Compactness and Variational Analysis.

José Orihuela

"XX ENCUENTROS DE ANÁLISIS REAL Y COMPLEJO" May 26 - 28, 2022, UPCT, Cartagena, Spain

Supported by the projects MINECO/FEDER (MTM2017-83262-C2-2-P) and Fundación Séneca-Región de Murcia (20906/PI/18).

Coauthors and main publications

- J. Orihuela and M. Ruiz Galán A coercive and nonlinear James's weak compactness theorem Nonlinear Analysis 75 (2012) 598-611.
- B. Cascales, J. Orihuela and A. Pérez: One-sided James Compactness Theorem, J. Math. Anal. Appli. 445, Issue 2, 1267-1283 (2017).
- J. Orihuela: *Conic James' Compactness Theorem*, Journal of Convex Analysis (2018)(3), 1335–1344.
- F. Delbaen and J. Orihuela Mackey's constraints for James's Compactness Theorem and Risk Measures, Journal Math. Anal. Appli, 485-1 (2020), https://doi.org/10.1016/j.jmaa.2019.123764
- F. Delbaen and J. Orihuela *On the range of the subdifferential in non reflexive Banach spaces,* Journal Functional Anal., 281-2, (2021) https://doi.org/10.1016/j.jfa.2020.108915
- F. Delbaen and J. Orihuela *A multiset version of James's Theorem*, Journal Functional Analysis, to appear (2022).
- F. Delbaen and J. Orihuela *A nonlinear James's* w*-compactness theorem. Preprint 2022.

Delbaen and Schachermayer questions

Question (W. Schachermayer)

Let us fix a proper function

$$\alpha: \mathbb{L}^1(\Omega, \mathcal{F}, \mathbb{P}) \to (-\infty, +\infty]$$

When the minimization problem

$$\min\{\alpha(X) + \mathbb{E}[Y \cdot X] : X \in \mathbb{L}^1(\Omega, \mathcal{F}, \mathbb{P})\}\$$

has solution for all $Y \in \mathbb{L}^{\infty}(\Omega, \mathcal{F}, \mathbb{P})$?

Delbaen and Schachermayer questions

Question (W. Schachermayer)

Let us fix a proper function

$$\alpha: \mathbb{L}^1(\Omega, \mathcal{F}, \mathbb{P}) \to (-\infty, +\infty]$$

When the minimization problem

$$\min\{\alpha(X) + \mathbb{E}[Y \cdot X] : X \in \mathbb{L}^1(\Omega, \mathcal{F}, \mathbb{P})\}\$$

has solution for all $Y \in \mathbb{L}^{\infty}(\Omega, \mathcal{F}, \mathbb{P})$?

Question (F. Delbaen)

Let C be a convex, bounded and closed, but not weakly compact subset of the Banach space $\mathbb{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ with $0 \notin C$.

Is it possible to find a linear functional $Y \in \mathbb{L}^{\infty}(\Omega, \mathcal{F}, \mathbb{P})$ not attaining its minimum on C but that stays strictly positive on C?

Theorem (F. Delbaen and J. Orihuela)

Let A be a convex, closed, bounded but non weakly compact subset of a Banach space E such that $0 \notin A$. Let us fix a non-void open set Ω in the Makey dual $(E^*, \tau(E^*, E))$.

Then there is a continuous linear form $x_0^* \in \Omega$ which doest not attains supremum on A and such that

$$\sup x_0^*(A)<0$$

Maximizing $\{x^*(x) - \alpha(x) : x \in E\}$

Theorem (F. Delbaen and J. Orihuela)

Let E be a Banach space,

$$\alpha: E \to (-\infty, +\infty]$$

be a proper and bounded below function such that $\partial \alpha(E)$ has non empty interior in E^* for the Mackey topology $\tau(E^*, E)$, then the level sets

$$\{\alpha \leq c\}$$

are relatively weakly compact for all $c \in \mathbb{R}$. If in addition the function α has a domain with non-empty norm interior, the Banach space must be reflexive.

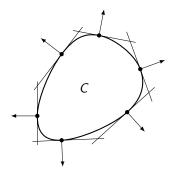
Let X be a (real) Banach space.

Theorem (James, 1964)

Let $C \subset X$ be a bounded, convex and closed set such that

$$\forall x^* \in X^* \quad \exists c \in C \text{ with } \langle x^*, c \rangle = \sup(x^*, C)$$

Then, C is w-compact.



