabla F)=(f, G)$ on E.
- Construct such extension F (if it exists), estimate the seminorm

$$
M_{\omega}(\nabla F):=\sup _{x, y \in X ; x \neq y} \frac{|\nabla F(x)-\nabla F(y)|}{\omega(|x-y|)},
$$

and compare it to the $C^{1, \omega}$-trace seminorm of (f, G) on E :

$$
\|(f, G)\|_{E, \omega}:=\inf \left\{M_{\omega}(\nabla H): H \in C^{1, \omega}(X),(H, \nabla H)=(f, G) \text { on } E\right\}
$$

Theorem (Whitney 1934-Glaeser 1958)

Let $E \subset \mathbb{R}^{n}$, let $(f, G): E \rightarrow \mathbb{R} \times \mathbb{R}^{n}$ be a 1 -jet. There exists $F \in C^{1, \omega}\left(\mathbb{R}^{n}\right)$ such that $(F, \nabla F)=(f, G)$ on E if and only if there is some $M>0$ for which

$$
\begin{gathered}
|f(y)-f(z)-\langle G(z), y-z\rangle| \leq M|y-z| \omega(|y-z|), \\
|G(y)-G(z)| \leq M \omega(|y-z|)
\end{gathered}
$$

for every $y, z \in E$. Moreover, F can be taken so that $M_{\omega}(\nabla F) \leq k(n) M$.

We can assume that E is closed, and then consider a Whitney decomposition $\{Q\}_{Q \in \mathcal{W}}$ of $\mathbb{R}^{n} \backslash E$ and the usual Whitney partition of unity $\left\{\varphi_{Q}\right\}_{Q \in \mathcal{W}}$ associated with $\{Q\}_{Q \in \mathcal{W}}$. For a suitable sequence of points $\left\{p_{Q}\right\}_{Q \in \mathcal{W}} \subset E$, the function defined by

$$
F(x)= \begin{cases}f(x) & \text { if } x \in E \\ \sum_{Q \in \mathcal{W}}\left(f\left(p_{Q}\right)+\left\langle G\left(p_{Q}\right), x-p_{Q}\right\rangle\right) \varphi_{Q}(x) & \text { if } x \in \mathbb{R}^{n} \backslash E\end{cases}
$$

is of class $C^{1, \omega}\left(\mathbb{R}^{n}\right)$ and $(F, \nabla F)=(f, G)$ on E.

We can assume that E is closed, and then consider a Whitney decomposition $\{Q\}_{Q \in \mathcal{W}}$ of $\mathbb{R}^{n} \backslash E$ and the usual Whitney partition of unity $\left\{\varphi_{Q}\right\}_{Q \in \mathcal{W}}$ associated with $\{Q\}_{Q \in \mathcal{W}}$. For a suitable sequence of points $\left\{p_{Q}\right\}_{Q \in \mathcal{W}} \subset E$, the function defined by

$$
F(x)= \begin{cases}f(x) & \text { if } x \in E \\ \sum_{Q \in \mathcal{W}}\left(f\left(p_{Q}\right)+\left\langle G\left(p_{Q}\right), x-p_{Q}\right\rangle\right) \varphi_{Q}(x) & \text { if } x \in \mathbb{R}^{n} \backslash E\end{cases}
$$

is of class $C^{1, \omega}\left(\mathbb{R}^{n}\right)$ and $(F, \nabla F)=(f, G)$ on E.
Moreover $M_{\omega}(\nabla F) \leq k(n)\|(f, G)\|_{E, \omega}$, where $\lim _{n} k(n)=\infty$.

