Differentiable extensions with uniformly continuous derivatives

Carlos Mudarra

University of Jyväskylä

Based on joint works with Daniel Azagra and Erwan Le Gruyer

XX Encuentros de Análisis Real y Complejo Cartagena, May 2022 • Let *X* be a Banach space. $C^{1,\omega}(X)$ is the space of functions $F: X \to \mathbb{R}$ such that *F* is Fréchet differentiable in *X*, and $DF: X \to X^*$ is uniformly continuous with

$$M_{\omega}(DF) := \sup_{x,y \in X; x \neq y} \frac{\|DF(x) - DF(y)\|_*}{\omega(\|x - y\|)} < \infty.$$

• Let *X* be a Banach space. $C^{1,\omega}(X)$ is the space of functions $F: X \to \mathbb{R}$ such that *F* is Fréchet differentiable in *X*, and $DF: X \to X^*$ is uniformly continuous with

$$M_{\omega}(DF) := \sup_{x,y \in X; x \neq y} \frac{\|DF(x) - DF(y)\|_*}{\omega(\|x - y\|)} < \infty.$$

• A modulus of continuity $\omega : [0, \infty) \to [0, \infty)$ is a concave increasing function with $\omega(0) = 0$ and $\omega(\infty) = \infty$.

Problem ($C^{1,\omega}$ extension of 1-jets)

Let *X* be a Hilbert space. Let $E \subset X$ be arbitrary, let $(f, G) : E \to \mathbb{R} \times X$ be a 1-jet, and let ω be a modulus of continuity.

- Find necessary and sufficient conditions on (f, G) for the existence of an $F \in C^{1,\omega}(X)$ such that $(F, \nabla F) = (f, G)$ on *E*.
- Construct such extension F (if it exists), estimate the seminorm

$$M_{\omega}(
abla F) := \sup_{x,y\in X;\,x
eq y} rac{|
abla F(x) -
abla F(y)|}{\omega(|x-y|)},$$

and compare it to the $C^{1,\omega}$ -trace seminorm of (f, G) on E:

 $\|(f,G)\|_{E,\omega} := \inf \{ M_{\omega}(\nabla H) : H \in C^{1,\omega}(X), (H,\nabla H) = (f,G) \text{ on } E \}.$

Theorem (Whitney 1934-Glaeser 1958)

Let $E \subset \mathbb{R}^n$, let $(f, G) : E \to \mathbb{R} \times \mathbb{R}^n$ be a 1-jet. There exists $F \in C^{1,\omega}(\mathbb{R}^n)$ such that $(F, \nabla F) = (f, G)$ on E if and only if there is some M > 0 for which

$$\begin{aligned} |f(y) - f(z) - \langle G(z), y - z \rangle| &\leq M |y - z| \omega(|y - z|), \\ |G(y) - G(z)| &\leq M \omega(|y - z|) \end{aligned}$$

for every $y, z \in E$. Moreover, F can be taken so that $M_{\omega}(\nabla F) \leq k(n)M$.

We can assume that *E* is closed, and then consider a *Whitney* decomposition $\{Q\}_{Q \in W}$ of $\mathbb{R}^n \setminus E$ and the usual *Whitney partition of unity* $\{\varphi_Q\}_{Q \in W}$ associated with $\{Q\}_{Q \in W}$. For a suitable sequence of points $\{p_Q\}_{Q \in W} \subset E$, the function defined by

$$F(x) = \begin{cases} f(x) & \text{if } x \in E\\ \sum_{Q \in \mathcal{W}} \left(f(p_Q) + \langle G(p_Q), x - p_Q \rangle \right) \varphi_Q(x) & \text{if } x \in \mathbb{R}^n \setminus E \end{cases}$$

is of class $C^{1,\omega}(\mathbb{R}^n)$ and $(F, \nabla F) = (f, G)$ on E.