A new measure of non-weak compactness

Theorem

Let A be a bounded subset of a Banach space E. Then A is weakly relatively compact if, and only if, for every bounded sequence $\{x_n^*\}_{n\geq 1}$ in E^* we have

$$\operatorname{dist}_{\|\cdot\|_A}(L\{x_n^*\},\operatorname{co}\{x_n^*:n\geq 1\})=0.$$

where we are denoting with $L\{x_n^*\}$ the set of all w^* -cluster points of the bounded sequence $\{x_n^*\}$ in E^* , and

$$||x^*||_A := \sup\{|x^*(a)| : a \in A\}$$

for every $x^* \in E^*$.

Connection with Pryce's arguments for the general case

Theorem

Let E be a Banach space, A a bounded subset of E with A=-A, $\{x_n^*\}_{n\geq 1}$ a bounded sequence in the dual space E^* , and D its norm-closed linear span in E^* . Then there exists a subsequence $\{x_{n_k}^*\}_{k\geq 1}$ of $\{x_n^*\}_{n\geq 1}$ such that

$$S_A\left(x^* - \liminf_k x_{n_k}^*\right) = S_A\left(x^* - \limsup_k x_{n_k}^*\right) =$$

Connection with Pryce's arguments for the general case

Theorem

Let E be a Banach space, A a bounded subset of E with A=-A, $\{x_n^*\}_{n\geq 1}$ a bounded sequence in the dual space E^* , and D its norm-closed linear span in E^* . Then there exists a subsequence $\{x_{n_k}^*\}_{k\geq 1}$ of $\{x_n^*\}_{n\geq 1}$ such that

$$S_A\left(x^* - \liminf_k x_{n_k}^*\right) = S_A\left(x^* - \limsup_k x_{n_k}^*\right) =$$

$$= \operatorname{dist}_{\|\cdot\|_A}(x^*, L\{x_{n_k}^*\})$$

for all $x^* \in D$.

Theorem (James-Pryce undetermined function technique)

Let X be a nonempty set, $\{h_j\}_{j\geq 1}$ a bounded sequence in $\ell^\infty(X)$, and $\delta>0$ such that

$$S_X\left(h-\limsup_j h_j\right)=S_X\left(h-\liminf_j h_j\right)\geq \delta,$$

whenever $h \in co_{\sigma}\{h_j: j \geq 1\}$. Then there exists a sequence $\{g_i\}_{i \geq 1}$ in $\ell^{\infty}(X)$ with

$$g_i \in co_{\sigma}\{h_j: j \geq i\}, \quad \text{for all } i \geq 1,$$

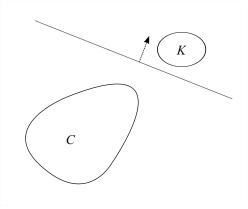
and there exists $g_0\in \mathrm{co}_\sigma\{g_i:\ i\geq 1\}$ such that for all $g\in \ell^\infty(X)$ with

$$\liminf_{i} g_{i} \leq g \leq \limsup_{i} g_{i} \quad on \ X,$$

the function $g_0 - g$ doest not attain its supremum on X.

 $C \subset E$ convex closed bounded $K \subset E$ convex weakly compact $C \cap K = \emptyset$

$$x^* \in E^*$$
 with $\sup (x^*, C) < \inf (x^*, K)$



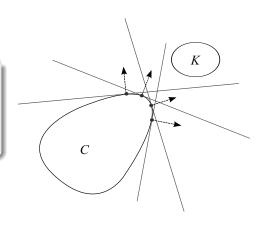
 $C \subset E$ convex closed bounded $K \subset E$ convex weakly compact $C \cap K = \emptyset$

Hypothesis 1:

Every $x^* \in E^*$ with

$$\sup (x^*, C) < \inf (x^*, K)$$

attains its supremum on C.



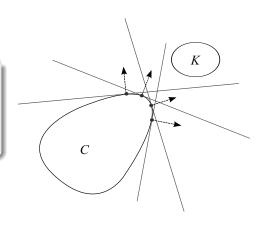
 $C \subset E$ convex closed bounded $K \subset E$ convex weakly compact $C \cap K = \emptyset$

Hypothesis 1:

Every $x^* \in E^*$ with

$$\sup (x^*, C) < \inf (x^*, K)$$

attains its supremum on C.



