Transference and restriction of Fourier multipliers on Orlicz spaces

OSCAR BLASCO

joint work with Ruya Üster (Istanbul University)

Universidad Valencia

$$
\begin{gathered}
\text { XX EARCO } \\
\text { Encuentros de Análisis Real y Complejo } \\
28 \text { Mayo, } 2022
\end{gathered}
$$

Multipliers on L^{P}

Recall that a bounded measurable function $m: \mathbb{R} \rightarrow \mathbb{C}$ is said to be a p-multiplier in $\mathscr{M}_{p}(\mathbb{R})$, if

$$
T_{m}(f)(y)=\int_{\mathbb{R}} m(x) \hat{f}(x) e^{i x y} d x
$$

defines a bounded operator from $L^{p}(\mathbb{R})$ into $L^{p}(\mathbb{R})$.

Multipliers on L^{P}

Recall that a bounded measurable function $m: \mathbb{R} \rightarrow \mathbb{C}$ is said to be a p-multiplier in $\mathscr{M}_{p}(\mathbb{R})$, if

$$
T_{m}(f)(y)=\int_{\mathbb{R}} m(x) \hat{f}(x) e^{i x y} d x
$$

defines a bounded operator from $L^{p}(\mathbb{R})$ into $L^{p}(\mathbb{R})$.
Recall that a bounded sequence $\left(m_{n}\right) \subset \mathbb{C}$ (respect. a bounded periodic function $m: \mathbb{T} \rightarrow \mathbb{C}$) is said to be a p-multiplier in $\mathscr{M}_{p}(\mathbb{Z})$ (respect. $\left.\mathscr{M}_{p}(\mathbb{T})\right)$,

Multipliers on L^{P}

Recall that a bounded measurable function $m: \mathbb{R} \rightarrow \mathbb{C}$ is said to be a p-multiplier in $\mathscr{M}_{p}(\mathbb{R})$, if

$$
T_{m}(f)(y)=\int_{\mathbb{R}} m(x) \hat{f}(x) e^{i x y} d x
$$

defines a bounded operator from $L^{p}(\mathbb{R})$ into $L^{p}(\mathbb{R})$.
Recall that a bounded sequence $\left(m_{n}\right) \subset \mathbb{C}$ (respect. a bounded periodic function $m: \mathbb{T} \rightarrow \mathbb{C}$) is said to be a p-multiplier in $\mathscr{M}_{p}(\mathbb{Z})$ (respect. $\mathscr{M}_{p}(\mathbb{T})$), if

$$
T_{m}(f)(t)=\sum_{n \in \mathbb{Z}} m_{n} \hat{f}(n) e^{i n t}
$$

$\left(\operatorname{respect} .\left(T_{m}\left(\left(\alpha_{n}\right)\right)\right)_{n}=\left(\int_{0}^{2 \pi} m(t)\left(\sum_{k} \alpha_{k} e^{i k t}\right) e^{i n t} \frac{d t}{2 \pi}\right)_{n}\right)$

Multipliers on L^{P}

Recall that a bounded measurable function $m: \mathbb{R} \rightarrow \mathbb{C}$ is said to be a p-multiplier in $\mathscr{M}_{p}(\mathbb{R})$, if

$$
T_{m}(f)(y)=\int_{\mathbb{R}} m(x) \hat{f}(x) e^{i x y} d x
$$

defines a bounded operator from $L^{p}(\mathbb{R})$ into $L^{p}(\mathbb{R})$.
Recall that a bounded sequence $\left(m_{n}\right) \subset \mathbb{C}$ (respect. a bounded periodic function $m: \mathbb{T} \rightarrow \mathbb{C}$) is said to be a p-multiplier in $\mathscr{M}_{p}(\mathbb{Z})$ (respect. $\mathscr{M}_{p}(\mathbb{T})$), if

$$
T_{m}(f)(t)=\sum_{n \in \mathbb{Z}} m_{n} \hat{f}(n) e^{i n t}
$$

(respect. $\left.\left(T_{m}\left(\left(\alpha_{n}\right)\right)\right)_{n}=\left(\int_{0}^{2 \pi} m(t)\left(\sum_{k} \alpha_{k} e^{i k t}\right) e^{i n t} \frac{d t}{2 \pi}\right)_{n}\right)$ defines a bounded operator from $L^{p}(\mathbb{T})$ into $L^{p}(\mathbb{T})$ (respect. from $\ell^{p}(\mathbb{Z})$ into $\ell^{p}(\mathbb{Z})$.)

