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• Let X be a Banach space. C1,ω(X) is the space of functions F : X → R
such that F is Fréchet differentiable in X, and DF : X → X∗ is uniformly
continuous with

Mω(DF) := sup
x,y∈X; x 6=y

‖DF(x)− DF(y)‖∗
ω(‖x− y‖)

<∞.

• A modulus of continuity ω : [0,∞)→ [0,∞) is a concave increasing
function with ω(0) = 0 and ω(∞) =∞.
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Problem (C1,ω extension of 1-jets)

Let X be a Hilbert space. Let E ⊂ X be arbitrary, let (f ,G) : E → R× X be
a 1-jet, and let ω be a modulus of continuity.

• Find necessary and sufficient conditions on (f ,G) for the existence of an
F ∈ C1,ω(X) such that (F,∇F) = (f ,G) on E.

• Construct such extension F (if it exists), estimate the seminorm

Mω(∇F) := sup
x,y∈X; x 6=y

|∇F(x)−∇F(y)|
ω(|x− y|)

,

and compare it to the C1,ω-trace seminorm of (f ,G) on E :

‖(f ,G)‖E,ω := inf
{

Mω(∇H) : H ∈ C1,ω(X), (H,∇H) = (f ,G) on E
}
.



Theorem (Whitney 1934-Glaeser 1958)

Let E ⊂ Rn, let (f ,G) : E → R× Rn be a 1-jet. There exists F ∈ C1,ω(Rn)
such that (F,∇F) = (f ,G) on E if and only if there is some M > 0 for
which

|f (y)− f (z)− 〈G(z), y− z〉| ≤ M|y− z|ω(|y− z|),

|G(y)− G(z)| ≤ Mω(|y− z|)

for every y, z ∈ E. Moreover, F can be taken so that Mω(∇F) ≤ k(n)M.



We can assume that E is closed, and then consider a Whitney
decomposition {Q}Q∈W of Rn \ E and the usual Whitney partition of unity
{ϕQ}Q∈W associated with {Q}Q∈W . For a suitable sequence of points
{pQ}Q∈W ⊂ E, the function defined by

F(x) =

{
f (x) if x ∈ E∑

Q∈W (f (pQ) + 〈G(pQ), x− pQ〉)ϕQ(x) if x ∈ Rn \ E

is of class C1,ω(Rn) and (F,∇F) = (f ,G) on E.

Moreover Mω(∇F) ≤ k(n)‖(f ,G)‖E,ω, where limn k(n) =∞.
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• J.C. Wells (1973) extended the result to Hilbert spaces for the class C1,1,
obtaining sharp extensions. Wells’ proof is based on a complicated
geometric construction when E is finite. When E is infinite, the proof is not
constructive and doesn’t provide any explicit formula.

• In 2009, E. Le Gruyer obtained, by means of a very elegant method,
another proof Wells’ theorem. This proof is shorter than Wells’, but it
doesn’t provide any explicit formula either. Zorn’s lemma is required.

• As a consequence of our solution to an extension problem for C1,1

convex functions, we proved the Wells-Le Gruyer’s theorem, via simple
and explicit formulas.
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C1,1 extensions of jets

Theorem (Wells 1973, Le Gruyer 2009, Azagra-Le Gruyer-M. 2017)

Let E be a subset of a Hilbert space X, and let (f ,G) : E → R× X be a jet.
There exists F ∈ C1,1(X) with (F,∇F) = (f ,G) on E if and only if there
exists M > 0 such that

f (z) ≤ f (y) +
1
2
〈G(y) + G(z), z− y〉+ M

4
|y− z|2 − 1

4M
|G(y)− G(z)|2

for all y, z ∈ E. Moreover,

F = conv(g)− M
2
| · |2,

g(x) = inf
y∈E

{
f (y) + 〈G(y), x− y〉+ M

2
|x− y|2

}
+

M
2
|x|2, x ∈ X,

defines a C1,1(X) function with (F,∇F) = (f ,G) on E, and Lip(∇F) ≤ M.

The function F can be taken so as to satisfy

Lip(∇F) = inf
{
Lip(∇H) : H ∈ C1,1(X), (H,∇H) = (f ,G) on E

}
.
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C1,1 extensions of jets

For g : X → R, the convex envelope of g is

conv(g)(x) = sup{h(x) : h : X → R convex, lsc, h ≤ g}
= sup{h(x) : h : X → R affine, lsc, h ≤ g}.