 $C \subset E$ convex closed bounded $K \subset E$ convex weakly compact $C \cap K = \emptyset$

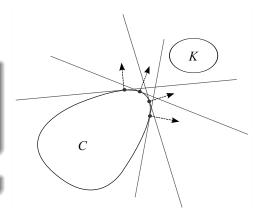
Hypothesis 1:

Every $x^* \in E^*$ with

$$\sup (x^*, C) < \inf (x^*, K)$$

attains its supremum on C.

Thesis: *C* is weakly compact.



One-sided plus Mackey's constraints Case

Theorem (Joint work with Freddy Delbaen)

Let A be a convex, closed and bounded subset of a Banach space E which is assumed non to be weakly compact with $0 \notin A$. Let us fix a relatively weakly compact subset D in $(E, \sigma(E, E^*))$ together with an absolutely convex and weakly compact subset W in $(E, \sigma(E, E^*))$ and a functional $z_0^* \in E^*$ with

inf
$$z_0^*(A) > 0$$
, inf $z_0^*(D) > 0$ and $\epsilon > 0$.

Then there is a linear form $z^* \in E^*$ such that

One-sided plus Mackey's constraints Case

Theorem (Joint work with Freddy Delbaen)

Let A be a convex, closed and bounded subset of a Banach space E which is assumed non to be weakly compact with $0 \notin A$. Let us fix a relatively weakly compact subset D in $(E, \sigma(E, E^*))$ together with an absolutely convex and weakly compact subset W in $(E, \sigma(E, E^*))$ and a functional $z_0^* \in E^*$ with

inf
$$z_0^*(A) > 0$$
, inf $z_0^*(D) > 0$ and $\epsilon > 0$.

Then there is a linear form $z^* \in E^*$ such that

- **1** $a \rightarrow \langle z_0^* + z^*, a \rangle$ does not attain its infimum on A,
- $inf(z_0^* + z^*)(A) > 0, inf(z_0^* + z^*)(D) > 0$

Theorem (Delbaen - Orihuela)

Let $u_1: \mathbb{L}^{\infty}(\Omega, \mathcal{F}, \mathbb{P}) \to \mathbb{R}$ be a Fatou coherent monetary utility function. Suppose that u_1 is not the essential infimum function. The following are equivalent:

- $\mathbf{0}$ u_1 is a Lebesgue monetary utility function
- u₁□u₂ is Fatou for all Fatou coherent utility functions u₂
- u₁□u₂ is Lebesgue for all Fatou coherent utility functionu₂

Theorem (Delbaen - Orihuela)

Let C be a closed, convex unbounded subset in the Banach space E and D be weakly compact subset of E such that every bounded set $Z \in E^*$ satisfies that

$$\sup\{z^*(c):c\in C,z^*\in Z\}<+\infty$$

whenever $\sup\{z^*(d): d \in D, z^* \in D\} < 0$.

Theorem (Delbaen - Orihuela)

Let C be a closed, convex unbounded subset in the Banach space E and D be weakly compact subset of E such that every bounded set $Z \in E^*$ satisfies that

$$\sup\{z^*(c):c\in C,z^*\in Z\}<+\infty$$

Theorem (Delbaen - Orihuela)

Let C be a closed, convex unbounded subset in the Banach space E and D be weakly compact subset of E such that every bounded set $Z \in E^*$ satisfies that

$$\sup\{z^*(c):c\in C,z^*\in Z\}<+\infty$$

Theorem (Delbaen - Orihuela)

Let C be a closed, convex unbounded subset in the Banach space E and D be weakly compact subset of E such that every bounded set $Z \in E^*$ satisfies that

$$\sup\{z^*(c):c\in C,z^*\in Z\}<+\infty$$

Theorem (Delbaen - Orihuela)

Let C be a closed, convex unbounded subset in the Banach space E and D be weakly compact subset of E such that every bounded set $Z \in E^*$ satisfies that

$$\sup\{z^*(c):c\in C,z^*\in Z\}<+\infty$$

- ② $\sup\{(z_0^* + z^*)(d) : d \in D\} < 0$, and so
- **3** sup{ $(z_0^* + z^*)(c)$: c ∈ C} < +∞ but this supremum is not attained.

Maximizing $\{x^*(x) - \alpha(x) : x \in E\}$

Theorem (Delbaen - Orihuela)

Let E be a Banach space, $\alpha: E \to (-\infty, +\infty]$ be a proper and bounded below function.

Maximizing $\{x^*(x) - \alpha(x) : x \in E\}$

Theorem (Delbaen - Orihuela)

Let E be a Banach space, $\alpha: E \to (-\infty, +\infty]$ be a proper and bounded below function.

