Transference and restriction of Fourier multipliers on Orlicz spaces

OSCAR BLASCO joint work with Ruya Üster (Istanbul University)

Universidad Valencia

XX EARCO Encuentros de Análisis Real y Complejo 28 Mayo, 2022

 (Φ_1, Φ_2) -multipliers on \mathbb{R} (Φ_1, Φ_2) -multipliers on D

(Φ_1, Φ_2) -multipliers on \mathbb{Z}

Multipliers on L^p

Recall that a bounded measurable function $m : \mathbb{R} \to \mathbb{C}$ is said to be a *p*-multiplier in $\mathscr{M}_p(\mathbb{R})$, if

$$T_m(f)(y) = \int_{\mathbb{R}} m(x)\hat{f}(x)e^{ixy}dx$$

Motivation

defines a bounded operator from $L^{p}(\mathbb{R})$ into $L^{p}(\mathbb{R})$.

 (Φ_1, Φ_2) -multipliers on \mathbb{R} (Φ_1, Φ_2) -multipliers on D

(Φ_1, Φ_2) -multipliers on \mathbb{Z}

Multipliers on L^p

Recall that a bounded measurable function $m: \mathbb{R} \to \mathbb{C}$ is said to be a *p*-multiplier in $\mathcal{M}_p(\mathbb{R})$, if

$$T_m(f)(y) = \int_{\mathbb{R}} m(x)\hat{f}(x)e^{ixy}dx$$

Motivation

defines a bounded operator from $L^{p}(\mathbb{R})$ into $L^{p}(\mathbb{R})$. Recall that a bounded sequence $(m_n) \subset \mathbb{C}$ (respect. a bounded periodic function $m: \mathbb{T} \to \mathbb{C}$) is said to be a *p*-multiplier in $\mathcal{M}_p(\mathbb{Z})$ (respect. $\mathcal{M}_{p}(\mathbb{T})),$

 (Φ_1, Φ_2) -multipliers on D (Φ_1, Φ_2) -multipliers on Z Motivation Notation

Multipliers on L^p

Recall that a bounded measurable function $m : \mathbb{R} \to \mathbb{C}$ is said to be a *p*-multiplier in $\mathscr{M}_p(\mathbb{R})$, if

$$T_m(f)(y) = \int_{\mathbb{R}} m(x)\hat{f}(x)e^{ixy}dx$$

defines a bounded operator from $L^p(\mathbb{R})$ into $L^p(\mathbb{R})$. Recall that a bounded sequence $(m_n) \subset \mathbb{C}$ (respect. a bounded periodic function $m : \mathbb{T} \to \mathbb{C}$) is said to be a *p*-multiplier in $\mathcal{M}_p(\mathbb{Z})$ (respect. $\mathcal{M}_p(\mathbb{T})$), if

$$T_m(f)(t) = \sum_{n \in \mathbb{Z}} m_n \hat{f}(n) e^{int}$$

(respect. $(T_m((\alpha_n)))_n = (\int_0^{2\pi} m(t)(\sum_k \alpha_k e^{ikt}) e^{int} \frac{dt}{2\pi})_n$)

 (Φ_1, Φ_2) -multipliers on D (Φ_1, Φ_2) -multipliers on Z Motivation Notation

Multipliers on L^p

Recall that a bounded measurable function $m : \mathbb{R} \to \mathbb{C}$ is said to be a *p*-multiplier in $\mathscr{M}_p(\mathbb{R})$, if

$$T_m(f)(y) = \int_{\mathbb{R}} m(x)\hat{f}(x)e^{ixy}dx$$

defines a bounded operator from $L^p(\mathbb{R})$ into $L^p(\mathbb{R})$. Recall that a bounded sequence $(m_n) \subset \mathbb{C}$ (respect. a bounded periodic function $m : \mathbb{T} \to \mathbb{C}$) is said to be a *p*-multiplier in $\mathcal{M}_p(\mathbb{Z})$ (respect. $\mathcal{M}_p(\mathbb{T})$), if

$$T_m(f)(t) = \sum_{n \in \mathbb{Z}} m_n \hat{f}(n) e^{int}$$

(respect. $(T_m((\alpha_n)))_n = (\int_0^{2\pi} m(t)(\sum_k \alpha_k e^{ikt}) e^{int} \frac{dt}{2\pi})_n$) defines a bounded operator from $L^p(\mathbb{T})$ into $L^p(\mathbb{T})$ (respect. from $\ell^p(\mathbb{Z})$ into $\ell^p(\mathbb{Z})$.)

 (Φ_1, Φ_2) -multipliers on D (Φ_1, Φ_2) -multipliers on \mathbb{Z} Motivation Notation

Transference and restriction

Let $m : \mathbb{R} \to \mathbb{C}$ be continuous and bounded. Assume that $m \in \mathscr{M}_p(\mathbb{R})$.

-

 (Φ_1, Φ_2) -multipliers on D (Φ_1, Φ_2) -multipliers on \mathbb{Z} Motivation Notation

Transference and restriction

Let $m : \mathbb{R} \to \mathbb{C}$ be continuous and bounded. Assume that $m \in \mathcal{M}_p(\mathbb{R})$. Consider the periodic extension of its restriction to $[0, 2\pi)$, that is $\tilde{m}(t) = m(t - 2\pi[t/2\pi])$. **Does it hold that** $\tilde{m} \in \mathcal{M}_p(\mathbb{Z})$ **?**.

 (Φ_1, Φ_2) -multipliers on D (Φ_1, Φ_2) -multipliers on \mathbb{Z} Motivation Notation

Transference and restriction

Let $m : \mathbb{R} \to \mathbb{C}$ be continuous and bounded. Assume that $m \in \mathcal{M}_p(\mathbb{R})$. Consider the periodic extension of its restriction to $[0, 2\pi)$, that is $\tilde{m}(t) = m(t - 2\pi[t/2\pi])$. Does it hold that $\tilde{m} \in \mathcal{M}_p(\mathbb{Z})$?. Let $m_n = m(n)$. Does it hold that $(m_n) \in \mathcal{M}_p(\mathbb{T})$?.