We can assume that *E* is closed, and then consider a *Whitney* decomposition $\{Q\}_{Q \in W}$ of $\mathbb{R}^n \setminus E$ and the usual *Whitney partition of unity* $\{\varphi_Q\}_{Q \in W}$ associated with $\{Q\}_{Q \in W}$. For a suitable sequence of points $\{p_Q\}_{Q \in W} \subset E$, the function defined by

$$F(x) = \begin{cases} f(x) & \text{if } x \in E\\ \sum_{Q \in \mathcal{W}} \left(f(p_Q) + \langle G(p_Q), x - p_Q \rangle \right) \varphi_Q(x) & \text{if } x \in \mathbb{R}^n \setminus E \end{cases}$$

is of class $C^{1,\omega}(\mathbb{R}^n)$ and $(F, \nabla F) = (f, G)$ on E.

Moreover $M_{\omega}(\nabla F) \leq k(n) ||(f, G)||_{E,\omega}$, where $\lim_{n \to \infty} k(n) = \infty$.

• J.C. Wells (1973) extended the result to Hilbert spaces for the class $C^{1,1}$, obtaining sharp extensions. Wells' proof is based on a complicated geometric construction when *E* is finite. When *E* is infinite, the proof is not constructive and doesn't provide any explicit formula.

• J.C. Wells (1973) extended the result to Hilbert spaces for the class $C^{1,1}$, obtaining sharp extensions. Wells' proof is based on a complicated geometric construction when *E* is finite. When *E* is infinite, the proof is not constructive and doesn't provide any explicit formula.

• In 2009, E. Le Gruyer obtained, by means of a very elegant method, another proof Wells' theorem. This proof is shorter than Wells', but it doesn't provide any explicit formula either. Zorn's lemma is required.

• J.C. Wells (1973) extended the result to Hilbert spaces for the class $C^{1,1}$, obtaining sharp extensions. Wells' proof is based on a complicated geometric construction when *E* is finite. When *E* is infinite, the proof is not constructive and doesn't provide any explicit formula.

• In 2009, E. Le Gruyer obtained, by means of a very elegant method, another proof Wells' theorem. This proof is shorter than Wells', but it doesn't provide any explicit formula either. Zorn's lemma is required.

• As a consequence of our solution to an extension problem for $C^{1,1}$ convex functions, we proved the Wells-Le Gruyer's theorem, via simple and explicit formulas.

$C^{1,1}$ extensions of jets

C^{1,1} extensions of jets

Theorem (Wells 1973, Le Gruyer 2009, Azagra-Le Gruyer-M. 2017)

Let E be a subset of a Hilbert space X, and let $(f, G) : E \to \mathbb{R} \times X$ be a jet. There exists $F \in C^{1,1}(X)$ with $(F, \nabla F) = (f, G)$ on E if and only if there exists M > 0 such that

$$f(z) \le f(y) + \frac{1}{2} \langle G(y) + G(z), z - y \rangle + \frac{M}{4} |y - z|^2 - \frac{1}{4M} |G(y) - G(z)|^2$$

for all $y, z \in E$. Moreover,

$$F = \operatorname{conv}(g) - \frac{M}{2} |\cdot|^2,$$

$$g(x) = \inf_{y \in E} \left\{ f(y) + \langle G(y), x - y \rangle + \frac{M}{2} |x - y|^2 \right\} + \frac{M}{2} |x|^2, \quad x \in X,$$

defines a $C^{1,1}(X)$ function with $(F, \nabla F) = (f, G)$ on E, and $\operatorname{Lip}(\nabla F) \leq M$.

C^{1,1} extensions of jets

Theorem (Wells 1973, Le Gruyer 2009, Azagra-Le Gruyer-M. 2017)

Let E be a subset of a Hilbert space X, and let $(f, G) : E \to \mathbb{R} \times X$ be a jet. There exists $F \in C^{1,1}(X)$ with $(F, \nabla F) = (f, G)$ on E if and only if there exists M > 0 such that

$$f(z) \le f(y) + \frac{1}{2} \langle G(y) + G(z), z - y \rangle + \frac{M}{4} |y - z|^2 - \frac{1}{4M} |G(y) - G(z)|^2$$

for all $y, z \in E$. Moreover,

$$F = \operatorname{conv}(g) - \frac{M}{2} |\cdot|^2,$$

$$g(x) = \inf_{y \in E} \left\{ f(y) + \langle G(y), x - y \rangle + \frac{M}{2} |x - y|^2 \right\} + \frac{M}{2} |x|^2, \quad x \in X,$$

defines a $C^{1,1}(X)$ function with $(F, \nabla F) = (f, G)$ on E, and $\operatorname{Lip}(\nabla F) \leq M$.