If $\partial \alpha(E)$ has non empty interior in E^* for the Mackey topology $\tau(E^*, E)$, then the level sets $\{\alpha < c\}$ are relatively weakly compact for all $c \in \mathbb{R}$.

Let E be a real Banach space and let $\alpha: E \longrightarrow \mathbb{R} \cup \{+\infty\}$ be a bounded below function such that $\operatorname{dom}(\alpha)$ has nonempty norm–interior and for all $x^* \in U$ there exists $x_0 \in E$ with

$$\alpha(x_0) - x^*(x_0) = \inf_{x \in E} (\alpha(x) - x^*(x)), \qquad (1)$$

where U is a non void $\tau(E^*, E)$ -open set,

Let E be a real Banach space and let $\alpha: E \longrightarrow \mathbb{R} \cup \{+\infty\}$ be a bounded below function such that $\operatorname{dom}(\alpha)$ has nonempty norm–interior and for all $x^* \in U$ there exists $x_0 \in E$ with

$$\alpha(x_0) - x^*(x_0) = \inf_{x \in E} (\alpha(x) - x^*(x)), \qquad (1)$$

where U is a non void $\tau(E^*, E)$ -open set, then E is a reflexive Banach space.

Let E be a real Banach space and let $\alpha: E \longrightarrow \mathbb{R} \cup \{+\infty\}$ be a bounded below function such that $\operatorname{dom}(\alpha)$ has nonempty norm–interior and for all $x^* \in U$ there exists $x_0 \in E$ with

$$\alpha(x_0) - x^*(x_0) = \inf_{x \in E} (\alpha(x) - x^*(x)), \qquad (1)$$

where U is a non void $\tau(E^*, E)$ -open set, then E is a reflexive Banach space. Moreover, the minimization problem (1) has a solution for all $x^* \in E^*$.

Let E be a real Banach space and let $\alpha: E \longrightarrow \mathbb{R} \cup \{+\infty\}$ be a bounded below function such that $\operatorname{dom}(\alpha)$ has nonempty norm–interior and for all $x^* \in U$ there exists $x_0 \in E$ with

$$\alpha(x_0) - x^*(x_0) = \inf_{x \in E} (\alpha(x) - x^*(x)), \tag{1}$$

where U is a non void $\tau(E^*, E)$ -open set, then E is a reflexive Banach space. Moreover, the minimization problem (1) has a solution for all $x^* \in E^*$.

In particular, if we have a monotone and symmetric map $\Phi: E \longrightarrow E^*$ such that $\Phi(E)$ has non empty interior for the Mackey topology $\tau(E^*, E)$, the Banach space E must be reflexive and $\Phi(E) = E^*$

In a joint discussion with F. Delbaen (Luminy, September 2018) he asked the following:

In a joint discussion with F. Delbaen (Luminy, September 2018) he asked the following:

Let A be closed, convex and bounded subset of a Banach space E. If A is not weakly relatively compact, is there $x^* \in E^*$ such that $x^*(A) = (\alpha, \beta)$?

In a joint discussion with F. Delbaen (Luminy, September 2018) he asked the following:

Let A be closed, convex and bounded subset of a Banach space E. If A is not weakly relatively compact, is there $x^* \in E^*$ such that $x^*(A) = (\alpha, \beta)$?

Theorem (A Dichotomous James' Theorem, Delbaen - Orihuela)

Let $A \subset E$ be a bounded subset of a weakly sequentially complete Banach space E. If every $x^* \in E^*$ either attains its supremum or infimum on A, then A is weakly relatively compact.

In a joint discussion with F. Delbaen (Luminy, September 2018) he asked the following:

Let A be closed, convex and bounded subset of a Banach space E. If A is not weakly relatively compact, is there $x^* \in E^*$ such that $x^*(A) = (\alpha, \beta)$?

Theorem (A Dichotomous James' Theorem, Delbaen - Orihuela)

Let $A \subset E$ be a bounded subset of a weakly sequentially complete Banach space E. If every $x^* \in E^*$ either attains its supremum or infimum on A, then A is weakly relatively compact.