 (Φ_1, Φ_2) -multipliers on D (Φ_1, Φ_2) -multipliers on \mathbb{Z} Motivation Notation

Transference and restriction

Let $m : \mathbb{R} \to \mathbb{C}$ be continuous and bounded. Assume that $m \in \mathcal{M}_p(\mathbb{R})$. Consider the periodic extension of its restriction to $[0, 2\pi)$, that is $\tilde{m}(t) = m(t - 2\pi[t/2\pi])$. Does it hold that $\tilde{m} \in \mathcal{M}_p(\mathbb{Z})$?. Let $m_n = m(n)$. Does it hold that $(m_n) \in \mathcal{M}_p(\mathbb{T})$?. K. DeLeeuw, (1965) YES

 (Φ_1, Φ_2) -multipliers on D (Φ_1, Φ_2) -multipliers on \mathbb{Z} Motivation Notation

Transference and restriction

Let $m : \mathbb{R} \to \mathbb{C}$ be continuous and bounded. Assume that $m \in \mathcal{M}_p(\mathbb{R})$. Consider the periodic extension of its restriction to $[0, 2\pi)$, that is $\tilde{m}(t) = m(t - 2\pi[t/2\pi])$. **Does it hold that** $\tilde{m} \in \mathcal{M}_p(\mathbb{Z})$ **?**. Let $m_n = m(n)$. **Does it hold that** $(m_n) \in \mathcal{M}_p(\mathbb{T})$ **?**. K. DeLeeuw, (1965) YES Tool (Use the Bohr group **D**, that is \mathbb{R} with the discrete topology. $\mathcal{M}_p(\mathbb{R}) = \mathcal{M}_p(D)$

 (Φ_1, Φ_2) -multipliers on D (Φ_1, Φ_2) -multipliers on Z Motivation Notation

Transference and restriction

Let $m : \mathbb{R} \to \mathbb{C}$ be continuous and bounded. Assume that $m \in \mathcal{M}_p(\mathbb{R})$. Consider the periodic extension of its restriction to $[0, 2\pi)$, that is $\tilde{m}(t) = m(t - 2\pi[t/2\pi])$. **Does it hold that** $\tilde{m} \in \mathcal{M}_p(\mathbb{Z})$?. Let $m_n = m(n)$. **Does it hold that** $(m_n) \in \mathcal{M}_p(\mathbb{T})$?. K. DeLeeuw, (1965) YES Tool (Use the Bohr group **D**, that is \mathbb{R} with the discrete topology. $\mathcal{M}_p(\mathbb{R}) = \mathcal{M}_p(D)$ **Aim: Similar questions for multipliers between Orlicz spaces**

 (Φ_1, Φ_2) -multipliers on \mathbb{R} (Φ_1, Φ_2) -multipliers on D

Notation

(Φ_1, Φ_2) -multipliers on \mathbb{Z}

Groups

Throughout the paper (G, \cdot) denotes a locally compact abelian group,

Motivation

(Φ_1, Φ_2) -multipliers on D (Φ_1, Φ_2) -multipliers on Z

Groups

Throughout the paper (G,\cdot) denotes a locally compact abelian group, \hat{G} the dual group of G and

 (Φ_1, Φ_2) -multipliers on D

 (Φ_1, Φ_2) -multipliers on \mathbb{Z}

Motivation

Groups

Throughout the paper (G, \cdot) denotes a locally compact abelian group, \hat{G} the dual group of G and m_G stands for the Haar measure.

 (Φ_1, Φ_2) -multipliers on D

 (Φ_1, Φ_2) -multipliers on \mathbb{Z}

Motivation Notation

Groups

Throughout the paper (G, \cdot) denotes a locally compact abelian group, \hat{G} the dual group of G and m_G stands for the Haar measure. **Examples to be used**: \mathbb{R} for the real line, **D** for the \mathbb{R} with the discrete topology, \mathbb{T} for the unit circle and \mathbb{Z} for the integers.

 (Φ_1, Φ_2) -multipliers on D

 (Φ_1, Φ_2) -multipliers on \mathbb{Z}

Motivation Notation

Groups

Throughout the paper (G, \cdot) denotes a locally compact abelian group, \hat{G} the dual group of G and m_G stands for the Haar measure. **Examples to be used**: \mathbb{R} for the real line, **D** for the \mathbb{R} with the discrete topology, \mathbb{T} for the unit circle and \mathbb{Z} for the integers. We write

$$\hat{f}(\gamma) = \int_{G} f(x) \gamma^{-1}(x) dm_G(x)$$

for $\gamma \in \hat{G}$ whenever $f \in L^1(G)$.

Motivation Notation

Groups

Throughout the paper (G, \cdot) denotes a locally compact abelian group, \hat{G} the dual group of G and m_G stands for the Haar measure. **Examples to be used**: \mathbb{R} for the real line, **D** for the \mathbb{R} with the discrete topology, \mathbb{T} for the unit circle and \mathbb{Z} for the integers. We write

$$\hat{f}(\gamma) = \int_{G} f(x) \gamma^{-1}(x) dm_{G}(x)$$

for $\gamma \in \hat{G}$ whenever $f \in L^1(G)$.

Given a bounded measurable function m defined on G we write

$$T_m(f)(\gamma) = \int_G m(x)\hat{f}(x)\gamma(x)dm_G(x), \quad \gamma \in \hat{G}.$$
 (1)

for any $f \in A(\hat{G}) = \{f : \hat{G} \to \mathbb{C} : \hat{f} \in L^1(G)\}.$

Motivation Notation

Groups

Throughout the paper (G, \cdot) denotes a locally compact abelian group, \hat{G} the dual group of G and m_G stands for the Haar measure. **Examples to be used**: \mathbb{R} for the real line, **D** for the \mathbb{R} with the discrete topology, \mathbb{T} for the unit circle and \mathbb{Z} for the integers. We write

$$\hat{f}(\gamma) = \int_{G} f(x) \gamma^{-1}(x) dm_{G}(x)$$

for $\gamma \in \hat{G}$ whenever $f \in L^1(G)$.

Given a bounded measurable function m defined on G we write

$$T_m(f)(\gamma) = \int_G m(x)\hat{f}(x)\gamma(x)dm_G(x), \quad \gamma \in \hat{G}.$$
 (1)

for any $f \in A(\hat{G}) = \{f : \hat{G} \to \mathbb{C} : \hat{f} \in L^1(G)\}.$

 (Φ_1, Φ_2) -multipliers on D

 (Φ_1, Φ_2) -multipliers on \mathbb{Z}

Motivation

Orlicz spaces

Given a Young function $\Phi: [0,\infty) \to [0,\infty)$, that is convex, $\Phi(0) = 0$ and $\lim_{x\to\infty} \Phi(x) = \infty$, we write

$$\rho_{\Phi}(f) = \int_{G} \Phi(|f(x)|) dm_{G}(x).$$

-

 (Φ_1, Φ_2) -multipliers on D

 (Φ_1, Φ_2) -multipliers on \mathbb{Z}

Motivation Notation

Orlicz spaces

Given a Young function $\Phi: [0,\infty) \to [0,\infty)$, that is convex, $\Phi(0) = 0$ and $\lim_{x\to\infty} \Phi(x) = \infty$, we write

$$\rho_{\Phi}(f) = \int_{G} \Phi(|f(x)|) dm_{G}(x).$$

Then the Orlicz space $L^{\Phi}(G)$ consists of the set of all measurable functions $f: G \to \mathbb{C}$ such that $\rho_{\Phi}(f/\lambda) < \infty$ for some $\lambda > 0$.