- J.C. Wells (1973) extended the result to Hilbert spaces for the class $C^{1,1}$, obtaining sharp extensions. Wells' proof is based on a complicated geometric construction when E is finite. When E is infinite, the proof is not constructive and doesn't provide any explicit formula.
- J.C. Wells (1973) extended the result to Hilbert spaces for the class $C^{1,1}$, obtaining sharp extensions. Wells' proof is based on a complicated geometric construction when E is finite. When E is infinite, the proof is not constructive and doesn't provide any explicit formula.
- In 2009, E. Le Gruyer obtained, by means of a very elegant method, another proof Wells' theorem. This proof is shorter than Wells', but it doesn't provide any explicit formula either. Zorn's lemma is required.
- J.C. Wells (1973) extended the result to Hilbert spaces for the class $C^{1,1}$, obtaining sharp extensions. Wells' proof is based on a complicated geometric construction when E is finite. When E is infinite, the proof is not constructive and doesn't provide any explicit formula.
- In 2009, E. Le Gruyer obtained, by means of a very elegant method, another proof Wells' theorem. This proof is shorter than Wells', but it doesn't provide any explicit formula either. Zorn's lemma is required.
- As a consequence of our solution to an extension problem for $C^{1,1}$ convex functions, we proved the Wells-Le Gruyer's theorem, via simple and explicit formulas.
$C^{1,1}$ extensions of jets

Theorem (Wells 1973, Le Gruyer 2009, Azagra-Le Gruyer-M. 2017)
Let E be a subset of a Hilbert space X, and let $(f, G): E \rightarrow \mathbb{R} \times X$ be a jet. There exists $F \in C^{1,1}(X)$ with $(F, \nabla F)=(f, G)$ on E if and only if there exists $M>0$ such that

$$
f(z) \leq f(y)+\frac{1}{2}\langle G(y)+G(z), z-y\rangle+\frac{M}{4}|y-z|^{2}-\frac{1}{4 M}|G(y)-G(z)|^{2}
$$

for all $y, z \in E$. Moreover,

$$
\begin{aligned}
& F=\operatorname{conv}(g)-\frac{M}{2}|\cdot|^{2} \\
& g(x)=\inf _{y \in E}\left\{f(y)+\langle G(y), x-y\rangle+\frac{M}{2}|x-y|^{2}\right\}+\frac{M}{2}|x|^{2}, \quad x \in X,
\end{aligned}
$$

defines a $C^{1,1}(X)$ function with $(F, \nabla F)=(f, G)$ on E, and $\operatorname{Lip}(\nabla F) \leq M$.

Theorem (Wells 1973, Le Gruyer 2009, Azagra-Le Gruyer-M. 2017)
Let E be a subset of a Hilbert space X, and let $(f, G): E \rightarrow \mathbb{R} \times X$ be a jet. There exists $F \in C^{1,1}(X)$ with $(F, \nabla F)=(f, G)$ on E if and only if there exists $M>0$ such that

$$
f(z) \leq f(y)+\frac{1}{2}\langle G(y)+G(z), z-y\rangle+\frac{M}{4}|y-z|^{2}-\frac{1}{4 M}|G(y)-G(z)|^{2}
$$

for all $y, z \in E$. Moreover,

$$
\begin{aligned}
& F=\operatorname{conv}(g)-\frac{M}{2}|\cdot|^{2} \\
& g(x)=\inf _{y \in E}\left\{f(y)+\langle G(y), x-y\rangle+\frac{M}{2}|x-y|^{2}\right\}+\frac{M}{2}|x|^{2}, \quad x \in X,
\end{aligned}
$$

defines a $C^{1,1}(X)$ function with $(F, \nabla F)=(f, G)$ on E, and $\operatorname{Lip}(\nabla F) \leq M$.
The function F can be taken so as to satisfy

$$
\operatorname{Lip}(\nabla F)=\inf \left\{\operatorname{Lip}(\nabla H): H \in C^{1,1}(X),(H, \nabla H)=(f, G) \text { on } E\right\} .
$$

For $g: X \rightarrow \mathbb{R}$, the convex envelope of g is

$$
\begin{aligned}
\operatorname{conv}(g)(x) & =\sup \{h(x): h: X \rightarrow \mathbb{R} \text { convex, lsc, } h \leq g\} \\
& =\sup \{h(x): h: X \rightarrow \mathbb{R} \text { affine, lsc, } h \leq g\} .
\end{aligned}
$$

Very good relation between $C^{1,1}$ general jets and $C^{1,1}$ convex jets.