The hypothesis of weakly sequentially completenes can not be removed

Theorem (James - Pryce - Delbaen - Orihuela)

Let $\{h_j\}_{j\geq 1}$ be a uniformly bounded sequence in $\mathbb{R}^{X\cup Y}$. Let

$$0 < A < 1 \le K$$

be positive real numbers such that for all $h_0 \in co_{\sigma}\{h_j : j \geq 1\}$:

$$0 < A \le S_X(h_0 - \limsup_j h_j) = S_X(h_0 - \liminf_j h_j) \le K < \infty$$

and

$$0 < A \le S_Y(h_0 - \limsup_j h_j) = S_Y(h_0 - \liminf_j h_j) \le K < \infty.$$

Theorem (James - Pryce - Delbaen - Orihuela)

Let $\{h_j\}_{j\geq 1}$ be a uniformly bounded sequence in $\mathbb{R}^{X\cup Y}$. Let

$$0 < A < 1 \le K$$

be positive real numbers such that for all $h_0 \in co_{\sigma}\{h_j : j \geq 1\}$:

$$0 < A \le S_X(h_0 - \limsup_j h_j) = S_X(h_0 - \liminf_j h_j) \le K < \infty$$

and

$$0 < A \le S_Y(h_0 - \limsup_j h_j) = S_Y(h_0 - \liminf_j h_j) \le K < \infty.$$

Then there is a pseudo-subsequence $\{g_i\}_{i\geq 1}$ of $\{h_j\}_{j\geq 1}$, and $g_0\in co_\sigma\{g_i:i\geq 1\}$, such that for every \hat{g} satisfying for every $x\in X$

$$\liminf g_i(x) \le \hat{g}(x) \le \limsup g_i(x),$$

Theorem (James - Pryce - Delbaen - Orihuela)

Let $\{h_j\}_{j\geq 1}$ be a uniformly bounded sequence in $\mathbb{R}^{X\cup Y}$. Let

$$0 < A < 1 \le K$$

be positive real numbers such that for all $h_0 \in co_{\sigma}\{h_i : j \geq 1\}$:

$$0 < A \le S_X(h_0 - \limsup_j h_j) = S_X(h_0 - \liminf_j h_j) \le K < \infty$$

and

$$0 < A \le S_Y(h_0 - \limsup_j h_j) = S_Y(h_0 - \liminf_j h_j) \le K < \infty.$$

Then there is a pseudo-subsequence $\{g_i\}_{i>1}$ of $\{h_i\}_{i>1}$, and $g_0 \in co_{\sigma}\{g_i : i \geq 1\}$, such that for every \hat{g} satisfying for every $x \in X$

$$\liminf g_i(x) \leq \hat{g}(x) \leq \limsup g_i(x),$$

we have that $g_0 - \hat{g}$ does not attain its supremum neither on X nor on Y.

Multivalued James's Theorem

Corollary (Delbaen - Orihuela)

Let A and B be closed, bounded and convex subsets of Banach space E. If there are vectors $\mathbf{x}_0^{**} \in \overline{A}^{\sigma(E^{**},E^*)} \setminus E, \mathbf{y}_0^{**} \in \overline{B}^{\sigma(E^{**},E^*)} E^{**} \setminus E$ with

$$[x_0^{**},y_0^{**}]\cap E=\emptyset,$$

then there exist $x^* \in E^*$ such that x^* does not attain its supremum neither on A or on B.

Multivalued James's Theorem

Theorem (Delbaen - Orihuela)

Let $A_1, A_2, \dots A_p$ be closed, bounded and convex subsets of Banach space E. If there are vectors $x_1^{**}, x_2^{**}, \dots x_p^{**} \in E^{**} \setminus E$ with

$$x_i^{**} \in \overline{A_i}^{\sigma(E^{**},E^*)} \setminus A_i : i = 1,2,\cdots,p$$

and

$$\operatorname{co}(\{x_i^{**}: i=1,2,\cdots,p\}) \cap E=\emptyset,$$

then there exists $x^* \in E^*$ such that x^* does not attain its supremum on any A_i for $i=1,2,\cdots,p$.

Multivalued James's Theorem

Theorem (Delbaen - Orihuela)

Let $\{A_1, A_2, \dots A_p\}$ be a finite family of closed, bounded, convex but not weakly compact subsets of a weakly sequentially complete Banach space E. Then there exist $x^* \in E^*$ such that x^* does not attain its supremum on any A_i for $i = 1, 2, \dots, p$.