The function F can be taken so as to satisfy

 $\operatorname{Lip}(\nabla F) = \inf \left\{ \operatorname{Lip}(\nabla H) : H \in C^{1,1}(X), \ (H, \nabla H) = (f, G) \text{ on } E \right\}.$

For $g: X \to \mathbb{R}$, the convex envelope of g is

$$\operatorname{conv}(g)(x) = \sup\{h(x) : h : X \to \mathbb{R} \text{ convex, lsc, } h \le g\}$$
$$= \sup\{h(x) : h : X \to \mathbb{R} \text{ affine, lsc, } h \le g\}.$$

Very good relation between $C^{1,1}$ general jets and $C^{1,1}$ convex jets.

Very good relation between $C^{1,1}$ general jets and $C^{1,1}$ convex jets.

Let M > 0. For any jet (f, G) defined on E, denote $(\widetilde{f}, \widetilde{G}) = (f + \frac{M}{2}| \cdot |^2, G + M \operatorname{Id})$. Then

(f, G) has a $C^{1,1}$ extension F and $\operatorname{Lip}(\nabla F) \leq M \iff$ $(\widetilde{f}, \widetilde{G})$ has a $C^{1,1}$ convex extension \widetilde{F} and $\operatorname{Lip}(\nabla \widetilde{F}) \leq 2M$. Corollary (Kirszbraun's theorem via an explicit formula; Azagra-Le Gruyer-M.; 2017)

Let X, Y two Hilbert spaces, $E \subset X$ and $G : E \to Y$ a Lipschitz mapping. Define $\widetilde{G} : X \to Y$ by:

 $\widetilde{G}(x) := \nabla_Y(\operatorname{conv}(g))(x,0) \quad \text{for every} \quad x \in X; \quad \text{where}$ $g(x,y) = \inf_{z \in E} \left\{ \langle G(z), y \rangle_Y + \frac{\operatorname{Lip}(G)}{2} | x - z |_X^2 \right\} + \frac{\operatorname{Lip}(G)}{2} | x |_X^2 + \operatorname{Lip}(G) | y |_Y^2$ $\text{for every} \ (x,y) \in X \times Y. \ \text{Then} \ \widetilde{G} = G \ \text{on} \ E \ \text{and} \ \operatorname{Lip}(\widetilde{G}, X) = \operatorname{Lip}(G, E).$

$C^{1,\omega}$ extensions of jets, arbitrary ω

• We know how to extend jets with $C^{1,1}$ functions in Hilbert spaces. What about $C^{1,\omega}$ extensions of jets for ω arbitrary?

- We know how to extend jets with $C^{1,1}$ functions in Hilbert spaces. What about $C^{1,\omega}$ extensions of jets for ω arbitrary?
- Whitney-Glaeser theorem gives extensions $F \in C^{1,\omega}(\mathbb{R}^n)$ of jets (f, G) with $\|F\|_{C^{1,\omega}(\mathbb{R}^n)} \leq k(n)\|(f, G)\|_{E,\omega}$; where $k(n) \to \infty$ as $n \to \infty$.

- We know how to extend jets with $C^{1,1}$ functions in Hilbert spaces. What about $C^{1,\omega}$ extensions of jets for ω arbitrary?
- Whitney-Glaeser theorem gives extensions $F \in C^{1,\omega}(\mathbb{R}^n)$ of jets (f, G) with $\|F\|_{C^{1,\omega}(\mathbb{R}^n)} \leq k(n)\|(f, G)\|_{E,\omega}$; where $k(n) \to \infty$ as $n \to \infty$.
- Wells' and Le Gruyer's proof cannot be adapted to $C^{1,\omega}$.