 (Φ_1, Φ_2) -multipliers on D

 (Φ_1, Φ_2) -multipliers on \mathbb{Z}

Motivation Notation

Orlicz spaces

Given a Young function $\Phi: [0,\infty) \to [0,\infty)$, that is convex, $\Phi(0) = 0$ and $\lim_{x\to\infty} \Phi(x) = \infty$, we write

$$\rho_{\Phi}(f) = \int_{G} \Phi(|f(x)|) dm_{G}(x).$$

Then the Orlicz space $L^{\Phi}(G)$ consists of the set of all measurable functions $f : G \to \mathbb{C}$ such that $\rho_{\Phi}(f/\lambda) < \infty$ for some $\lambda > 0$. **Some equivalent norms:** (Luxemburg norm) $N_{\Phi}(f) = \inf\{\lambda > 0 : \rho_{\Phi}(f/\lambda) \le 1\}$

 (Φ_1, Φ_2) -multipliers on D

 (Φ_1, Φ_2) -multipliers on \mathbb{Z}

Motivation Notation

Orlicz spaces

Given a Young function $\Phi: [0,\infty) \to [0,\infty)$, that is convex, $\Phi(0) = 0$ and $\lim_{x\to\infty} \Phi(x) = \infty$, we write

$$\rho_{\Phi}(f) = \int_{G} \Phi(|f(x)|) dm_{G}(x).$$

Then the Orlicz space $L^{\Phi}(G)$ consists of the set of all measurable functions $f : G \to \mathbb{C}$ such that $\rho_{\Phi}(f/\lambda) < \infty$ for some $\lambda > 0$. **Some equivalent norms:** (Luxemburg norm) $N_{\Phi}(f) = \inf\{\lambda > 0 : \rho_{\Phi}(f/\lambda) \le 1\}$ (Orlicz norm) $||f||_{\Phi} = \sup\{\int_{G} |f(x)g(x)| dm_{G}(x) : \rho_{\Psi}(g) \le 1\}$ where Ψ is the complementary Young function, i.e. $\Psi(y) = \sup\{xy - \Phi(x) : x \ge 0\}$ for $y \ge 0$.

 (Φ_1, Φ_2) -multipliers on D

 (Φ_1, Φ_2) -multipliers on \mathbb{Z}

Motivation Notation

Orlicz spaces

Given a Young function $\Phi: [0,\infty) \to [0,\infty)$, that is convex, $\Phi(0) = 0$ and $\lim_{x\to\infty} \Phi(x) = \infty$, we write

$$\rho_{\Phi}(f) = \int_{G} \Phi(|f(x)|) dm_{G}(x).$$

Then the Orlicz space $L^{\Phi}(G)$ consists of the set of all measurable functions $f: G \to \mathbb{C}$ such that $\rho_{\Phi}(f/\lambda) < \infty$ for some $\lambda > 0$. **Some equivalent norms:** (Luxemburg norm) $N_{\Phi}(f) = \inf\{\lambda > 0: \rho_{\Phi}(f/\lambda) \le 1\}$ (Orlicz norm) $||f||_{\Phi} = \sup\{\int_{G} |f(x)g(x)| dm_{G}(x): \rho_{\Psi}(g) \le 1\}$ where Ψ is the complementary Young function, i.e. $\Psi(y) = \sup\{xy - \Phi(x): x \ge 0\}$ for $y \ge 0$. (Amemiya norm) $|||f|||_{\Phi} = \inf_{k>0} \frac{1}{k}(1 + \rho_{\Phi}(kf))$.

 (Φ_1, Φ_2) -multipliers on D

 (Φ_1, Φ_2) -multipliers on \mathbb{Z}

Motivation Notation

Δ_2 -condition

A Young function Φ is said to satisfy Δ_2 -condition (globally) if there exists a constant ${\cal K}>0$ such that

$$\Phi(2x) \le K \Phi(x), \quad x \ge 0. \tag{2}$$

A Young function Φ is said to satisfy $\nabla_2\text{-condition}$ (globally) if there exists a constant $\ell>1$ such that

$$\Phi(x) \le \frac{1}{2\ell} \Phi(\ell x) \quad x \ge 0. \tag{3}$$

 (Φ_1, Φ_2) -multipliers on D

 (Φ_1, Φ_2) -multipliers on \mathbb{Z}

Motivation Notation

Δ_2 -condition

A Young function Φ is said to satisfy Δ_2 -condition (globally) if there exists a constant ${\cal K}>0$ such that

$$\Phi(2x) \le K \Phi(x), \quad x \ge 0. \tag{2}$$

A Young function Φ is said to satisfy $\nabla_2\text{-condition}$ (globally) if there exists a constant $\ell>1$ such that

$$\Phi(x) \le \frac{1}{2\ell} \Phi(\ell x) \quad x \ge 0. \tag{3}$$

 (Φ_1, Φ_2) -multipliers on \mathbb{R} (Φ_1, Φ_2) -multipliers on D (Φ_1, Φ_2) -multipliers on \mathbb{Z}

Motivation

Multipliers

Given a bounded measurable function m defined on G and $f \in A(\hat{G})$ we write

$$T_m(f)(\gamma) = \int_G m(x)\hat{f}(x)\gamma(x)dm_G(x), \quad \gamma \in \hat{G}.$$
 (4)

 (Φ_1, Φ_2) -multipliers on \mathbb{R} (Φ_1, Φ_2) -multipliers on D (Φ_1, Φ_2) -multipliers on \mathbb{Z}

Motivation Notation

Multipliers

Given a bounded measurable function m defined on G and $f \in A(\hat{G})$ we write

$$T_m(f)(\gamma) = \int_G m(x)\hat{f}(x)\gamma(x)dm_G(x), \quad \gamma \in \hat{G}.$$
 (4)

Let Φ_1 and Φ_2 be Young functions, and let *m* be a bounded measurable function defined on *G*. The function *m* is said to be a (Φ_1, Φ_2) -multiplier on *G* if there exists C > 0 such that

$$N_{\Phi_2}(T_m(f)) \le CN_{\Phi_1}(f) \tag{5}$$

for all $f \in A(\hat{G})$.

 (Φ_1, Φ_2) -multipliers on \mathbb{R} (Φ_1, Φ_2) -multipliers on D (Φ_1, Φ_2) -multipliers on \mathbb{Z}

Motivation Notation

Multipliers

Given a bounded measurable function m defined on G and $f \in A(\hat{G})$ we write

$$T_m(f)(\gamma) = \int_G m(x)\hat{f}(x)\gamma(x)dm_G(x), \quad \gamma \in \hat{G}.$$
 (4)

Let Φ_1 and Φ_2 be Young functions, and let *m* be a bounded measurable function defined on *G*. The function *m* is said to be a (Φ_1, Φ_2) -multiplier on *G* if there exists C > 0 such that

$$N_{\Phi_2}(T_m(f)) \le CN_{\Phi_1}(f) \tag{5}$$

for all $f \in A(\hat{G})$. We write $\mathscr{M}_{\Phi_1,\Phi_2}(G)$ for the space of (Φ_1,Φ_2) -multipliers on G.