Very good relation between $C^{1,1}$ general jets and $C^{1,1}$ convex jets.
Let $M>0$. For any jet (f, G) defined on E, denote $(\widetilde{f}, \widetilde{G})=\left(f+\frac{M}{2}|\cdot|^{2}, G+M \mathrm{Id}\right)$. Then
(f, G) has a $C^{1,1}$ extension F and $\operatorname{Lip}(\nabla F) \leq M \Longleftrightarrow$ $(\widetilde{f}, \widetilde{G})$ has a $C^{1,1}$ convex extension \widetilde{F} and $\operatorname{Lip}(\nabla \widetilde{F}) \leq 2 M$.

Corollary (Kirszbraun's theorem via an explicit formula; Azagra-Le Gruyer-M.; 2017)
Let X, Y two Hilbert spaces, $E \subset X$ and $G: E \rightarrow Y$ a Lipschitz mapping. Define $\widetilde{G}: X \rightarrow Y$ by:

$$
\begin{gathered}
\widetilde{G}(x):=\nabla_{Y}(\operatorname{conv}(g))(x, 0) \quad \text { for every } \quad x \in X ; \quad \text { where } \\
g(x, y)=\inf _{z \in E}\left\{\langle G(z), y\rangle_{Y}+\frac{\operatorname{Lip}(G)}{2}|x-z|_{X}^{2}\right\}+\frac{\operatorname{Lip}(G)}{2}|x|_{X}^{2}+\operatorname{Lip}(G)|y|_{Y}^{2}
\end{gathered}
$$

for every $(x, y) \in X \times Y$. Then $\widetilde{G}=G$ on E and $\operatorname{Lip}(\widetilde{G}, X)=\operatorname{Lip}(G, E)$.
$C^{1, \omega}$ extensions of jets, arbitrary ω

- We know how to extend jets with $C^{1,1}$ functions in Hilbert spaces. What about $C^{1, \omega}$ extensions of jets for ω arbitrary?
- We know how to extend jets with $C^{1,1}$ functions in Hilbert spaces. What about $C^{1, \omega}$ extensions of jets for ω arbitrary?
- Whitney-Glaeser theorem gives extensions $F \in C^{1, \omega}\left(\mathbb{R}^{n}\right)$ of jets (f, G) with $\|F\|_{C^{1, \omega}\left(\mathbb{R}^{n}\right)} \leq k(n)\|(f, G)\|_{E, \omega}$; where $k(n) \rightarrow \infty$ as $n \rightarrow \infty$.
- We know how to extend jets with $C^{1,1}$ functions in Hilbert spaces. What about $C^{1, \omega}$ extensions of jets for ω arbitrary?
- Whitney-Glaeser theorem gives extensions $F \in C^{1, \omega}\left(\mathbb{R}^{n}\right)$ of jets (f, G) with $\|F\|_{C^{1, \omega}\left(\mathbb{R}^{n}\right)} \leq k(n)\|(f, G)\|_{E, \omega}$; where $k(n) \rightarrow \infty$ as $n \rightarrow \infty$.
- Wells' and Le Gruyer's proof cannot be adapted to $C^{1, \omega}$.
- We know how to extend jets with $C^{1,1}$ functions in Hilbert spaces. What about $C^{1, \omega}$ extensions of jets for ω arbitrary?
- Whitney-Glaeser theorem gives extensions $F \in C^{1, \omega}\left(\mathbb{R}^{n}\right)$ of jets (f, G) with $\|F\|_{C^{1, \omega}\left(\mathbb{R}^{n}\right)} \leq k(n)\|(f, G)\|_{E, \omega}$; where $k(n) \rightarrow \infty$ as $n \rightarrow \infty$.
- Wells' and Le Gruyer's proof cannot be adapted to $C^{1, \omega}$.
- Unlike for $C^{1,1}$, there is no relation between $C^{1, \omega}$ and $C_{\text {conv }}^{1, \omega}$.
- We know how to extend jets with $C^{1,1}$ functions in Hilbert spaces. What about $C^{1, \omega}$ extensions of jets for ω arbitrary?
- Whitney-Glaeser theorem gives extensions $F \in C^{1, \omega}\left(\mathbb{R}^{n}\right)$ of jets (f, G) with $\|F\|_{C^{1, \omega}\left(\mathbb{R}^{n}\right)} \leq k(n)\|(f, G)\|_{E, \omega}$; where $k(n) \rightarrow \infty$ as $n \rightarrow \infty$.
- Wells' and Le Gruyer's proof cannot be adapted to $C^{1, \omega}$.
- Unlike for $C^{1,1}$, there is no relation between $C^{1, \omega}$ and $C_{\text {conv }}^{1, \omega}$.
- We need a different approach: paraconvex analysis.