Theorem (Delbaen - Orihuela)

Let E be a Banach space without copies of ℓ^1 together with a w*-K analytic subset $A \subset E^*$. Let $B \subset E^*$ be such that $A \subset B \subset \overline{A}^{\|\cdot\|}$ and $D \subset E^*$ convex and weakly compact set with

$$(-D) \cap \overline{\operatorname{co}(B \cup \{0\})}^{\|\cdot\|} = \emptyset.$$
 (2)

Theorem (Delbaen - Orihuela)

Let E be a Banach space without copies of ℓ^1 together with a w*-K analytic subset $A \subset E^*$. Let $B \subset E^*$ be such that $A \subset B \subset \overline{A}^{\|\cdot\|}$ and $D \subset E^*$ convex and weakly compact set with

$$(-D) \cap \overline{\operatorname{co}(B \cup \{0\})}^{\|\cdot\|} = \emptyset.$$
 (2)

Let us assume that for $x \in E$ with $x(d^*) < 0$ for every $d^* \in D$, we have

$$\sup\{x(c^*): c^* \in B\} = x(b^*) \tag{3}$$

for some $b^* \in B$.

Theorem (Delbaen - Orihuela)

Let E be a Banach space without copies of ℓ^1 together with a w*-K analytic subset $A \subset E^*$. Let $B \subset E^*$ be such that $A \subset B \subset \overline{A}^{\|\cdot\|}$ and $D \subset E^*$ convex and weakly compact set with

$$(-D) \cap \overline{\operatorname{co}(B \cup \{0\})}^{\|\cdot\|} = \emptyset.$$
 (2)

Let us assume that for $x \in E$ with $x(d^*) < 0$ for every $d^* \in D$, we have

$$\sup\{x(c^*): c^* \in B\} = x(b^*) \tag{3}$$

for some $b^* \in B$. Then we have that

$$\overline{\operatorname{co}(B)}^{\omega^*} \subset \overline{\operatorname{co}(B)}^{\|\cdot\|} + \Lambda_D.$$

Corollary

Let E be a Banach space without copies of ℓ^1 and $B \subset E^*$ be a norm closed convex and w^* -K analytic set, with $0 \in B$ and such that $B+B \subset B$. Let us assume there is a weakly compact convex set $D \subset B$ with $(-D) \cap B = \emptyset$ such that for $x \in E$ with $x(d^*) < 0$ for every $d^* \in D$, we have

$$\sup\{x(c^*): c^* \in B\} = 0 \tag{4}$$

Then B is going to be w*-closed, i.e.:

$$\overline{B}^{\omega^*} \subset B$$
.

Theorem (Delbaen - Orihuela)

Let E be a Banach space without copies of $\ell^1(\mathbb{N})$ and let

$$\alpha: E^* \longrightarrow \mathbb{R} \cup \{+\infty\}$$

be a convex proper and norm lower semicontinuous map with a w*-K-analytic subset $A \subset dom(\alpha)$ with $dom(\alpha) \subset \overline{A}^{\|\cdot\|}$, and such that

for all
$$x \in E$$
, $x - \alpha$ attains its supremum on E^* .

Then α is w*-lower semicontinuous and for every $\mu \in \mathbb{R}$, the sublevel set $\alpha^{-1}((-\infty,\mu])$ is w*-compact.

Theorem (Delbaen - Orihuela)

Let E be a Banach space and $B \subset E^*$, let A and D be weakly countably determined subsets of E^* with $B \subset \overline{A}^{\|\cdot\|}$, and D bounded, w^* -closed and convex with $0 \notin D$. If for every $x \in E$, with $x(d^*) < 0$ for every $d^* \in D$, we have that

$$\sup\{x(c^*): c^* \in B\} = x(b^*) \tag{5}$$

for some $b^* \in B$, then

$$\overline{\operatorname{co}(B)}^{w^*} \subset \overline{\operatorname{co}(B) + \Lambda_D}^{\|\cdot\|}$$

Corollary

Let E be a Banach space and $B \subset E^*$ be a norm closed convex and weakly countably determined subset, with $0 \in B$ and such that $B + B \subset B$. Let us assume there is a bounded and w*-closed set $D \subset B$ with $0 \notin D$ and such that for $x \in E$ with $x(d^*) < 0$ for every $d^* \in D$, we have

$$\sup\{x(c^*): c^* \in B\} = 0 \tag{6}$$

Then we have that B is going to be w*-closed, i.e.:

$$\overline{B}^{\omega^*} \subset B$$
.