 (Φ_1, Φ_2) -multipliers on \mathbb{R} (Φ_1, Φ_2) -multipliers on D (Φ_1, Φ_2) -multipliers on \mathbb{Z}

Motivation Notation

Multipliers

Given a bounded measurable function m defined on G and $f \in A(\hat{G})$ we write

$$T_m(f)(\gamma) = \int_G m(x)\hat{f}(x)\gamma(x)dm_G(x), \quad \gamma \in \hat{G}.$$
 (4)

Let Φ_1 and Φ_2 be Young functions, and let *m* be a bounded measurable function defined on *G*. The function *m* is said to be a (Φ_1, Φ_2) -multiplier on *G* if there exists C > 0 such that

$$N_{\Phi_2}(T_m(f)) \le CN_{\Phi_1}(f) \tag{5}$$

for all $f \in A(\hat{G})$. We write $\mathscr{M}_{\Phi_1,\Phi_2}(G)$ for the space of (Φ_1,Φ_2) -multipliers on G. Whenever $A(\hat{G})$ is dense in $L^{\Phi_1}(\hat{G})$ we have that T_m extends to a bounded operator from $L^{\Phi_1}(\hat{G})$ to $L^{\Phi_2}(\hat{G})$ for any (Φ_1,Φ_2) -multiplier m. Moreover $\|T_m\|_{L^{\Phi_1}\to L^{\Phi_2}} = \|m\|_{(\Phi_1,\Phi_2)}$.

200

 (Φ_1, Φ_2) -multipliers on \mathbb{R} (Φ_1, Φ_2) -multipliers on D (Φ_1, Φ_2) -multipliers on \mathbb{Z} Motivation Notation

Multipliers

Given a bounded measurable function m defined on G and $f \in A(\hat{G})$ we write

$$T_m(f)(\gamma) = \int_G m(x)\hat{f}(x)\gamma(x)dm_G(x), \quad \gamma \in \hat{G}.$$
 (4)

Let Φ_1 and Φ_2 be Young functions, and let *m* be a bounded measurable function defined on *G*. The function *m* is said to be a (Φ_1, Φ_2) -multiplier on *G* if there exists C > 0 such that

$$N_{\Phi_2}(T_m(f)) \le CN_{\Phi_1}(f) \tag{5}$$

for all $f \in A(\hat{G})$. We write $\mathscr{M}_{\Phi_1,\Phi_2}(G)$ for the space of (Φ_1,Φ_2) -multipliers on G. Whenever $A(\hat{G})$ is dense in $L^{\Phi_1}(\hat{G})$ we have that T_m extends to a bounded operator from $L^{\Phi_1}(\hat{G})$ to $L^{\Phi_2}(\hat{G})$ for any (Φ_1,Φ_2) -multiplier m. Moreover $||T_m||_{L^{\Phi_1}\to L^{\Phi_2}} = ||m||_{(\Phi_1,\Phi_2)}$. If Φ is a Young function satisfying Δ_2 condition then A(G) is dense in $L^{\Phi}(G)$.

Basic Examples

As usual we denote $\hat{\mu}(x) = \int_{\hat{G}} \gamma^{-1}(x) d\mu(\gamma)$ for the Fourier transform of a regular Borel measure μ defined in \hat{G} .

Basic Examples

As usual we denote $\hat{\mu}(x) = \int_{\hat{G}} \gamma^{-1}(x) d\mu(\gamma)$ for the Fourier transform of a regular Borel measure μ defined in \hat{G} .

Proposition

Let Φ_1, Φ_2 and Φ_3 be Young functions. (i) Assume that there exists C > 0 such that

$$\Phi_2(x) \le C\Phi_1(x), \quad x > 0. \tag{6}$$

If $m(x) = \hat{\mu}(x)$ for some regular Borel measure μ defined on \hat{G} then $m \in \mathcal{M}_{\Phi_1,\Phi_2}(G)$. Moreover $||m||_{(\Phi_1,\Phi_2)} \leq C ||\mu||_1$. (ii) Assume that

$$\Phi_1^{-1}(x)\Phi_2^{-1}(x) \le x\Phi_3^{-1}(x), \quad x \ge 0.$$
(7)

If $m(x) = \hat{g}(x)$ for some $g \in L^1(\hat{G}) \cap L^{\Phi_2}(\hat{G})$ then $m \in \mathscr{M}_{\Phi_1,\Phi_3}(G)$ and

 $||m||_{(\Phi_1,\Phi_3)} \leq 2N_{\Phi_2}(g).$

Oscar Blasco

Transference and restriction of Fourier multipliers on Orlicz spaces

Basic Examples

As usual we denote $\hat{\mu}(x) = \int_{\hat{G}} \gamma^{-1}(x) d\mu(\gamma)$ for the Fourier transform of a regular Borel measure μ defined in \hat{G} .

Proposition

Let Φ_1, Φ_2 and Φ_3 be Young functions. (i) Assume that there exists C > 0 such that

$$\Phi_2(x) \le C\Phi_1(x), \quad x > 0. \tag{6}$$

If $m(x) = \hat{\mu}(x)$ for some regular Borel measure μ defined on \hat{G} then $m \in \mathcal{M}_{\Phi_1,\Phi_2}(G)$. Moreover $||m||_{(\Phi_1,\Phi_2)} \leq C ||\mu||_1$. (ii) Assume that

$$\Phi_1^{-1}(x)\Phi_2^{-1}(x) \le x\Phi_3^{-1}(x), \quad x \ge 0.$$
(7)

If $m(x) = \hat{g}(x)$ for some $g \in L^1(\hat{G}) \cap L^{\Phi_2}(\hat{G})$ then $m \in \mathscr{M}_{\Phi_1,\Phi_3}(G)$ and

 $||m||_{(\Phi_1,\Phi_3)} \leq 2N_{\Phi_2}(g).$

Oscar Blasco

Transference and restriction of Fourier multipliers on Orlicz spaces

More Examples

Proposition

Let Φ, Φ_i for i = 1, 2 be Young functions and $m \in \mathscr{M}_{\Phi_1, \Phi_2}(G)$. (i) If $\varphi \in L^1(G)$ then $\varphi * m \in \mathscr{M}_{\Phi_1, \Phi_2}(G)$. Moreover $\|\varphi * m\|_{(\Phi_1, \Phi_2)} \leq \|\varphi\|_1 \|m\|_{(\Phi_1, \Phi_2)}$ (ii) If $\psi \in L^1(\hat{G})$ then $\hat{\psi}m \in \mathscr{M}_{\Phi_1, \Phi_2}(G)$. Moreover $\|\hat{\psi}m\|_{(\Phi_1, \Phi_2)} \leq \|\psi\|_1 \|m\|_{(\Phi_1, \Phi_2)}$. $\begin{array}{l} \mbox{Preliminaries}\\ (\Phi_1, \Phi_2)\mbox{-multipliers on } \mathbb{R}\\ (\Phi_1, \Phi_2)\mbox{-multipliers on } \mathbb{D}\\ (\Phi_1, \Phi_2)\mbox{-multipliers on } \mathbb{Z} \end{array}$

$G = \mathbb{R}$

A bounded measurable function *m* defined in \mathbb{R} is (Φ_1, Φ_2) -multiplier on \mathbb{R} if there exists C > 0 such that

$$T_m(f)(x) = \int_{\mathbb{R}} m(\xi) \hat{f}(\xi) e^{2\pi i x \xi} d\xi$$
(8)

satisfies $N_{\Phi_2}(T_m(f)) \leq CN_{\Phi_1}(f)$ for any $f \in \mathscr{S}(\mathbb{R})$, which in case that Φ_1 satisfies Δ_2 is equivalent to the fact that T_m extends to a bounded operator from $L^{\Phi_1}(\mathbb{R})$ into $L^{\Phi_2}(\mathbb{R})$.