Definition (Paraconvexity)

Let X be a Banach space and $\varphi:[0, \infty) \rightarrow[0, \infty)$. We say that $F: X \rightarrow \mathbb{R}$ is φ-paraconvex if

$$
F(\lambda x+(1-\lambda) y)-\lambda F(x)-(1-\lambda) F(y) \leq \lambda(1-\lambda) \varphi(\|x-y\|)
$$

for all $x, y \in X$ and all $\lambda \in[0,1]$.

Definition (Paraconvexity)

Let X be a Banach space and $\varphi:[0, \infty) \rightarrow[0, \infty)$. We say that $F: X \rightarrow \mathbb{R}$ is φ-paraconvex if

$$
F(\lambda x+(1-\lambda) y)-\lambda F(x)-(1-\lambda) F(y) \leq \lambda(1-\lambda) \varphi(\|x-y\|)
$$

for all $x, y \in X$ and all $\lambda \in[0,1]$.

- Let X be a Hilbert space. If ω is a modulus of continuity, and $\varphi=\int \omega$, then $F=-(\varphi \circ|\cdot|)$ is 2φ-paraconvex.

Definition (Paraconvexity)

Let X be a Banach space and $\varphi:[0, \infty) \rightarrow[0, \infty)$. We say that $F: X \rightarrow \mathbb{R}$ is φ-paraconvex if

$$
F(\lambda x+(1-\lambda) y)-\lambda F(x)-(1-\lambda) F(y) \leq \lambda(1-\lambda) \varphi(\|x-y\|)
$$

for all $x, y \in X$ and all $\lambda \in[0,1]$.

- Let X be a Hilbert space. If ω is a modulus of continuity, and $\varphi=\int \omega$, then $F=-(\varphi \circ|\cdot|)$ is 2φ-paraconvex.
- F is φ-paraconvex $\nRightarrow F+C(\varphi \circ\|\cdot\|)$ is convex (unless $\varphi(t)=c t^{2}$ and X is Hilbert).

Definition (Paraconvexity)

Let X be a Banach space and $\varphi:[0, \infty) \rightarrow[0, \infty)$. We say that $F: X \rightarrow \mathbb{R}$ is φ-paraconvex if

$$
F(\lambda x+(1-\lambda) y)-\lambda F(x)-(1-\lambda) F(y) \leq \lambda(1-\lambda) \varphi(\|x-y\|)
$$

for all $x, y \in X$ and all $\lambda \in[0,1]$.

- Let X be a Hilbert space. If ω is a modulus of continuity, and $\varphi=\int \omega$, then $F=-(\varphi \circ|\cdot|)$ is 2φ-paraconvex.
- F is φ-paraconvex $\nRightarrow F+C(\varphi \circ\|\cdot\|)$ is convex (unless $\varphi(t)=c t^{2}$ and X is Hilbert).
- Let X be a Banach space, $F: X \rightarrow \mathbb{R}$ locally bounded, and $\varphi=\int \omega$. If F and $(-F)$ are $C \varphi$-paraconvex, then $F \in C^{1, \omega}(X)$ and $M_{\omega}(D F) \leq M C$, where M is an absolute constant.