Transference and restriction

Let $m: \mathbb{R} \rightarrow \mathbb{C}$ be continuous and bounded. Assume that $m \in \mathscr{M}_{p}(\mathbb{R})$.

Transference and restriction

Let $m: \mathbb{R} \rightarrow \mathbb{C}$ be continuous and bounded. Assume that $m \in \mathscr{M}_{p}(\mathbb{R})$. Consider the periodic extension of its restriction to $[0,2 \pi)$, that is $\tilde{m}(t)=m(t-2 \pi[t / 2 \pi])$. Does it hold that $\tilde{m} \in \mathscr{M}_{p}(\mathbb{Z})$?.

Transference and restriction

Let $m: \mathbb{R} \rightarrow \mathbb{C}$ be continuous and bounded. Assume that $m \in \mathscr{M}_{p}(\mathbb{R})$. Consider the periodic extension of its restriction to $[0,2 \pi)$, that is $\tilde{m}(t)=m(t-2 \pi[t / 2 \pi])$. Does it hold that $\tilde{m} \in \mathscr{M}_{p}(\mathbb{Z})$?. Let $m_{n}=m(n)$. Does it hold that $\left(m_{n}\right) \in \mathscr{M}_{p}(\mathbb{T})$?.

Transference and restriction

Let $m: \mathbb{R} \rightarrow \mathbb{C}$ be continuous and bounded. Assume that $m \in \mathscr{M}_{p}(\mathbb{R})$. Consider the periodic extension of its restriction to $[0,2 \pi)$, that is $\tilde{m}(t)=m(t-2 \pi[t / 2 \pi])$. Does it hold that $\tilde{m} \in \mathscr{M}_{p}(\mathbb{Z})$?. Let $m_{n}=m(n)$. Does it hold that $\left(m_{n}\right) \in \mathscr{M}_{p}(\mathbb{T})$?. K. DeLeeuw, (1965) YES

Transference and restriction

Let $m: \mathbb{R} \rightarrow \mathbb{C}$ be continuous and bounded. Assume that $m \in \mathscr{M}_{p}(\mathbb{R})$. Consider the periodic extension of its restriction to $[0,2 \pi)$, that is $\tilde{m}(t)=m(t-2 \pi[t / 2 \pi])$. Does it hold that $\tilde{m} \in \mathscr{M}_{p}(\mathbb{Z})$?. Let $m_{n}=m(n)$. Does it hold that $\left(m_{n}\right) \in \mathscr{M}_{p}(\mathbb{T})$?. K. DeLeeuw, (1965) YES

Tool (Use the Bohr group D, that is \mathbb{R} with the discrete topology. $\mathscr{M}_{p}(\mathbb{R})=\mathscr{M}_{p}(\mathrm{D})$

Transference and restriction

Let $m: \mathbb{R} \rightarrow \mathbb{C}$ be continuous and bounded. Assume that $m \in \mathscr{M}_{p}(\mathbb{R})$. Consider the periodic extension of its restriction to $[0,2 \pi)$, that is $\tilde{m}(t)=m(t-2 \pi[t / 2 \pi])$. Does it hold that $\tilde{m} \in \mathscr{M}_{p}(\mathbb{Z})$?.
Let $m_{n}=m(n)$. Does it hold that $\left(m_{n}\right) \in \mathscr{M}_{p}(\mathbb{T})$?.
K. DeLeeuw, (1965) YES

Tool (Use the Bohr group D, that is \mathbb{R} with the discrete topology. $\mathscr{M}_{p}(\mathbb{R})=\mathscr{M}_{p}(\mathrm{D})$
Aim: Similar questions for multipliers between Orlicz spaces

Groups

Throughout the paper (G, \cdot) denotes a locally compact abelian group,

Groups

Throughout the paper (G, \cdot) denotes a locally compact abelian group, \hat{G} the dual group of G and

Groups

Throughout the paper (G, \cdot) denotes a locally compact abelian group, \hat{G} the dual group of G and m_{G} stands for the Haar measure.

Groups

Throughout the paper (G, \cdot) denotes a locally compact abelian group, \hat{G} the dual group of G and m_{G} stands for the Haar measure.
Examples to be used: \mathbb{R} for the real line, \mathbf{D} for the \mathbb{R} with the discrete topology, \mathbb{T} for the unit circle and \mathbb{Z} for the integers.