$G = \mathbb{R}$

A bounded measurable function *m* defined in \mathbb{R} is (Φ_1, Φ_2) -multiplier on \mathbb{R} if there exists C > 0 such that

$$T_m(f)(x) = \int_{\mathbb{R}} m(\xi) \hat{f}(\xi) e^{2\pi i x \xi} d\xi$$
(8)

satisfies $N_{\Phi_2}(T_m(f)) \leq CN_{\Phi_1}(f)$ for any $f \in \mathscr{S}(\mathbb{R})$, which in case that Φ_1 satisfies Δ_2 is equivalent to the fact that T_m extends to a bounded operator from $L^{\Phi_1}(\mathbb{R})$ into $L^{\Phi_2}(\mathbb{R})$.

There are a lot of results known about (p,q)-multipliers corresponding to $\Phi_1(x) = x^p$ and $\Phi_2(x) = x^q$ and denoted by $\mathscr{M}_{p,q}(\mathbb{R})$.

$G = \mathbb{R}$

A bounded measurable function *m* defined in \mathbb{R} is (Φ_1, Φ_2) -multiplier on \mathbb{R} if there exists C > 0 such that

$$T_m(f)(x) = \int_{\mathbb{R}} m(\xi) \hat{f}(\xi) e^{2\pi i x \xi} d\xi$$
(8)

satisfies $N_{\Phi_2}(T_m(f)) \leq CN_{\Phi_1}(f)$ for any $f \in \mathscr{S}(\mathbb{R})$, which in case that Φ_1 satisfies Δ_2 is equivalent to the fact that T_m extends to a bounded operator from $L^{\Phi_1}(\mathbb{R})$ into $L^{\Phi_2}(\mathbb{R})$.

There are a lot of results known about (p,q)-multipliers corresponding to $\Phi_1(x) = x^p$ and $\Phi_2(x) = x^q$ and denoted by $\mathscr{M}_{p,q}(\mathbb{R})$.

•
$$sign(\xi) \in \mathscr{M}_{p,p}(\mathbb{R})$$
 for $1 .$

$G = \mathbb{R}$

A bounded measurable function *m* defined in \mathbb{R} is (Φ_1, Φ_2) -multiplier on \mathbb{R} if there exists C > 0 such that

$$T_m(f)(x) = \int_{\mathbb{R}} m(\xi) \hat{f}(\xi) e^{2\pi i x \xi} d\xi$$
(8)

satisfies $N_{\Phi_2}(T_m(f)) \leq CN_{\Phi_1}(f)$ for any $f \in \mathscr{S}(\mathbb{R})$, which in case that Φ_1 satisfies Δ_2 is equivalent to the fact that T_m extends to a bounded operator from $L^{\Phi_1}(\mathbb{R})$ into $L^{\Phi_2}(\mathbb{R})$.

There are a lot of results known about (p,q)-multipliers corresponding to $\Phi_1(x) = x^p$ and $\Phi_2(x) = x^q$ and denoted by $\mathscr{M}_{p,q}(\mathbb{R})$.

•
$$sign(\xi) \in \mathscr{M}_{p,p}(\mathbb{R})$$
 for $1 .$

• $|2\pi\xi|^{-lpha} \in \mathscr{M}_{p,q}(\mathbb{R})$ for 0 < lpha < 1, 1/q = 1/p - lpha.

$G = \mathbb{R}$

A bounded measurable function *m* defined in \mathbb{R} is (Φ_1, Φ_2) -multiplier on \mathbb{R} if there exists C > 0 such that

$$T_m(f)(x) = \int_{\mathbb{R}} m(\xi) \hat{f}(\xi) e^{2\pi i x \xi} d\xi$$
(8)

satisfies $N_{\Phi_2}(T_m(f)) \leq CN_{\Phi_1}(f)$ for any $f \in \mathscr{S}(\mathbb{R})$, which in case that Φ_1 satisfies Δ_2 is equivalent to the fact that T_m extends to a bounded operator from $L^{\Phi_1}(\mathbb{R})$ into $L^{\Phi_2}(\mathbb{R})$.

There are a lot of results known about (p,q)-multipliers corresponding to $\Phi_1(x) = x^p$ and $\Phi_2(x) = x^q$ and denoted by $\mathscr{M}_{p,q}(\mathbb{R})$.

- $sign(\xi) \in \mathscr{M}_{p,p}(\mathbb{R})$ for 1 .
- $|2\pi\xi|^{-lpha} \in \mathscr{M}_{p,q}(\mathbb{R})$ for 0 < lpha < 1, 1/q = 1/p lpha.
- $\mathcal{M}_{p,q}(\mathbb{R}) = \mathcal{M}_{q',p'}(\mathbb{R})$ where 1/p + 1/p' = 1.

$G = \mathbb{R}$

A bounded measurable function *m* defined in \mathbb{R} is (Φ_1, Φ_2) -multiplier on \mathbb{R} if there exists C > 0 such that

$$T_m(f)(x) = \int_{\mathbb{R}} m(\xi) \hat{f}(\xi) e^{2\pi i x \xi} d\xi$$
(8)

satisfies $N_{\Phi_2}(T_m(f)) \leq CN_{\Phi_1}(f)$ for any $f \in \mathscr{S}(\mathbb{R})$, which in case that Φ_1 satisfies Δ_2 is equivalent to the fact that T_m extends to a bounded operator from $L^{\Phi_1}(\mathbb{R})$ into $L^{\Phi_2}(\mathbb{R})$.

There are a lot of results known about (p,q)-multipliers corresponding to $\Phi_1(x) = x^p$ and $\Phi_2(x) = x^q$ and denoted by $\mathscr{M}_{p,q}(\mathbb{R})$.