C1,1 extensions of jets

Very good relation between C1,1 general jets and C1,1 convex jets.

Let M > 0. For any jet (f ,G) defined on E, denote
(̃f , G̃) =

(
f + M

2 | · |
2,G + M Id

)
. Then

(f ,G) has a C1,1 extension F and Lip(∇F) ≤ M ⇐⇒

(̃f , G̃) has a C1,1 convex extension F̃ and Lip(∇F̃) ≤ 2M.
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C1,1 extensions of jets

Corollary (Kirszbraun’s theorem via an explicit formula; Azagra-Le
Gruyer-M.; 2017)
Let X,Y two Hilbert spaces, E ⊂ X and G : E → Y a Lipschitz mapping.
Define G̃ : X → Y by:

G̃(x) := ∇Y(conv(g))(x, 0) for every x ∈ X; where

g(x, y) = inf
z∈E

{
〈G(z), y〉Y + Lip(G)

2 |x− z|2X
}
+ Lip(G)

2 |x|2X + Lip(G)|y|2Y

for every (x, y) ∈ X × Y. Then G̃ = G on E and Lip(G̃,X) = Lip(G,E).
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C1,ω extensions of jets, arbitrary ω

•We know how to extend jets with C1,1 functions in Hilbert spaces. What
about C1,ω extensions of jets for ω arbitrary?

•Whitney-Glaeser theorem gives extensions F ∈ C1,ω(Rn) of jets (f ,G)
with ‖F‖C1,ω(Rn) ≤ k(n)‖(f ,G)‖E,ω; where k(n)→∞ as n→∞.

•Wells’ and Le Gruyer’s proof cannot be adapted to C1,ω.

• Unlike for C1,1, there is no relation between C1,ω and C1,ω
conv.

•We need a different approach: paraconvex analysis.
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C1,ω extensions of jets, arbitrary ω

Definition (Paraconvexity)

Let X be a Banach space and ϕ : [0,∞)→ [0,∞). We say that F : X → R
is ϕ-paraconvex if

F (λx + (1− λ)y)− λF(x)− (1− λ)F(y) ≤ λ(1− λ)ϕ (‖x− y‖)

for all x, y ∈ X and all λ ∈ [0, 1].

• Let X be a Hilbert space. If ω is a modulus of continuity, and ϕ =
∫
ω,

then F = −(ϕ ◦ | · |) is 2ϕ-paraconvex.

• F is ϕ-paraconvex 6=⇒ F + C (ϕ ◦ ‖ · ‖) is convex (unless ϕ(t) = ct2

and X is Hilbert).

• Let X be a Banach space, F : X → R locally bounded, and ϕ =
∫
ω.

If F and (−F) are Cϕ-paraconvex, then F ∈ C1,ω(X) and Mω (DF) ≤ MC,
where M is an absolute constant.
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Extension results

Let ω be a modulus of continuity, ϕ =
∫
ω, and (f ,G) : E → R× X∗ a jet.

We define the seminorm:

Aω(f ,G) : = sup
x∈X; y,z∈E;

‖x−y‖+‖x−z‖>0

|f (y) + 〈G(y), x− y〉 − f (z)− 〈G(z), x− z〉|
ϕ(‖x− y‖) + ϕ(‖x− z‖)

.

• Aω(f ,G) is comparable to the smallest M > 0 for which

f (z) ≤ f (y)+
1
2
〈G(y)+G(z), z−y〉+Mϕ(‖y−z‖)−2Mϕ∗

(
‖G(y)− G(z)‖∗

2M

)
(W1,ω)

for all y, z ∈ E. Here ϕ∗(t) =
∫ t

0 ω
−1(t) dt.

• Aω(f ,G) is comparable to the smallest M > 0 for which (f ,G) satisfies
the Whitney-Glaeser conditions.
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Extension results

Theorem (Azagra-M.; 2019)

A 1-jet (f ,G) defined on a subset E of a Hilbert space X has an extension
(F,∇F) with F ∈ C1,ω(X) if and only if Aω(f ,G) <∞. Moreover, we can
take F such that

Aω(F,∇F) ≤ 2 Aω(f ,G).