Groups

Throughout the paper (G, \cdot) denotes a locally compact abelian group, \hat{G} the dual group of G and m_{G} stands for the Haar measure.
Examples to be used: \mathbb{R} for the real line, \mathbf{D} for the \mathbb{R} with the discrete topology, \mathbb{T} for the unit circle and \mathbb{Z} for the integers.
We write

$$
\hat{f}(\gamma)=\int_{G} f(x) \gamma^{-1}(x) d m_{G}(x)
$$

for $\gamma \in \hat{G}$ whenever $f \in L^{1}(G)$.

Groups

Throughout the paper (G, \cdot) denotes a locally compact abelian group, \hat{G} the dual group of G and m_{G} stands for the Haar measure.
Examples to be used: \mathbb{R} for the real line, \mathbf{D} for the \mathbb{R} with the discrete topology, \mathbb{T} for the unit circle and \mathbb{Z} for the integers.
We write

$$
\hat{f}(\gamma)=\int_{G} f(x) \gamma^{-1}(x) d m_{G}(x)
$$

for $\gamma \in \hat{G}$ whenever $f \in L^{1}(G)$.
Given a bounded measurable function m defined on G we write

$$
\begin{equation*}
T_{m}(f)(\gamma)=\int_{G} m(x) \hat{f}(x) \gamma(x) d m_{G}(x), \quad \gamma \in \hat{G} . \tag{1}
\end{equation*}
$$

for any $f \in A(\hat{G})=\left\{f: \hat{G} \rightarrow \mathbb{C}: \hat{f} \in L^{1}(G)\right\}$.

Groups

Throughout the paper (G, \cdot) denotes a locally compact abelian group, \hat{G} the dual group of G and m_{G} stands for the Haar measure.
Examples to be used: \mathbb{R} for the real line, \mathbf{D} for the \mathbb{R} with the discrete topology, \mathbb{T} for the unit circle and \mathbb{Z} for the integers.
We write

$$
\hat{f}(\gamma)=\int_{G} f(x) \gamma^{-1}(x) d m_{G}(x)
$$

for $\gamma \in \hat{G}$ whenever $f \in L^{1}(G)$.
Given a bounded measurable function m defined on G we write

$$
\begin{equation*}
T_{m}(f)(\gamma)=\int_{G} m(x) \hat{f}(x) \gamma(x) d m_{G}(x), \quad \gamma \in \hat{G} . \tag{1}
\end{equation*}
$$

for any $f \in A(\hat{G})=\left\{f: \hat{G} \rightarrow \mathbb{C}: \hat{f} \in L^{1}(G)\right\}$.

Orlicz spaces

Given a Young function $\Phi:[0, \infty) \rightarrow[0, \infty)$, that is convex, $\Phi(0)=0$ and $\lim _{x \rightarrow \infty} \Phi(x)=\infty$, we write

$$
\rho_{\Phi}(f)=\int_{G} \Phi(|f(x)|) d m_{G}(x) .
$$

Orlicz spaces

Given a Young function $\Phi:[0, \infty) \rightarrow[0, \infty)$, that is convex, $\Phi(0)=0$ and $\lim _{x \rightarrow \infty} \Phi(x)=\infty$, we write

$$
\rho_{\Phi}(f)=\int_{G} \Phi(|f(x)|) d m_{G}(x) .
$$

Then the Orlicz space $L^{\Phi}(G)$ consists of the set of all measurable functions $f: G \rightarrow \mathbb{C}$ such that $\rho_{\Phi}(f / \lambda)<\infty$ for some $\lambda>0$.

Orlicz spaces

Given a Young function $\Phi:[0, \infty) \rightarrow[0, \infty)$, that is convex, $\Phi(0)=0$ and $\lim _{x \rightarrow \infty} \Phi(x)=\infty$, we write

$$
\rho_{\Phi}(f)=\int_{G} \Phi(|f(x)|) d m_{G}(x) .
$$

Then the Orlicz space $L^{\Phi}(G)$ consists of the set of all measurable functions $f: G \rightarrow \mathbb{C}$ such that $\rho_{\Phi}(f / \lambda)<\infty$ for some $\lambda>0$.
Some equivalent norms:
(Luxemburg norm) $N_{\Phi}(f)=\inf \left\{\lambda>0: \rho_{\Phi}(f / \lambda) \leq 1\right\}$

Orlicz spaces

Given a Young function $\Phi:[0, \infty) \rightarrow[0, \infty)$, that is convex, $\Phi(0)=0$ and $\lim _{x \rightarrow \infty} \Phi(x)=\infty$, we write

$$
\rho_{\Phi}(f)=\int_{G} \Phi(|f(x)|) d m_{G}(x) .
$$

Then the Orlicz space $L^{\Phi}(G)$ consists of the set of all measurable functions $f: G \rightarrow \mathbb{C}$ such that $\rho_{\Phi}(f / \lambda)<\infty$ for some $\lambda>0$.