Extension results

Let ω be a modulus of continuity, $\varphi=\int \omega$, and $(f, G): E \rightarrow \mathbb{R} \times X^{*}$ a jet. We define the seminorm:

$$
A_{\omega}(f, G):=\sup _{\substack{x \in X ; y, z \in E ; \\\|x-y\|+\|x-z\|>0}} \frac{|f(y)+\langle G(y), x-y\rangle-f(z)-\langle G(z), x-z\rangle|}{\varphi(\|x-y\|)+\varphi(\|x-z\|)} .
$$

Let ω be a modulus of continuity, $\varphi=\int \omega$, and $(f, G): E \rightarrow \mathbb{R} \times X^{*}$ a jet. We define the seminorm:

$$
A_{\omega}(f, G):=\sup _{\substack{x \in X ; y, z \in E ; \\\|x-y\|+\|x-z\|>0}} \frac{|f(y)+\langle G(y), x-y\rangle-f(z)-\langle G(z), x-z\rangle|}{\varphi(\|x-y\|)+\varphi(\|x-z\|)} .
$$

- $A_{\omega}(f, G)$ is comparable to the smallest $M>0$ for which

$$
f(z) \leq f(y)+\frac{1}{2}\langle G(y)+G(z), z-y\rangle+M \varphi(\|y-z\|)-2 M \varphi^{*}\left(\frac{\|G(y)-G(z)\|_{*}}{2 M}\right)
$$

for all $y, z \in E$. Here $\varphi^{*}(t)=\int_{0}^{t} \omega^{-1}(t) d t$.

Let ω be a modulus of continuity, $\varphi=\int \omega$, and $(f, G): E \rightarrow \mathbb{R} \times X^{*}$ a jet. We define the seminorm:

$$
A_{\omega}(f, G):=\sup _{\substack{x \in X ; y, z \in E ; \\\|x-y\|+\|x=z\|>0}} \frac{|f(y)+\langle G(y), x-y\rangle-f(z)-\langle G(z), x-z\rangle|}{\varphi(\|x-y\|)+\varphi(\|x-z\|)} .
$$

- $A_{\omega}(f, G)$ is comparable to the smallest $M>0$ for which

$$
f(z) \leq f(y)+\frac{1}{2}\langle G(y)+G(z), z-y\rangle+M \varphi(\|y-z\|)-2 M \varphi^{*}\left(\frac{\|G(y)-G(z)\|_{*}}{2 M}\right)
$$

for all $y, z \in E$. Here $\varphi^{*}(t)=\int_{0}^{t} \omega^{-1}(t) d t$.

- $A_{\omega}(f, G)$ is comparable to the smallest $M>0$ for which (f, G) satisfies the Whitney-Glaeser conditions.

Theorem (Azagra-M.; 2019)

A 1-jet (f, G) defined on a subset E of a Hilbert space X has an extension $(F, \nabla F)$ with $F \in C^{1, \omega}(X)$ if and only if $A_{\omega}(f, G)<\infty$. Moreover, we can take F such that

$$
A_{\omega}(F, \nabla F) \leq 2 A_{\omega}(f, G)
$$

In addition, when $\omega(t)=t^{\alpha}$ with $0<\alpha \leq 1$, we can arrange

$$
A_{\omega}(F, \nabla F) \leq 2^{1-\alpha} A_{\omega}(f, G)
$$

Theorem (Azagra-M.; 2019)

A 1-jet (f, G) defined on a subset E of a Hilbert space X has an extension $(F, \nabla F)$ with $F \in C^{1, \omega}(X)$ if and only if $A_{\omega}(f, G)<\infty$. Moreover, we can take F such that

$$
A_{\omega}(F, \nabla F) \leq 2 A_{\omega}(f, G)
$$

In addition, when $\omega(t)=t^{\alpha}$ with $0<\alpha \leq 1$, we can arrange

$$
A_{\omega}(F, \nabla F) \leq 2^{1-\alpha} A_{\omega}(f, G)
$$

The extension F can be taken so that

$$
\begin{gathered}
M_{\omega}(\nabla F) \leq(16 / \sqrt{15})\|(f, G)\|_{E, \omega} \quad \text { and } \\
M_{\omega}(\nabla F) \leq \frac{2^{2-2 \alpha}}{\sqrt{1+\alpha}}\left(1+\frac{1}{\alpha}\right)^{\alpha / 2}\|(f, G)\|_{E, \omega} \quad \text { when } \quad \omega(t)=t^{\alpha} .
\end{gathered}
$$