•
$$sign(\xi) \in \mathcal{M}_{p,p}(\mathbb{R})$$
 for $1 .
• $|2\pi\xi|^{-\alpha} \in \mathcal{M}_{p,q}(\mathbb{R})$ for $0 < \alpha < 1, 1/q = 1/p - \alpha$.
• $\mathcal{M}_{p,q}(\mathbb{R}) = \mathcal{M}_{q',p'}(\mathbb{R})$ where $1/p + 1/p' = 1$.
• $\mathcal{M}_{2,2}(\mathbb{R}) = L^{\infty}(\mathbb{R})$.$

$G = \mathbb{R}$

A bounded measurable function *m* defined in \mathbb{R} is (Φ_1, Φ_2) -multiplier on \mathbb{R} if there exists C > 0 such that

$$T_m(f)(x) = \int_{\mathbb{R}} m(\xi) \hat{f}(\xi) e^{2\pi i x \xi} d\xi$$
(8)

satisfies $N_{\Phi_2}(T_m(f)) \leq CN_{\Phi_1}(f)$ for any $f \in \mathscr{S}(\mathbb{R})$, which in case that Φ_1 satisfies Δ_2 is equivalent to the fact that T_m extends to a bounded operator from $L^{\Phi_1}(\mathbb{R})$ into $L^{\Phi_2}(\mathbb{R})$.

There are a lot of results known about (p,q)-multipliers corresponding to $\Phi_1(x) = x^p$ and $\Phi_2(x) = x^q$ and denoted by $\mathscr{M}_{p,q}(\mathbb{R})$.

•
$$sign(\xi) \in \mathscr{M}_{p,p}(\mathbb{R})$$
 for $1 .$

• $|2\pi\xi|^{-lpha} \in \mathscr{M}_{p,q}(\mathbb{R})$ for 0 < lpha < 1, 1/q = 1/p - lpha.

•
$$\mathcal{M}_{p,q}(\mathbb{R}) = \mathcal{M}_{q',p'}(\mathbb{R})$$
 where $1/p + 1/p' = 1$.

•
$$\mathcal{M}_{2,2}(\mathbb{R}) = L^{\infty}(\mathbb{R}).$$

•
$$\mathscr{M}_{1,1}(\mathbb{R}) = \{\hat{\mu} : \mu \in M(\mathbb{R})\}$$

$G = \mathbb{R}$

A bounded measurable function *m* defined in \mathbb{R} is (Φ_1, Φ_2) -multiplier on \mathbb{R} if there exists C > 0 such that

$$T_m(f)(x) = \int_{\mathbb{R}} m(\xi) \hat{f}(\xi) e^{2\pi i x \xi} d\xi$$
(8)

satisfies $N_{\Phi_2}(T_m(f)) \leq CN_{\Phi_1}(f)$ for any $f \in \mathscr{S}(\mathbb{R})$, which in case that Φ_1 satisfies Δ_2 is equivalent to the fact that T_m extends to a bounded operator from $L^{\Phi_1}(\mathbb{R})$ into $L^{\Phi_2}(\mathbb{R})$.

There are a lot of results known about (p,q)-multipliers corresponding to $\Phi_1(x) = x^p$ and $\Phi_2(x) = x^q$ and denoted by $\mathscr{M}_{p,q}(\mathbb{R})$.

- $sign(\xi) \in \mathscr{M}_{p,p}(\mathbb{R})$ for 1 .
- $|2\pi\xi|^{-lpha} \in \mathscr{M}_{p,q}(\mathbb{R})$ for 0 < lpha < 1, 1/q = 1/p lpha.
- $\mathcal{M}_{p,q}(\mathbb{R}) = \mathcal{M}_{q',p'}(\mathbb{R})$ where 1/p + 1/p' = 1.
- $\mathcal{M}_{2,2}(\mathbb{R}) = L^{\infty}(\mathbb{R}).$
- $\mathscr{M}_{1,1}(\mathbb{R}) = \{\hat{\mu} : \mu \in M(\mathbb{R})\}$
- $\mathcal{M}_{p,q}(\mathbb{R}) = \{0\}$ for p > q.

The dilation operator D_{λ}

Denote
$$D_{\lambda}(f)(x) = f(\lambda x)$$
 for $\lambda > 0$.

$$C_{\Phi}(\lambda) = \|D_{\lambda}\|_{L^{\Phi}(\mathbb{R}) \to L^{\Phi}(\mathbb{R})} = \sup\{N_{\Phi}(D_{\lambda}(f)) : N_{\Phi}(f) \leq 1\}$$

Of course $C_{\Phi}(\lambda)$ is non-increasing, submultiplicative and $C_{\Phi}(1) = 1$.

The dilation operator D_{λ}

Denote
$$D_{\lambda}(f)(x) = f(\lambda x)$$
 for $\lambda > 0$.

$$C_{\Phi}(\lambda) = \|D_{\lambda}\|_{L^{\Phi}(\mathbb{R}) \to L^{\Phi}(\mathbb{R})} = \sup\{N_{\Phi}(D_{\lambda}(f)) : N_{\Phi}(f) \leq 1\}$$

Of course $C_{\Phi}(\lambda)$ is non-increasing, submultiplicative and $C_{\Phi}(1) = 1$.

$$\alpha(\Phi) = \lim_{\lambda \to 0} \frac{\log C_{\Phi}(\frac{1}{\lambda})}{\log \lambda}, \quad \beta(\Phi) = \lim_{\lambda \to \infty} \frac{\log C_{\Phi}(\frac{1}{\lambda})}{\log \lambda}. (Boyd \quad indices)$$

The dilation operator D_{λ}

Denote
$$D_{\lambda}(f)(x) = f(\lambda x)$$
 for $\lambda > 0$.

$$C_{\Phi}(\lambda) = \|D_{\lambda}\|_{L^{\Phi}(\mathbb{R}) \to L^{\Phi}(\mathbb{R})} = \sup\{N_{\Phi}(D_{\lambda}(f)) : N_{\Phi}(f) \leq 1\}$$

Of course $C_{\Phi}(\lambda)$ is non-increasing, submultiplicative and $C_{\Phi}(1) = 1$.

$$\alpha(\Phi) = \lim_{\lambda \to 0} \frac{\log C_{\Phi}(\frac{1}{\lambda})}{\log \lambda}, \quad \beta(\Phi) = \lim_{\lambda \to \infty} \frac{\log C_{\Phi}(\frac{1}{\lambda})}{\log \lambda}. (Boyd \quad indices)$$

 $\alpha(\Phi) > 0$ implies Φ satisfies Δ_2 and $\beta(\Phi) < 1$ implies Φ satisfies ∇_2 .

3

New results

Theorem

Let Φ_1, Φ_2 be Young functions satisfying Δ_2 . If $\mathscr{M}_{\Phi_1,\Phi_2}(\mathbb{R}) \neq \{0\}$ then $\beta(\Phi_1) \ge \alpha(\Phi_2)$.

Corollary

Let
$$\Phi_{p,q}(t) = \max\{t^p, t^q\}$$
. If $\max\{p_2, q_2\} < \min\{p_1, q_1\}$ then $\mathscr{M}_{\Phi_{p_1,q_1}, \Phi_{p_2,q_2}}(\mathbb{R}) = \{0\}$.