- We know how to extend jets with $C^{1,1}$ functions in Hilbert spaces. What about $C^{1,\omega}$ extensions of jets for ω arbitrary?
- Whitney-Glaeser theorem gives extensions $F \in C^{1,\omega}(\mathbb{R}^n)$ of jets (f, G) with $\|F\|_{C^{1,\omega}(\mathbb{R}^n)} \leq k(n)\|(f, G)\|_{E,\omega}$; where $k(n) \to \infty$ as $n \to \infty$.
- Wells' and Le Gruyer's proof cannot be adapted to $C^{1,\omega}$.
- Unlike for $C^{1,1}$, there is no relation between $C^{1,\omega}$ and $C^{1,\omega}_{conv}$.

- We know how to extend jets with $C^{1,1}$ functions in Hilbert spaces. What about $C^{1,\omega}$ extensions of jets for ω arbitrary?
- Whitney-Glaeser theorem gives extensions $F \in C^{1,\omega}(\mathbb{R}^n)$ of jets (f, G) with $\|F\|_{C^{1,\omega}(\mathbb{R}^n)} \leq k(n)\|(f, G)\|_{E,\omega}$; where $k(n) \to \infty$ as $n \to \infty$.
- Wells' and Le Gruyer's proof cannot be adapted to $C^{1,\omega}$.
- Unlike for $C^{1,1}$, there is no relation between $C^{1,\omega}$ and $C^{1,\omega}_{conv}$.
- We need a different approach: paraconvex analysis.

Let X be a Banach space and $\varphi : [0, \infty) \to [0, \infty)$. We say that $F : X \to \mathbb{R}$ is φ -paraconvex if

$$F(\lambda x + (1 - \lambda)y) - \lambda F(x) - (1 - \lambda)F(y) \le \lambda(1 - \lambda)\varphi(||x - y||)$$

for all $x, y \in X$ and all $\lambda \in [0, 1]$.

Let *X* be a Banach space and $\varphi : [0, \infty) \to [0, \infty)$. We say that $F : X \to \mathbb{R}$ is φ -paraconvex if

$$F(\lambda x + (1 - \lambda)y) - \lambda F(x) - (1 - \lambda)F(y) \le \lambda(1 - \lambda)\varphi(||x - y||)$$

for all $x, y \in X$ and all $\lambda \in [0, 1]$.

• Let *X* be a Hilbert space. If ω is a modulus of continuity, and $\varphi = \int \omega$, then $F = -(\varphi \circ | \cdot |)$ is 2φ -paraconvex.

Let *X* be a Banach space and $\varphi : [0, \infty) \to [0, \infty)$. We say that $F : X \to \mathbb{R}$ is φ -paraconvex if

$$F(\lambda x + (1 - \lambda)y) - \lambda F(x) - (1 - \lambda)F(y) \le \lambda(1 - \lambda)\varphi(||x - y||)$$

for all $x, y \in X$ and all $\lambda \in [0, 1]$.

• Let *X* be a Hilbert space. If ω is a modulus of continuity, and $\varphi = \int \omega$, then $F = -(\varphi \circ | \cdot |)$ is 2φ -paraconvex.

• *F* is φ -paraconvex \implies *F* + *C* ($\varphi \circ || \cdot ||$) is convex (unless $\varphi(t) = ct^2$ and *X* is Hilbert).

Let *X* be a Banach space and $\varphi : [0, \infty) \to [0, \infty)$. We say that $F : X \to \mathbb{R}$ is φ -paraconvex if

$$F(\lambda x + (1 - \lambda)y) - \lambda F(x) - (1 - \lambda)F(y) \le \lambda(1 - \lambda)\varphi(||x - y||)$$

for all $x, y \in X$ and all $\lambda \in [0, 1]$.

• Let *X* be a Hilbert space. If ω is a modulus of continuity, and $\varphi = \int \omega$, then $F = -(\varphi \circ | \cdot |)$ is 2φ -paraconvex.

• *F* is φ -paraconvex \implies *F* + *C* ($\varphi \circ || \cdot ||$) is convex (unless $\varphi(t) = ct^2$ and *X* is Hilbert).

• Let X be a Banach space, $F : X \to \mathbb{R}$ locally bounded, and $\varphi = \int \omega$. If F and (-F) are $C\varphi$ -paraconvex, then $F \in C^{1,\omega}(X)$ and $M_{\omega}(DF) \leq MC$, where M is an absolute constant.