Extension formulas

- Assume (f, G) satisfies $M:=A_{\omega}(f, G)<\infty$. Denote $\varphi=\int \omega$.
- Assume (f, G) satisfies $M:=A_{\omega}(f, G)<\infty$. Denote $\varphi=\int \omega$.
- Define

$$
g(x)=\inf _{y \in E}\{f(y)+\langle G(y), x-y\rangle+M \varphi(|x-y|)\}, \quad x \in X
$$

- Assume (f, G) satisfies $M:=A_{\omega}(f, G)<\infty$. Denote $\varphi=\int \omega$.
- Define

$$
g(x)=\inf _{y \in E}\{f(y)+\langle G(y), x-y\rangle+M \varphi(|x-y|)\}, \quad x \in X
$$

- The extension is defined as a $2 M \varphi$-paraconvex envelope of g :

$$
F(x)=\sup \{h(x): h \leq g, h \text { is } 2 M \varphi \text {-paraconvex }\} .
$$

- Assume (f, G) satisfies $M:=A_{\omega}(f, G)<\infty$. Denote $\varphi=\int \omega$.
- Define

$$
g(x)=\inf _{y \in E}\{f(y)+\langle G(y), x-y\rangle+M \varphi(|x-y|)\}, \quad x \in X
$$

- The extension is defined as a $2 M \varphi$-paraconvex envelope of g :

$$
F(x)=\sup \{h(x): h \leq g, h \text { is } 2 M \varphi \text {-paraconvex }\} .
$$

- We have $F \in C^{1, \omega}(X),(F, \nabla F)=(f, G)$ on E, etc

For $\omega(t)=\sqrt{t}$ and $E=\{-1,0,1\} \subset \mathbb{R}, \operatorname{set} f(-1)=1, f(0)=0, f(1)=1$ and $G \equiv 0$ on E. Then $A_{\omega}(f, G)=3 / \sqrt{2}$.

For $\omega(t)=\sqrt{t}$ and $E=\{-1,0,1\} \subset \mathbb{R}$, set $f(-1)=1, f(0)=0, f(1)=1$ and $G \equiv 0$ on E. Then $A_{\omega}(f, G)=3 / \sqrt{2}$.

For every $y \in E$, set $g_{y}(x):=f(y)+G(y)(x-y)+\frac{2 A(f, G)}{3}|x-y|^{3 / 2}, x \in \mathbb{R}$.

For every $y \in E$, set $m_{y}(x):=f(y)+G(y)(x-y)-\frac{2 A(f, G)}{3}|x-y|^{3 / 2}, x \in \mathbb{R}$.

Define $g=\inf \left(g_{y}\right)_{y \in E}$ and $m=\sup \left(m_{y}\right)_{y \in E}$.

A suitable paraconvex envelope F of g defines a $C^{1,1 / 2}$ extension of (f, G).

Let's find an alternate extension formula to

$$
F(x)=\sup \{h(x): h \leq g, h \text { is } 2 M \varphi \text {-paraconvex }\} .
$$

Let's find an alternate extension formula to

$$
F(x)=\sup \{h(x): h \leq g, h \text { is } 2 M \varphi \text {-paraconvex }\} .
$$

Fix $M>0$, and a modulus of continuity $\omega, \varphi=\int \omega$. Let $\mathcal{F}(M, \omega)$ be the family of functions of the form

$$
X \ni z \longmapsto h(z)=\text { affine function }-\sum_{i=1}^{n} \lambda_{i} M \varphi\left(\left|z-p_{i}\right|\right),
$$

where $p_{i} \in X, \lambda_{i} \geq 0, \sum_{i=1}^{n} \lambda_{i}=1$, and $n \in \mathbb{N}$.