∃ ►

.⊒ . ⊾

The Bohr group

It is well-known that \hat{D} is the Bohr compactification of D. We use the notation $AP(\mathbb{R})$ for the set of all continuous almost periodic functions on \mathbb{R} , that is to say uniform limits of polynomials $\sum_{k=1}^{n} \alpha_k e^{2\pi i x_k t}$ where $x_k \in \mathbb{R}$ and $\alpha_k \in \mathbb{C}$.

The Bohr group

It is well-known that \hat{D} is the Bohr compactification of D. We use the notation $AP(\mathbb{R})$ for the set of all continuous almost periodic functions on \mathbb{R} , that is to say uniform limits of polynomials $\sum_{k=1}^{n} \alpha_k e^{2\pi i x_k t}$ where $x_k \in \mathbb{R}$ and $\alpha_k \in \mathbb{C}$.

Recall now the Besicovich-Orlicz spaces for almost periodic functions: If $f \in AP(\mathbb{R})$ and Φ is a Young function we define

$$\tilde{\rho}_{\Phi}(f) = \overline{\lim}_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \Phi(|f(x)|) dx = \overline{\lim}_{T \to \infty} \int_{-1/2}^{1/2} \Phi(|D_T f(x)|) dx$$

and

$$\|f\|_{B^{\Phi}} = \inf\{k > 0 : \tilde{\rho}_{\Phi}(f/k) \leq 1\}.$$

The Bohr group

It is well-known that \hat{D} is the Bohr compactification of D. We use the notation $AP(\mathbb{R})$ for the set of all continuous almost periodic functions on \mathbb{R} , that is to say uniform limits of polynomials $\sum_{k=1}^{n} \alpha_k e^{2\pi i x_k t}$ where $x_k \in \mathbb{R}$ and $\alpha_k \in \mathbb{C}$.

Recall now the Besicovich-Orlicz spaces for almost periodic functions: If $f \in AP(\mathbb{R})$ and Φ is a Young function we define

$$\tilde{\rho}_{\Phi}(f) = \overline{\lim}_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \Phi(|f(x)|) dx = \overline{\lim}_{T \to \infty} \int_{-1/2}^{1/2} \Phi(|D_T f(x)|) dx$$

and

$$\|f\|_{B^{\Phi}} = \inf\{k > 0 : \tilde{\rho}_{\Phi}(f/k) \leq 1\}.$$

A basic fact to use for the Bohr group is that if μ is any measure defined on \mathbb{R} having support on a finite number of points, then $\hat{\mu} \in AP(\mathbb{R})$ and

$$\|\hat{\mu}\|_{B_{\Phi}(\mathbb{R})} = \|\mu\|_{L^{\Phi}(\hat{D})}.$$
(9)

Multipliers for G = D

Let Φ_1, Φ_2 be Young functions. A bounded function $m \in \mathscr{M}_{\Phi_1, \Phi_2}(\mathsf{D})$ if there exists a constant C > 0 such that

$$N_{\Phi_2}(\sum \alpha_t m(t)\chi_t) \le CN_{\Phi_1}(\sum \alpha_t \chi_t)$$
(10)

for any $\alpha = \sum \alpha_t \chi_t$ (finite sum) .

Multipliers for G = D

Let Φ_1, Φ_2 be Young functions. A bounded function $m \in \mathscr{M}_{\Phi_1, \Phi_2}(\mathsf{D})$ if there exists a constant C > 0 such that

$$N_{\Phi_2}(\sum \alpha_t m(t)\chi_t) \le CN_{\Phi_1}(\sum \alpha_t \chi_t)$$
(10)

for any $\alpha = \sum lpha_t \chi_t$ (finite sum) .

Assume that Φ_2 satisfies ∇_2 and *m* is a bounded function on \mathbb{R} . The following are equivalent:

(i) $m \in \mathcal{M}_{\Phi_1,\Phi_2}(D)$. (ii) There exists a constant K such that

$$|\sum_{t\in\mathbb{R}} m(t)\mu(t)\lambda(t)dx| \le C \|\hat{\mu}\|_{B_{\Phi_1}} \|\hat{\lambda}\|_{B_{\Psi_2}}$$
(11)

for any measures μ and λ on $\mathbb R$ having supports on a finite number of points.

Multipliers for G = D

Let Φ_1, Φ_2 be Young functions. A bounded function $m \in \mathscr{M}_{\Phi_1, \Phi_2}(\mathsf{D})$ if there exists a constant C > 0 such that

$$N_{\Phi_2}(\sum \alpha_t m(t)\chi_t) \le CN_{\Phi_1}(\sum \alpha_t \chi_t)$$
(10)

for any $\alpha = \sum lpha_t \chi_t$ (finite sum) .

Assume that Φ_2 satisfies ∇_2 and *m* is a bounded function on \mathbb{R} . The following are equivalent:

(i) $m \in \mathcal{M}_{\Phi_1,\Phi_2}(D)$. (ii) There exists a constant K such that

$$|\sum_{t\in\mathbb{R}} m(t)\mu(t)\lambda(t)dx| \le C \|\hat{\mu}\|_{B_{\Phi_1}} \|\hat{\lambda}\|_{B_{\Psi_2}}$$
(11)

for any measures μ and λ on $\mathbb R$ having supports on a finite number of points.

Main results 1

Theorem

Let m be a bounded continuous function on $\mathbb R$ and let Φ_1,Φ_2 be Young functions such that Φ_2 satisfies ∇_2 and

$$\sup_{\lambda>1} C_{\Phi_1}(\lambda) C_{\Phi_2}(1/\lambda) < +\infty.$$
(12)

If $m \in \mathscr{M}_{\Phi_1,\Phi_2}(\mathsf{D})$ then $m \in \mathscr{M}_{\Phi_1,\Phi_2}(\mathbb{R})$.

Main results 1

Theorem

Let m be a bounded continuous function on $\mathbb R$ and let Φ_1,Φ_2 be Young functions such that Φ_2 satisfies ∇_2 and

$$\sup_{\lambda>1} C_{\Phi_1}(\lambda) C_{\Phi_2}(1/\lambda) < +\infty.$$
(12)

If $m \in \mathscr{M}_{\Phi_1,\Phi_2}(\mathsf{D})$ then $m \in \mathscr{M}_{\Phi_1,\Phi_2}(\mathbb{R})$.

Corollary

Let *m* be a bounded continuous function on \mathbb{R} such that $m \in \mathscr{M}_{\Phi_1,\Phi_2}(D)$ and let Φ_1, Φ_2 be Young functions such that $\alpha(\Phi_1) > \beta(\Phi_2)$. Then $m \in \mathscr{M}_{\Phi_1,\Phi_2}(\mathbb{R})$. $\begin{array}{l} \mbox{Preliminaries} \\ (\Phi_1,\Phi_2)\mbox{-multipliers on } \mathbb{R} \\ (\Phi_1,\Phi_2)\mbox{-multipliers on } D \\ (\Phi_1,\Phi_2)\mbox{-multipliers on } \mathbb{Z} \end{array}$

Main results 2

Theorem

Let *m* be a bounded continuous function on \mathbb{R} and let Φ_1, Φ_2 be Young functions satisfying that Φ_2 has ∇_2 condition and

$$\sup_{0<\lambda<1} C_{\Phi_1}(\lambda) C_{\Phi_2}(1/\lambda) < +\infty.$$
 (13)

If $m \in \mathscr{M}_{\Phi_1,\Phi_2}(\mathbb{R})$ then $m \in \mathscr{M}_{\Phi_1,\Phi_2}(\mathsf{D})$.