Some equivalent norms:

(Luxemburg norm) $N_{\Phi}(f)=\inf \left\{\lambda>0: \rho_{\Phi}(f / \lambda) \leq 1\right\}$
(Orlicz norm) $\|f\|_{\Phi}=\sup \left\{\int_{G}|f(x) g(x)| d m_{G}(x): \rho_{\Psi}(g) \leq 1\right\}$ where ψ is the complementary Young function, i.e.
$\Psi(y)=\sup \{x y-\Phi(x): x \geq 0\}$ for $y \geq 0$.

Orlicz spaces

Given a Young function $\Phi:[0, \infty) \rightarrow[0, \infty)$, that is convex, $\Phi(0)=0$ and $\lim _{x \rightarrow \infty} \Phi(x)=\infty$, we write

$$
\rho_{\Phi}(f)=\int_{G} \Phi(|f(x)|) d m_{G}(x) .
$$

Then the Orlicz space $L^{\Phi}(G)$ consists of the set of all measurable functions $f: G \rightarrow \mathbb{C}$ such that $\rho_{\Phi}(f / \lambda)<\infty$ for some $\lambda>0$.

Some equivalent norms:

(Luxemburg norm) $N_{\Phi}(f)=\inf \left\{\lambda>0: \rho_{\Phi}(f / \lambda) \leq 1\right\}$
(Orlicz norm) $\|f\|_{\Phi}=\sup \left\{\int_{G}|f(x) g(x)| d m_{G}(x): \rho_{\Psi}(g) \leq 1\right\}$ where ψ is the complementary Young function, i.e.
$\Psi(y)=\sup \{x y-\Phi(x): x \geq 0\}$ for $y \geq 0$.
(Amemiya norm) $\|\mid f\|_{\Phi}=\inf _{k>0} \frac{1}{k}\left(1+\rho_{\Phi}(k f)\right)$.

Δ_{2}-condition

A Young function Φ is said to satisfy Δ_{2}-condition (globally) if there exists a constant $K>0$ such that

$$
\begin{equation*}
\Phi(2 x) \leq K \Phi(x), \quad x \geq 0 . \tag{2}
\end{equation*}
$$

A Young function Φ is said to satisfy ∇_{2}-condition (globally) if there exists a constant $\ell>1$ such that

$$
\begin{equation*}
\Phi(x) \leq \frac{1}{2 \ell} \Phi(\ell x) \quad x \geq 0 \tag{3}
\end{equation*}
$$

Δ_{2}-condition

A Young function Φ is said to satisfy Δ_{2}-condition (globally) if there exists a constant $K>0$ such that

$$
\begin{equation*}
\Phi(2 x) \leq K \Phi(x), \quad x \geq 0 . \tag{2}
\end{equation*}
$$

A Young function Φ is said to satisfy ∇_{2}-condition (globally) if there exists a constant $\ell>1$ such that

$$
\begin{equation*}
\Phi(x) \leq \frac{1}{2 \ell} \Phi(\ell x) \quad x \geq 0 \tag{3}
\end{equation*}
$$

Multipliers

Given a bounded measurable function m defined on G and $f \in A(\hat{G})$ we write

$$
\begin{equation*}
T_{m}(f)(\gamma)=\int_{G} m(x) \hat{f}(x) \gamma(x) d m_{G}(x), \quad \gamma \in \hat{G} . \tag{4}
\end{equation*}
$$

Multipliers

Given a bounded measurable function m defined on G and $f \in A(\hat{G})$ we write

$$
\begin{equation*}
T_{m}(f)(\gamma)=\int_{G} m(x) \hat{f}(x) \gamma(x) d m_{G}(x), \quad \gamma \in \hat{G} . \tag{4}
\end{equation*}
$$

Let Φ_{1} and Φ_{2} be Young functions, and let m be a bounded measurable function defined on G. The function m is said to be a (Φ_{1}, Φ_{2})-multiplier on G if there exists $C>0$ such that

$$
\begin{equation*}
N_{\Phi_{2}}\left(T_{m}(f)\right) \leq C N_{\Phi_{1}}(f) \tag{5}
\end{equation*}
$$

for all $f \in A(\hat{G})$.