Extension results

Let ω be a modulus of continuity, $\varphi = \int \omega$, and $(f, G) : E \to \mathbb{R} \times X^*$ a jet. We define the seminorm:

$$A_{\omega}(f,G) := \sup_{\substack{x \in X; \, y, z \in E; \\ \|x-y\|+\|x-z\|>0}} \frac{|f(y) + \langle G(y), x-y \rangle - f(z) - \langle G(z), x-z \rangle|}{\varphi(\|x-y\|) + \varphi(\|x-z\|)}.$$

Let ω be a modulus of continuity, $\varphi = \int \omega$, and $(f, G) : E \to \mathbb{R} \times X^*$ a jet. We define the seminorm:

$$A_{\omega}(f,G) := \sup_{\substack{x \in X; \, y, z \in E; \\ \|x-y\|+\|x-z\|>0}} \frac{|f(y) + \langle G(y), x-y \rangle - f(z) - \langle G(z), x-z \rangle|}{\varphi(\|x-y\|) + \varphi(\|x-z\|)}.$$

• $A_{\omega}(f,G)$ is comparable to the smallest M > 0 for which

$$f(z) \leq f(y) + \frac{1}{2} \langle G(y) + G(z), z - y \rangle + M\varphi(\|y - z\|) - 2M\varphi^* \left(\frac{\|G(y) - G(z)\|_*}{2M}\right)$$

$$(W^{1,\omega})$$

for all $y, z \in E$. Here $\varphi^*(t) = \int_0^t \omega^{-1}(t) dt$.

Let ω be a modulus of continuity, $\varphi = \int \omega$, and $(f, G) : E \to \mathbb{R} \times X^*$ a jet. We define the seminorm:

$$A_{\omega}(f,G) := \sup_{\substack{x \in X; \, y, z \in E; \\ \|x-y\|+\|x-z\| > 0}} \frac{|f(y) + \langle G(y), x-y \rangle - f(z) - \langle G(z), x-z \rangle|}{\varphi(\|x-y\|) + \varphi(\|x-z\|)}.$$

• $A_{\omega}(f,G)$ is comparable to the smallest M > 0 for which

$$f(z) \leq f(y) + \frac{1}{2} \langle G(y) + G(z), z - y \rangle + M\varphi(||y - z||) - 2M\varphi^* \left(\frac{||G(y) - G(z)||_*}{2M}\right)$$

$$(W^{1,\omega})$$

for all $y, z \in E$. Here $\varphi^*(t) = \int_0^t \omega^{-1}(t) dt$.

• $A_{\omega}(f, G)$ is comparable to the smallest M > 0 for which (f, G) satisfies the Whitney-Glaeser conditions.

Theorem (Azagra-M.; 2019)

A 1-jet (f, G) defined on a subset E of a Hilbert space X has an extension $(F, \nabla F)$ with $F \in C^{1,\omega}(X)$ if and only if $A_{\omega}(f, G) < \infty$. Moreover, we can take F such that

 $A_{\omega}(F, \nabla F) \leq 2A_{\omega}(f, G).$

In addition, when $\omega(t) = t^{\alpha}$ with $0 < \alpha \le 1$, we can arrange

 $A_{\omega}(F, \nabla F) \le 2^{1-\alpha} A_{\omega}(f, G).$

Theorem (Azagra-M.; 2019)

A 1-jet (f, G) defined on a subset E of a Hilbert space X has an extension $(F, \nabla F)$ with $F \in C^{1,\omega}(X)$ if and only if $A_{\omega}(f, G) < \infty$. Moreover, we can take F such that

 $A_{\omega}(F,\nabla F) \leq 2A_{\omega}(f,G).$

In addition, when $\omega(t) = t^{\alpha}$ with $0 < \alpha \le 1$, we can arrange

 $A_{\omega}(F, \nabla F) \le 2^{1-\alpha} A_{\omega}(f, G).$

The extension F can be taken so that

 $M_{\omega}(\nabla F) \leq (16/\sqrt{15}) \|(f,G)\|_{E,\omega}$ and

 $M_{\omega}(\nabla F) \leq rac{2^{2-2lpha}}{\sqrt{1+lpha}} \left(1+rac{1}{lpha}
ight)^{lpha/2} \|(f,G)\|_{E,\omega} \quad ext{when} \quad \omega(t) = t^{lpha}.$

Extension formulas

• Assume (f, G) satisfies $M := A_{\omega}(f, G) < \infty$. Denote $\varphi = \int \omega$.