 $\begin{array}{l} \text{Preliminaries}\\ (\Phi_1,\Phi_2)\text{-multipliers on }\mathbb{R}\\ (\Phi_1,\Phi_2)\text{-multipliers on }\mathbb{D}\\ (\Phi_1,\Phi_2)\text{-multipliers on }\mathbb{Z}\end{array}$

Main results 2

Theorem

Let m be a bounded continuous function on $\mathbb R$ and let Φ_1,Φ_2 be Young functions satisfying that Φ_2 has ∇_2 condition and

$$\sup_{0<\lambda<1} C_{\Phi_1}(\lambda) C_{\Phi_2}(1/\lambda) < +\infty.$$
 (13)

If
$$m \in \mathscr{M}_{\Phi_1,\Phi_2}(\mathbb{R})$$
 then $m \in \mathscr{M}_{\Phi_1,\Phi_2}(\mathsf{D})$.

Corollary

Let m be a bounded continuous in $\mathbb R$ and Φ be a Young function satisfying ∇_2 and

$$\sup_{\lambda>0} C_{\Phi}(\lambda) C_{\Phi}(\frac{1}{\lambda}) < \infty.$$
(14)

Then $m \in \mathscr{M}_{\Phi}(\mathbb{R})$ iff $m \in \mathscr{M}_{\Phi}(\mathsf{D})$.

 $\begin{array}{l} \mbox{Preliminaries}\\ (\Phi_1,\Phi_2)\mbox{-multipliers on } \mathbb{R}\\ (\Phi_1,\Phi_2)\mbox{-multipliers on } \mathbb{D}\\ (\Phi_1,\Phi_2)\mbox{-multipliers on } \mathbb{Z} \end{array}$

References

$G = \mathbb{Z}$

A bounded sequence $m = (m_n)_{n \in \mathbb{Z}}$ is (Φ_1, Φ_2) -multiplier on \mathbb{Z} if there exists C > 0 such that

$$T_m(P)(t) = \sum_{k \in \mathbb{Z}} m_k \alpha_k e^{2\pi i k t}$$
(15)

satisfies $N_{\Phi_2}(T_m(P)) \leq CN_{\Phi_1}(P)$ for any $P(t) = \sum_{k \in \mathbb{Z}} \alpha_k e^{2\pi i k t} \in P(\mathbb{T})$, or equivalently, in case that Φ_1 satisfies Δ_2 , extends to a bounded operator from $L^{\Phi_1}(\mathbb{T})$ to $L^{\Phi_2}(\mathbb{T})$.

 $\begin{array}{l} \text{Preliminaries} \\ (\Phi_1, \Phi_2)\text{-multipliers on } \mathbb{R} \\ (\Phi_1, \Phi_2)\text{-multipliers on } \mathbb{D} \\ (\Phi_1, \Phi_2)\text{-multipliers on } \mathbb{Z} \end{array}$

References

$G = \mathbb{Z}$

A bounded sequence $m = (m_n)_{n \in \mathbb{Z}}$ is (Φ_1, Φ_2) -multiplier on \mathbb{Z} if there exists C > 0 such that

$$T_m(P)(t) = \sum_{k \in \mathbb{Z}} m_k \alpha_k e^{2\pi i k t}$$
(15)

satisfies $N_{\Phi_2}(T_m(P)) \leq CN_{\Phi_1}(P)$ for any $P(t) = \sum_{k \in \mathbb{Z}} \alpha_k e^{2\pi i k t} \in P(\mathbb{T})$, or equivalently, in case that Φ_1 satisfies Δ_2 , extends to a bounded operator from $L^{\Phi_1}(\mathbb{T})$ to $L^{\Phi_2}(\mathbb{T})$. If Φ_2 satisfying ∇_2 and let $m = (m_n)$ be a bounded sequence on \mathbb{Z} . The following are equivalent: (i) $m \in \mathcal{M}_{\Phi_1,\Phi_2}(\mathbb{Z})$. (ii) There exists a constant K such that

$$|\sum_{n\in\mathbb{Z}}m_n\alpha_n\beta_n|\leq CN_{\Phi_1}(P)N_{\Psi_2}(Q)$$
(16)

for any $P(t) = \sum_{n \in \mathbb{Z}} \alpha_n e^{2\pi i n t}$ and $Q(t) = \sum_{n \in \mathbb{Z}} \beta_n e^{2\pi i n t}$ in $P(\mathbb{T})$.

 $\begin{array}{l} & \text{Preliminaries} \\ (\Phi_1, \Phi_2) \text{-multipliers on } \mathbb{R} \\ (\Phi_1, \Phi_2) \text{-multipliers on } \mathbb{D} \\ (\Phi_1, \Phi_2) \text{-multipliers on } \mathbb{Z} \end{array}$

References

Main results 3

Theorem

Let m be a bounded continuous function on \mathbb{R} and Φ_1, Φ_2 be Young functions with Φ_2 satisfying ∇_2 . (i) Assume that $\sup C_{\Phi_1}(\lambda)C_{\Phi_2}(1/\lambda) < \infty.$ (17) $0 < \lambda < 1$ If $m \in \mathcal{M}_{\Phi_1,\Phi_2}(\mathbb{R})$ then $m_n = (m(n)) \in \mathcal{M}_{\Phi_1,\Phi_2}(\mathbb{Z})$. (ii) Assume that $\sup C_{\Phi_1}(\lambda) C_{\Phi_2}(1/\lambda) < \infty.$ (18)2 \1 If $(D_{1/N}m(n)) \in \mathcal{M}_{\Phi_1,\Phi_2}(\mathbb{Z})$ for all $N \in \mathbb{N}$ with $\sup_N \|(D_{1/N}m)_n\|_{(\Phi_1,\Phi_2)} < \infty$ then $m \in \mathcal{M}_{\Phi_1,\Phi_2}(\mathbb{R})$.

References

DeLeeuw, K. On L_p-multipliers. Ann. Math. **91** [1965], pp 364–379.

- Rao, M. M., Ren, Z.D. *Theory of Orlicz spaces*. CRM Press [1991].
- Rudin, W. Fourier Analysis on Groups. Interscience, New York, [1962].

References

THANK YOU VERY MUCH FOR YOUR ATTENTION !

Oscar Blasco Transference and restriction of Fourier multipliers on Orlicz spaces

(日)

э