Multipliers

Given a bounded measurable function m defined on G and $f \in A(\hat{G})$ we write

$$
\begin{equation*}
T_{m}(f)(\gamma)=\int_{G} m(x) \hat{f}(x) \gamma(x) d m_{G}(x), \quad \gamma \in \hat{G} . \tag{4}
\end{equation*}
$$

Let Φ_{1} and Φ_{2} be Young functions, and let m be a bounded measurable function defined on G. The function m is said to be a (Φ_{1}, Φ_{2})-multiplier on G if there exists $C>0$ such that

$$
\begin{equation*}
N_{\Phi_{2}}\left(T_{m}(f)\right) \leq C N_{\Phi_{1}}(f) \tag{5}
\end{equation*}
$$

for all $f \in A(\hat{G})$.
We write $\mathscr{M}_{\Phi_{1}, \Phi_{2}}(G)$ for the space of $\left(\Phi_{1}, \Phi_{2}\right)$-multipliers on G.

Multipliers

Given a bounded measurable function m defined on G and $f \in A(\hat{G})$ we write

$$
\begin{equation*}
T_{m}(f)(\gamma)=\int_{G} m(x) \hat{f}(x) \gamma(x) d m_{G}(x), \quad \gamma \in \hat{G} . \tag{4}
\end{equation*}
$$

Let Φ_{1} and Φ_{2} be Young functions, and let m be a bounded measurable function defined on G. The function m is said to be a (Φ_{1}, Φ_{2})-multiplier on G if there exists $C>0$ such that

$$
\begin{equation*}
N_{\Phi_{2}}\left(T_{m}(f)\right) \leq C N_{\Phi_{1}}(f) \tag{5}
\end{equation*}
$$

for all $f \in A(\hat{G})$.
We write $\mathscr{M}_{\Phi_{1}, \Phi_{2}}(G)$ for the space of $\left(\Phi_{1}, \Phi_{2}\right)$-multipliers on G. Whenever $A(\hat{G})$ is dense in $L^{\Phi_{1}}(\hat{G})$ we have that T_{m} extends to a bounded operator from $L^{\Phi_{1}}(\hat{G})$ to $L^{\Phi_{2}}(\hat{G})$ for any $\left(\Phi_{1}, \Phi_{2}\right)$-multiplier m. Moreover $\left\|T_{m}\right\|_{L^{\Phi_{1}} L^{\Phi_{2}}}=\|m\|\left(\Phi_{1}, \Phi_{2}\right)$.

Multipliers

Given a bounded measurable function m defined on G and $f \in A(\hat{G})$ we write

$$
\begin{equation*}
T_{m}(f)(\gamma)=\int_{G} m(x) \hat{f}(x) \gamma(x) d m_{G}(x), \quad \gamma \in \hat{G} . \tag{4}
\end{equation*}
$$

Let Φ_{1} and Φ_{2} be Young functions, and let m be a bounded measurable function defined on G. The function m is said to be a (Φ_{1}, Φ_{2})-multiplier on G if there exists $C>0$ such that

$$
\begin{equation*}
N_{\Phi_{2}}\left(T_{m}(f)\right) \leq C N_{\Phi_{1}}(f) \tag{5}
\end{equation*}
$$

for all $f \in A(\hat{G})$.
We write $\mathscr{M}_{\Phi_{1}, \Phi_{2}}(G)$ for the space of $\left(\Phi_{1}, \Phi_{2}\right)$-multipliers on G. Whenever $A(\hat{G})$ is dense in $L^{\Phi_{1}}(\hat{G})$ we have that T_{m} extends to a bounded operator from $L^{\Phi_{1}}(\hat{G})$ to $L^{\Phi_{2}}(\hat{G})$ for any $\left(\Phi_{1}, \Phi_{2}\right)$-multiplier m. Moreover $\left\|T_{m}\right\|_{L^{\Phi_{1}} L^{\Phi_{2}}}=\|m\|_{\left(\Phi_{1}, \Phi_{2}\right)}$.
If Φ is a Young function satisfying Δ_{2} condition then $A(G)$ is dense in $L^{\Phi}(G)$.

Basic Examples

As usual we denote $\hat{\mu}(x)=\int_{\hat{G}} \gamma^{-1}(x) d \mu(\gamma)$ for the Fourier transform of a regular Borel measure μ defined in \hat{G}.