Theorem (Delbaen - Orihuela)

Let E be a Banach space and let

$$\alpha: E^* \longrightarrow \mathbb{R} \cup \{+\infty\}$$

be a convex, proper and norm lower semicontinuous map with a weakly countably determined subset $A \subset dom(\alpha)$ such that $dom(\alpha) \subset \overline{A}^{\|\cdot\|}$. Let us assume that

for all
$$x \in E$$
, $x - \alpha$ attains its supremum on E^* ,

then α is w*-lower semicontinuous and for every $\mu \in \mathbb{R}$, the sublevel set $\alpha^{-1}((-\infty,\mu])$ is w*-compact.

A hombros de gigantes

THANKS A LOT FOR YOUR ATTENTION ... !!

Theorem (F. Delbaen and J. Orihuela)

Let $u_1: \mathbb{L}^{\infty}(\Omega, \mathcal{F}, \mathbb{P}) \to \mathbb{R}$ be a Fatou coherent monetary utility function. Suppose that u_1 is not the essential infimum function. The following are equivalent:

- \bullet u_1 is a Lebesgue monetary utility function
- u₁□u₂ is Fatou for all Fatou coherent utility functions u₂
- \bullet $u_1 \square u_2$ is Lebesgue for all Fatou coherent utility function u_2

Theorem (γ -Conic Godefroy's Theorem)

Let E be a Banach space without copies of I^1 . Let D be a convex and w^* -closed subset with $0 \notin D$ and $B \subset E^*$ a nonempty set satisfying that for each $x \in E$ such that x(D) < 0 there is $b^* \in B$ with $\langle x, b^* \rangle = \sup(x, B)$. Then, we have that

$$\overline{\operatorname{co}(B)}^{\omega^*} \subset \overline{\operatorname{co}(B) + \Lambda_D}^{\gamma(E^*, E)}.$$

Theorem

Let E be a Banach space without copies of $\ell^1(\mathbb{N})$. If $\alpha: E^* \longrightarrow \mathbb{R} \cup \{+\infty\}$ is a convex, proper and $\gamma(E^*, E)$ -lower semicontinuous map such that

for all
$$x \in E$$
, $x - \alpha$ attains its supremum on E^* , (7)

then α is w*-lower semicontinuous and for every $\mu \in \mathbb{R}$, the sublevel set $\alpha^{-1}((-\infty, \mu])$ is w*-compact.

If E is a Banach lattice without copies of $\ell^1(\mathbb{N})$ and we assume that $\alpha(x^*) \leq 0$ for $x^* \in E_-^*$, then condition (7) can be relaxed to ask for

for all
$$x \in E_+$$
, $x - \alpha$ attains its supremum on E^* , (8)

and we also get the w*-lower semicontinuouty for α and the fact that its level sets are w*-compact.

Corollary

Let E be a Banach space and $B \subset E^*$ be a norm closed convex and weakly countably determined subset, with $0 \in B$ and such that $B + B \subset B$. Let us assume there is a weakly countably determined, convex, bounded and w^* -closed set $D \subset B$ with $0 \notin D$ and such that for $x \in E$ with $x(d^*) < 0$ for every $d^* \in D$, we have

$$\sup\{x(c^*): c^* \in B\} = 0 \tag{9}$$

Then we have that B is going to be w*-closed, i.e.:

$$\overline{B}^{\omega^*} \subset B$$
.

Theorem

Let B,D be subsets of a dual Banach space E^* such that D is assumed to be a $\sigma(E^*,E)$ -closed convex subset with $0 \notin D$. Given

$$x \in E$$
 such that : $x(d^*) < 0$ for every $d^* \in D$,

there is $b^* \in B$ with

$$\langle x, b^* \rangle = \sup \langle x, B \rangle,$$

and $B \subset \bigcup_{n=1}^{\infty} K_n$ for some family of w^* -compact convex subsets of E^* , then we have:

$$\overline{\operatorname{co}(B)}^{\omega^*} \subset \overline{\operatorname{co}(\cup_{n=1}^{\infty} K_n) + \Lambda_D}^{\|\cdot\|}.$$

Corollary

Let E be a Banach space without copies of ℓ^1 and $B \subset E^*$ be a norm closed convex and w^* -K analytic set, with $0 \in B$ and such that $B+B \subset B$. Let us assume there is a weakly compact convex set $D \subset B$ with $(-D) \cap B = \emptyset$ such that for $x \in E$ with $x(d^*) < 0$ for every $d^* \in D$, we have

$$\sup\{x(c^*): c^* \in B\} = 0 \tag{10}$$

Then B is going to be w*-closed, i.e.:

$$\overline{B}^{\omega^*} \subset B$$
.