- Assume (f, G) satisfies $M := A_{\omega}(f, G) < \infty$. Denote $\varphi = \int \omega$.
- Define

$$g(x) = \inf_{y \in E} \{ f(y) + \langle G(y), x - y \rangle + M\varphi(|x - y|) \}, \quad x \in X.$$

- Assume (f, G) satisfies $M := A_{\omega}(f, G) < \infty$. Denote $\varphi = \int \omega$.
- Define

$$g(x) = \inf_{y \in E} \{f(y) + \langle G(y), x - y \rangle + M\varphi(|x - y|)\}, \quad x \in X.$$

• The extension is defined as a $2M\varphi$ -paraconvex envelope of g:

$$F(x) = \sup\{h(x) : h \le g, h \text{ is } 2M\varphi\text{-paraconvex}\}.$$

- Assume (f, G) satisfies $M := A_{\omega}(f, G) < \infty$. Denote $\varphi = \int \omega$.
- Define

$$g(x) = \inf_{y \in E} \{f(y) + \langle G(y), x - y \rangle + M\varphi(|x - y|)\}, \quad x \in X.$$

• The extension is defined as a $2M\varphi$ -paraconvex envelope of g:

$$F(x) = \sup\{h(x) : h \le g, h \text{ is } 2M\varphi\text{-paraconvex}\}.$$

• We have $F \in C^{1,\omega}(X)$, $(F, \nabla F) = (f, G)$ on E, etc

Extension formulas

For $\omega(t) = \sqrt{t}$ and $E = \{-1, 0, 1\} \subset \mathbb{R}$, set f(-1) = 1, f(0) = 0, f(1) = 1and $G \equiv 0$ on *E*. Then $A_{\omega}(f, G) = 3/\sqrt{2}$. Extension formulas

For
$$\omega(t) = \sqrt{t}$$
 and $E = \{-1, 0, 1\} \subset \mathbb{R}$, set $f(-1) = 1, f(0) = 0, f(1) = 1$
and $G \equiv 0$ on E . Then $A_{\omega}(f, G) = 3/\sqrt{2}$.

For every $y \in E$, set $g_y(x) := f(y) + G(y)(x - y) + \frac{2A(f,G)}{3}|x - y|^{3/2}, x \in \mathbb{R}$.

For every $y \in E$, set $m_y(x) := f(y) + G(y)(x - y) - \frac{2A(f,G)}{3}|x - y|^{3/2}, x \in \mathbb{R}$.

Define $g = \inf(g_y)_{y \in E}$ and $m = \sup(m_y)_{y \in E}$.

A suitable paraconvex envelope F of g defines a $C^{1,1/2}$ extension of (f, G).

Let's find an alternate extension formula to

 $F(x) = \sup\{h(x) : h \le g, h \text{ is } 2M\varphi\text{-paraconvex}\}.$

Let's find an alternate extension formula to

 $F(x) = \sup\{h(x) : h \le g, h \text{ is } 2M\varphi\text{-paraconvex}\}.$

Fix M > 0, and a modulus of continuity ω , $\varphi = \int \omega$. Let $\mathcal{F}(M, \omega)$ be the family of functions of the form

$$X \ni z \longmapsto h(z) = affine function - \sum_{i=1}^{n} \lambda_i M \varphi(|z - p_i|),$$

where $p_i \in X$, $\lambda_i \ge 0$, $\sum_{i=1}^n \lambda_i = 1$, and $n \in \mathbb{N}$.