Basic Examples

As usual we denote $\hat{\mu}(x)=\int_{\hat{G}} \gamma^{-1}(x) d \mu(\gamma)$ for the Fourier transform of a regular Borel measure μ defined in \hat{G}.

Proposition

Let Φ_{1}, Φ_{2} and Φ_{3} be Young functions.
(i) Assume that there exists $C>0$ such that

$$
\begin{equation*}
\Phi_{2}(x) \leq C \Phi_{1}(x), \quad x>0 . \tag{6}
\end{equation*}
$$

If $m(x)=\hat{\mu}(x)$ for some regular Borel measure μ defined on \hat{G} then $m \in \mathscr{M}_{\Phi_{1}, \Phi_{2}}(G)$. Moreover $\|m\|_{\left(\Phi_{1}, \Phi_{2}\right)} \leq C\|\mu\|_{1}$.
(ii) Assume that

$$
\begin{equation*}
\Phi_{1}^{-1}(x) \Phi_{2}^{-1}(x) \leq x \Phi_{3}^{-1}(x), \quad x \geq 0 \tag{7}
\end{equation*}
$$

If $m(x)=\hat{g}(x)$ for some $g \in L^{1}(\hat{G}) \cap L^{\Phi_{2}}(\hat{G})$ then $m \in \mathscr{M}_{\Phi_{1}, \Phi_{3}}(G)$ and

$$
\|m\|_{\left(\Phi_{1}, \Phi_{3}\right)} \leq 2 N_{\Phi_{2}}(g) .
$$

Basic Examples

As usual we denote $\hat{\mu}(x)=\int_{\hat{G}} \gamma^{-1}(x) d \mu(\gamma)$ for the Fourier transform of a regular Borel measure μ defined in \hat{G}.

Proposition

Let Φ_{1}, Φ_{2} and Φ_{3} be Young functions.
(i) Assume that there exists $C>0$ such that

$$
\begin{equation*}
\Phi_{2}(x) \leq C \Phi_{1}(x), \quad x>0 . \tag{6}
\end{equation*}
$$

If $m(x)=\hat{\mu}(x)$ for some regular Borel measure μ defined on \hat{G} then $m \in \mathscr{M}_{\Phi_{1}, \Phi_{2}}(G)$. Moreover $\|m\|_{\left(\Phi_{1}, \Phi_{2}\right)} \leq C\|\mu\|_{1}$.
(ii) Assume that

$$
\begin{equation*}
\Phi_{1}^{-1}(x) \Phi_{2}^{-1}(x) \leq x \Phi_{3}^{-1}(x), \quad x \geq 0 \tag{7}
\end{equation*}
$$

If $m(x)=\hat{g}(x)$ for some $g \in L^{1}(\hat{G}) \cap L^{\Phi_{2}}(\hat{G})$ then $m \in \mathscr{M}_{\Phi_{1}, \Phi_{3}}(G)$ and

$$
\|m\|_{\left(\Phi_{1}, \Phi_{3}\right)} \leq 2 N_{\Phi_{2}}(g) .
$$

More Examples

Proposition

Let Φ, Φ_{i} for $i=1,2$ be Young functions and $m \in \mathscr{M}_{\Phi_{1}, \Phi_{2}}(G)$.
(i) If $\varphi \in L^{1}(G)$ then $\varphi * m \in \mathscr{M}_{\Phi_{1}, \Phi_{2}}(G)$. Moreover

$$
\|\varphi * m\|_{\left(\Phi_{1}, \Phi_{2}\right)} \leq\|\varphi\|_{1}\|m\|_{\left(\Phi_{1}, \Phi_{2}\right)}
$$

(ii) If $\psi \in L^{1}(\hat{G})$ then $\hat{\psi} m \in \mathscr{M}_{\Phi_{1}, \Phi_{2}}(G)$. Moreover

$$
\|\hat{\psi} m\|_{\left(\Phi_{1}, \Phi_{2}\right)} \leq\|\psi\|_{1}\|m\|_{\left(\Phi_{1}, \Phi_{2}\right)} .
$$

$G=\mathbb{R}$

A bounded measurable function m defined in \mathbb{R} is $\left(\Phi_{1}, \Phi_{2}\right)$-multiplier on \mathbb{R} if there exists $C>0$ such that

$$
\begin{equation*}
T_{m}(f)(x)=\int_{\mathbb{R}} m(\xi) \hat{f}(\xi) e^{2 \pi i x \xi} d \xi \tag{8}
\end{equation*}
$$

satisfies $N_{\Phi_{2}}\left(T_{m}(f)\right) \leq C N_{\Phi_{1}}(f)$ for any $f \in \mathscr{S}(\mathbb{R})$, which in case that Φ_{1} satisfies Δ_{2} is equivalent to the fact that T_{m} extends to a bounded operator from $L^{\Phi_{1}}(\mathbb{R})$ into $L^{\Phi_{2}}(\mathbb{R})$.