Let's find an alternate extension formula to

$$
F(x)=\sup \{h(x): h \leq g, h \text { is } 2 M \varphi \text {-paraconvex }\} .
$$

Fix $M>0$, and a modulus of continuity $\omega, \varphi=\int \omega$. Let $\mathcal{F}(M, \omega)$ be the family of functions of the form

$$
X \ni z \longmapsto h(z)=\text { affine function }-\sum_{i=1}^{n} \lambda_{i} M \varphi\left(\left|z-p_{i}\right|\right),
$$

where $p_{i} \in X, \lambda_{i} \geq 0, \sum_{i=1}^{n} \lambda_{i}=1$, and $n \in \mathbb{N}$.
Then the following formula does the same job:

$$
\widetilde{F}(x):=\sup \{h(x): h \leq g, h \in \mathcal{F}(M, \omega)\} .
$$

$$
X \ni z \longmapsto h(z)=\text { affine function }-\sum_{i=1}^{n} \lambda_{i} M \varphi\left(\left|z-p_{i}\right|\right),
$$

where $p_{i} \in X, \lambda_{i} \geq 0, \sum_{i=1}^{n} \lambda_{i}=1$, and $n \in \mathbb{N}$.

The subclass of bounded and Lipschitz functions

- If (f, G) is also bounded, there are extensions $F \in C^{1, \omega}(X)$ with $(F, \nabla F)$ bounded, and there is $C>0$ absolute with

$$
A_{\omega}(F, \nabla F)+\|F\|_{\infty}+\|\nabla F\|_{\infty} \leq C\left(A_{\omega}(f, G)+\|f\|_{\infty}+\|G\|_{\infty}\right)
$$

- If (f, G) is also bounded, there are extensions $F \in C^{1, \omega}(X)$ with $(F, \nabla F)$ bounded, and there is $C>0$ absolute with

$$
A_{\omega}(F, \nabla F)+\|F\|_{\infty}+\|\nabla F\|_{\infty} \leq C\left(A_{\omega}(f, G)+\|f\|_{\infty}+\|G\|_{\infty}\right)
$$

- If the sequence of jets $\left\{\left(f_{n}, G_{n}\right)\right\}_{n}$ is A_{ω}-uniformly bounded, and $\left(f_{n}, G_{n}\right)$ converges to (f, G) uniformly on E, then the corresponding sequence of $C^{1, \omega}(X)$ extensions $\left(F_{n}, \nabla F_{n}\right)$ converges to $(F, \nabla F)$ uniformly on X.
- If (f, G) is also bounded, there are extensions $F \in C^{1, \omega}(X)$ with $(F, \nabla F)$ bounded, and there is $C>0$ absolute with

$$
A_{\omega}(F, \nabla F)+\|F\|_{\infty}+\|\nabla F\|_{\infty} \leq C\left(A_{\omega}(f, G)+\|f\|_{\infty}+\|G\|_{\infty}\right)
$$

- If the sequence of jets $\left\{\left(f_{n}, G_{n}\right)\right\}_{n}$ is A_{ω}-uniformly bounded, and $\left(f_{n}, G_{n}\right)$ converges to (f, G) uniformly on E, then the corresponding sequence of $C^{1, \omega}(X)$ extensions $\left(F_{n}, \nabla F_{n}\right)$ converges to $(F, \nabla F)$ uniformly on X.
- If f is Lipschitz and G bounded, we can find construct extensions $F \in C^{1, \omega}(X)$ with F Lipschitz, and there is $C>0$ absolute with

$$
A_{\omega}(F, \nabla F)+\operatorname{Lip}(F) \leq C\left(A_{\omega}(f, G)+\operatorname{Lip}(f)+\|G\|_{\infty}\right)
$$

Results in more general Banach spaces

Let $(X,\|\cdot\|)$ be a Banach space, and let ω be a modulus of continuity. Let $\varphi=\int \omega$. Assume that $\varphi \circ\|\cdot\| \in C^{1, \omega}(X)$. (This implies that X is superreflexive)

Let $(X,\|\cdot\|)$ be a Banach space, and let ω be a modulus of continuity. Let $\varphi=\int \omega$. Assume that $\varphi \circ\|\cdot\| \in C^{1, \omega}(X)$. (This implies that X is superreflexive)
Then the previous results are true for $C^{1, \omega}(X)$, with:
Characterizations via the conditions $A_{\omega}(f, G)$ and ($W^{1, \omega}$);

- Absolute control on the norm of the extension operators;
- Explicit extension formulas via paraconvex envelopes;
- Extension formulas via supremum of convex combinations of simple parabolas;
- Versions for bounded and/or Lipschitz jets;
- Continuous dependence on data.

Thank you for your attention!