Let's find an alternate extension formula to

 $F(x) = \sup\{h(x) : h \le g, h \text{ is } 2M\varphi\text{-paraconvex}\}.$

Fix M > 0, and a modulus of continuity ω , $\varphi = \int \omega$. Let $\mathcal{F}(M, \omega)$ be the family of functions of the form

$$X \ni z \longmapsto h(z) = affine function - \sum_{i=1}^{n} \lambda_i M \varphi(|z - p_i|),$$

where $p_i \in X$, $\lambda_i \ge 0$, $\sum_{i=1}^n \lambda_i = 1$, and $n \in \mathbb{N}$.

Then the following formula does the same job:

$$\widetilde{F}(x) := \sup\{h(x) : h \le g, h \in \mathcal{F}(M, \omega)\}.$$

$$X \ni z \longmapsto h(z) = affine function - \sum_{i=1}^{n} \lambda_i M \varphi(|z - p_i|),$$

where $p_i \in X$, $\lambda_i \ge 0$, $\sum_{i=1}^n \lambda_i = 1$, and $n \in \mathbb{N}$.

The subclass of bounded and Lipschitz functions

• If (f, G) is also bounded, there are extensions $F \in C^{1,\omega}(X)$ with $(F, \nabla F)$ bounded, and there is C > 0 absolute with

 $A_{\omega}(F,\nabla F) + \|F\|_{\infty} + \|\nabla F\|_{\infty} \leq C \left(A_{\omega}(f,G) + \|f\|_{\infty} + \|G\|_{\infty}\right).$

• If (f, G) is also bounded, there are extensions $F \in C^{1,\omega}(X)$ with $(F, \nabla F)$ bounded, and there is C > 0 absolute with

$$A_{\omega}(F, \nabla F) + \|F\|_{\infty} + \|\nabla F\|_{\infty} \le C \left(A_{\omega}(f, G) + \|f\|_{\infty} + \|G\|_{\infty}\right).$$

• If the sequence of jets $\{(f_n, G_n)\}_n$ is A_ω -uniformly bounded, and (f_n, G_n) converges to (f, G) uniformly on E, then the corresponding sequence of $C^{1,\omega}(X)$ extensions $(F_n, \nabla F_n)$ converges to $(F, \nabla F)$ uniformly on X.

• If (f, G) is also bounded, there are extensions $F \in C^{1,\omega}(X)$ with $(F, \nabla F)$ bounded, and there is C > 0 absolute with

$$A_{\omega}(F, \nabla F) + \|F\|_{\infty} + \|\nabla F\|_{\infty} \le C \left(A_{\omega}(f, G) + \|f\|_{\infty} + \|G\|_{\infty}\right).$$

- If the sequence of jets $\{(f_n, G_n)\}_n$ is A_ω -uniformly bounded, and (f_n, G_n) converges to (f, G) uniformly on E, then the corresponding sequence of $C^{1,\omega}(X)$ extensions $(F_n, \nabla F_n)$ converges to $(F, \nabla F)$ uniformly on X.
- If *f* is Lipschitz and *G* bounded, we can find construct extensions $F \in C^{1,\omega}(X)$ with *F* Lipschitz, and there is C > 0 absolute with

 $A_{\omega}(F,\nabla F) + \operatorname{Lip}(F) \leq C \left(A_{\omega}(f,G) + \operatorname{Lip}(f) + \|G\|_{\infty} \right).$

Results in more general Banach spaces

Let $(X, \|\cdot\|)$ be a Banach space, and let ω be a modulus of continuity. Let $\varphi = \int \omega$. Assume that $\varphi \circ \|\cdot\| \in C^{1,\omega}(X)$. (This implies that *X* is superreflexive)

Let $(X, \|\cdot\|)$ be a Banach space, and let ω be a modulus of continuity. Let $\varphi = \int \omega$. Assume that $\varphi \circ \|\cdot\| \in C^{1,\omega}(X)$. (This implies that *X* is superreflexive)

Then the previous results are true for $C^{1,\omega}(X)$, with:

- Characterizations via the conditions $A_{\omega}(f, G)$ and $(W^{1,\omega})$;
- Absolute control on the norm of the extension operators;
- Explicit extension formulas via paraconvex envelopes;
- Extension formulas via supremum of convex combinations of simple parabolas;
- Versions for bounded and/or Lipschitz jets;
- Continuous dependence on data.

Thank you for your attention!