$G=\mathbb{R}$

A bounded measurable function m defined in \mathbb{R} is $\left(\Phi_{1}, \Phi_{2}\right)$-multiplier on \mathbb{R} if there exists $C>0$ such that

$$
\begin{equation*}
T_{m}(f)(x)=\int_{\mathbb{R}} m(\xi) \hat{f}(\xi) e^{2 \pi i x \xi} d \xi \tag{8}
\end{equation*}
$$

satisfies $N_{\Phi_{2}}\left(T_{m}(f)\right) \leq C N_{\Phi_{1}}(f)$ for any $f \in \mathscr{S}(\mathbb{R})$, which in case that Φ_{1} satisfies Δ_{2} is equivalent to the fact that T_{m} extends to a bounded operator from $L^{\Phi_{1}}(\mathbb{R})$ into $L^{\Phi_{2}}(\mathbb{R})$.
There are a lot of results known about (p, q)-multipliers corresponding to $\Phi_{1}(x)=x^{p}$ and $\Phi_{2}(x)=x^{q}$ and denoted by $\mathscr{M}_{p, q}(\mathbb{R})$.

$G=\mathbb{R}$

A bounded measurable function m defined in \mathbb{R} is $\left(\Phi_{1}, \Phi_{2}\right)$-multiplier on \mathbb{R} if there exists $C>0$ such that

$$
\begin{equation*}
T_{m}(f)(x)=\int_{\mathbb{R}} m(\xi) \hat{f}(\xi) e^{2 \pi i x \xi} d \xi \tag{8}
\end{equation*}
$$

satisfies $N_{\Phi_{2}}\left(T_{m}(f)\right) \leq C N_{\Phi_{1}}(f)$ for any $f \in \mathscr{S}(\mathbb{R})$, which in case that Φ_{1} satisfies Δ_{2} is equivalent to the fact that T_{m} extends to a bounded operator from $L^{\Phi_{1}}(\mathbb{R})$ into $L^{\Phi_{2}}(\mathbb{R})$.
There are a lot of results known about (p, q)-multipliers corresponding to $\Phi_{1}(x)=x^{p}$ and $\Phi_{2}(x)=x^{q}$ and denoted by $\mathscr{M}_{p, q}(\mathbb{R})$.

- $\operatorname{sign}(\xi) \in \mathscr{M}_{p, p}(\mathbb{R})$ for $1<p<\infty$.

$G=\mathbb{R}$

A bounded measurable function m defined in \mathbb{R} is $\left(\Phi_{1}, \Phi_{2}\right)$-multiplier on \mathbb{R} if there exists $C>0$ such that

$$
\begin{equation*}
T_{m}(f)(x)=\int_{\mathbb{R}} m(\xi) \hat{f}(\xi) e^{2 \pi i x \xi} d \xi \tag{8}
\end{equation*}
$$

satisfies $N_{\Phi_{2}}\left(T_{m}(f)\right) \leq C N_{\Phi_{1}}(f)$ for any $f \in \mathscr{S}(\mathbb{R})$, which in case that Φ_{1} satisfies Δ_{2} is equivalent to the fact that T_{m} extends to a bounded operator from $L^{\Phi_{1}}(\mathbb{R})$ into $L^{\Phi_{2}}(\mathbb{R})$.
There are a lot of results known about (p, q)-multipliers corresponding to $\Phi_{1}(x)=x^{p}$ and $\Phi_{2}(x)=x^{q}$ and denoted by $\mathscr{M}_{p, q}(\mathbb{R})$.

- $\operatorname{sign}(\xi) \in \mathscr{M}_{p, p}(\mathbb{R})$ for $1<p<\infty$.
- $|2 \pi \xi|^{-\alpha} \in \mathscr{M}_{p, q}(\mathbb{R})$ for $0<\alpha<1,1 / q=1 / p-\alpha$.