In addition, when ω(t) = tα with 0 < α ≤ 1, we can arrange

Aω(F,∇F) ≤ 21−αAω(f ,G).

The extension F can be taken so that

Mω(∇F) ≤ (16/
√

15)‖(f ,G)‖E,ω and

Mω(∇F) ≤ 22−2α
√

1+α

(
1 + 1

α

)α/2 ‖(f ,G)‖E,ω when ω(t) = tα.
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Extension formulas

• Assume (f ,G) satisfies M := Aω(f ,G) <∞. Denote ϕ =
∫
ω.

• Define

g(x) = inf
y∈E
{f (y) + 〈G(y), x− y〉+ Mϕ(|x− y|)}, x ∈ X.

• The extension is defined as a 2Mϕ-paraconvex envelope of g :

F(x) = sup{h(x) : h ≤ g, h is 2Mϕ-paraconvex}.

•We have F ∈ C1,ω(X), (F,∇F) = (f ,G) on E, etc
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Extension formulas

For ω(t) =
√

t and E = {−1, 0, 1} ⊂ R, set f (−1) = 1, f (0) = 0, f (1) = 1
and G ≡ 0 on E. Then Aω(f ,G) = 3/

√
2.



Extension formulas

For ω(t) =
√

t and E = {−1, 0, 1} ⊂ R, set f (−1) = 1, f (0) = 0, f (1) = 1
and G ≡ 0 on E. Then Aω(f ,G) = 3/

√
2.



Extension formulas

For every y ∈ E, set gy(x) := f (y)+G(y)(x− y)+ 2A(f ,G)
3 |x− y|3/2, x ∈ R.



Extension formulas

For every y ∈ E, set my(x) := f (y)+G(y)(x− y)− 2A(f ,G)
3 |x− y|3/2, x ∈ R.



Extension formulas

Define g = inf(gy)y∈E and m = sup(my)y∈E.



Extension formulas

A suitable paraconvex envelope F of g defines a C1,1/2 extension of (f ,G).



Extension formulas

Let’s find an alternate extension formula to

F(x) = sup{h(x) : h ≤ g, h is 2Mϕ-paraconvex}.

Fix M > 0, and a modulus of continuity ω, ϕ =
∫
ω. Let F(M, ω) be the

family of functions of the form

X 3 z 7−→ h(z) = affine function−
n∑

i=1

λi Mϕ(|z− pi|),

where pi ∈ X, λi ≥ 0,
∑n

i=1 λi = 1, and n ∈ N.

Then the following formula does the same job:

F̃(x) := sup{h(x) : h ≤ g, h ∈ F(M, ω)}.
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The subclass of bounded and Lipschitz functions

• If (f ,G) is also bounded, there are extensions F ∈ C1,ω(X) with (F,∇F)
bounded, and there is C > 0 absolute with

Aω(F,∇F) + ‖F‖∞ + ‖∇F‖∞ ≤ C (Aω(f ,G) + ‖f‖∞ + ‖G‖∞) .

• If the sequence of jets {(fn,Gn)}n is Aω-uniformly bounded, and (fn,Gn)
converges to (f ,G) uniformly on E, then the corresponding sequence of
C1,ω(X) extensions (Fn,∇Fn) converges to (F,∇F) uniformly on X.

• If f is Lipschitz and G bounded, we can find construct extensions
F ∈ C1,ω(X) with F Lipschitz, and there is C > 0 absolute with

Aω(F,∇F) + Lip(F) ≤ C (Aω(f ,G) + Lip(f ) + ‖G‖∞) .
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Results in more general Banach spaces

Let (X, ‖ · ‖) be a Banach space, and let ω be a modulus of continuity. Let
ϕ =

∫
ω. Assume that ϕ ◦ ‖ · ‖ ∈ C1,ω(X). (This implies that X is

superreflexive)

Then the previous results are true for C1,ω(X), with:
1 Characterizations via the conditions Aω(f ,G) and (W1,ω);
2 Absolute control on the norm of the extension operators;
3 Explicit extension formulas via paraconvex envelopes;
4 Extension formulas via supremum of convex combinations of simple

parabolas;
5 Versions for bounded and/or Lipschitz jets;
6 Continuous dependence on data.
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Thank you for your attention!
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