Lehman Brothers default

Mathematics and uncertainty

Kurt Gödel

Prof. Dr. Walter Schachermayer

TITLE

Walter Schachermayer

Fakultät für Mathematik, Universität Wien

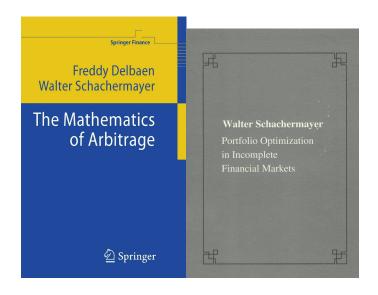
	All	Since 2014
Citations	12365	4110
h-index	50	28
i10-index	113	73

CITED BY

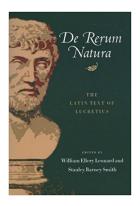
YEAR

A general version of the fundamental theorem of asset pricing F Delbaen, W Schachermayer	2066	1994
Mathematische annalen 300 (1), 463-520, 1994		
Affine processes and applications in finance	953	2003
D Duffie, D Filipović, W Schachermayer		
The Annals of Applied Probability 13 (3), 984-1053, 2003		
The asymptotic elasticity of utility functions and optimal investment in	899	1999
incomplete markets		
D Kramkov, W Schachermayer		
Annals of Applied Probability, 904-950, 1999		
The fundamental theorem of asset pricing for unbounded stochastic	715	1998
processes		
F Delbaen, W Schachermayer		
Mathematische annalen 312 (2), 215-250, 1998		
The mathematics of arbitrage	642	2006

F Delbaen, W Schachermayer

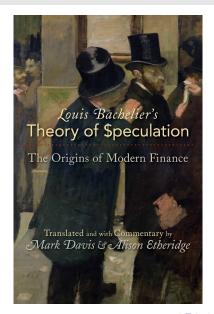


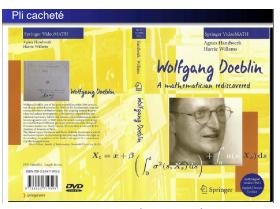
Prof. Dr. Freddy Delbaen



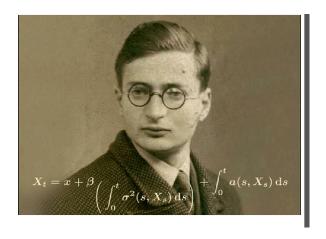
Titus Lucretius Carus (99-55 antes de Cristo)

Powers of ten.



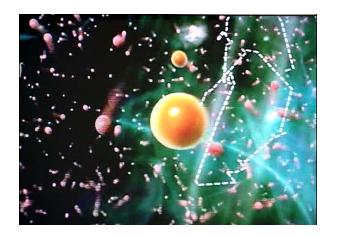


Doeblin-Itô (1935-2000)



Wolfgang Doeblin y su fórmula

Kiyoshi Itô y su fórmula



Path of a Brownian Motion

R. Merton, M. Sholes y F. Black

Paul Embrechets, ETH Zurich. Extremal events researcher who advised on the risks of the copula formula what killed Wall Street in 2007

$\Pr[\mathbf{T} \leq 1, \mathbf{T} \leq 1] = \mathbf{\phi}_{\mathbf{x}}(\mathbf{\phi}^{-1}(\mathbf{F}_{\mathbf{x}}(1)), \mathbf{\phi}^{-1}(\mathbf{F}_{\mathbf{x}}(1)))$

Here's what killed your 401(k) David X. Li's Gaussian copula function as first published in 2000 Investors exploited it as a quick—and fatally flowed—way to assess risk A shorter version

Illustration: David A. Johnson

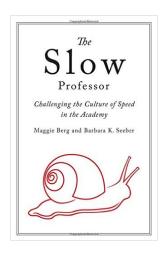
En el wundo financiono unudos "quants" New solo mimeros ante ellos y olvidan store la realidad concréta que dichos números

remesentan. Piensan que preder modelar con unos prios atros de datos y reladau probabilidades para sucesos que pueden ocumento solamente una vez en 10.000 años. Entimos los miersos inienten sobre la base de dichas probabilidades, sin poresse a propriétaise

DL. "The wort daw gerous part is when people believe over y'thing country out of it "_ (same so undelo_...)

David X. Li

Felix Salmon: The formula that killed Wall Street



Slow Science Manifesto