$G=\mathbb{R}$

A bounded measurable function m defined in \mathbb{R} is $\left(\Phi_{1}, \Phi_{2}\right)$-multiplier on \mathbb{R} if there exists $C>0$ such that

$$
\begin{equation*}
T_{m}(f)(x)=\int_{\mathbb{R}} m(\xi) \hat{f}(\xi) e^{2 \pi i x \xi} d \xi \tag{8}
\end{equation*}
$$

satisfies $N_{\Phi_{2}}\left(T_{m}(f)\right) \leq C N_{\Phi_{1}}(f)$ for any $f \in \mathscr{S}(\mathbb{R})$, which in case that Φ_{1} satisfies Δ_{2} is equivalent to the fact that T_{m} extends to a bounded operator from $L^{\Phi_{1}}(\mathbb{R})$ into $L^{\Phi_{2}}(\mathbb{R})$.
There are a lot of results known about (p, q)-multipliers corresponding to $\Phi_{1}(x)=x^{p}$ and $\Phi_{2}(x)=x^{q}$ and denoted by $\mathscr{M}_{p, q}(\mathbb{R})$.

- $\operatorname{sign}(\xi) \in \mathscr{M}_{p, p}(\mathbb{R})$ for $1<p<\infty$.
- $|2 \pi \xi|^{-\alpha} \in \mathscr{M}_{p, q}(\mathbb{R})$ for $0<\alpha<1,1 / q=1 / p-\alpha$.
- $\mathscr{M}_{p, q}(\mathbb{R})=\mathscr{M}_{q^{\prime}, p^{\prime}}(\mathbb{R})$ where $1 / p+1 / p^{\prime}=1$.

$G=\mathbb{R}$

A bounded measurable function m defined in \mathbb{R} is $\left(\Phi_{1}, \Phi_{2}\right)$-multiplier on \mathbb{R} if there exists $C>0$ such that

$$
\begin{equation*}
T_{m}(f)(x)=\int_{\mathbb{R}} m(\xi) \hat{f}(\xi) e^{2 \pi i x \xi} d \xi \tag{8}
\end{equation*}
$$

satisfies $N_{\Phi_{2}}\left(T_{m}(f)\right) \leq C N_{\Phi_{1}}(f)$ for any $f \in \mathscr{S}(\mathbb{R})$, which in case that Φ_{1} satisfies Δ_{2} is equivalent to the fact that T_{m} extends to a bounded operator from $L^{\Phi_{1}}(\mathbb{R})$ into $L^{\Phi_{2}}(\mathbb{R})$.
There are a lot of results known about (p, q)-multipliers corresponding to $\Phi_{1}(x)=x^{p}$ and $\Phi_{2}(x)=x^{q}$ and denoted by $\mathscr{M}_{p, q}(\mathbb{R})$.

- $\operatorname{sign}(\xi) \in \mathscr{M}_{p, p}(\mathbb{R})$ for $1<p<\infty$.
- $|2 \pi \xi|^{-\alpha} \in \mathscr{M}_{p, q}(\mathbb{R})$ for $0<\alpha<1,1 / q=1 / p-\alpha$.
- $\mathscr{M}_{p, q}(\mathbb{R})=\mathscr{M}_{q^{\prime}, p^{\prime}}(\mathbb{R})$ where $1 / p+1 / p^{\prime}=1$.
- $\mathscr{M}_{2,2}(\mathbb{R})=L^{\infty}(\mathbb{R})$.

$G=\mathbb{R}$

A bounded measurable function m defined in \mathbb{R} is $\left(\Phi_{1}, \Phi_{2}\right)$-multiplier on \mathbb{R} if there exists $C>0$ such that

$$
\begin{equation*}
T_{m}(f)(x)=\int_{\mathbb{R}} m(\xi) \hat{f}(\xi) e^{2 \pi i x \xi} d \xi \tag{8}
\end{equation*}
$$

satisfies $N_{\Phi_{2}}\left(T_{m}(f)\right) \leq C N_{\Phi_{1}}(f)$ for any $f \in \mathscr{S}(\mathbb{R})$, which in case that Φ_{1} satisfies Δ_{2} is equivalent to the fact that T_{m} extends to a bounded operator from $L^{\Phi_{1}}(\mathbb{R})$ into $L^{\Phi_{2}}(\mathbb{R})$.
There are a lot of results known about (p, q)-multipliers corresponding to $\Phi_{1}(x)=x^{p}$ and $\Phi_{2}(x)=x^{q}$ and denoted by $\mathscr{M}_{p, q}(\mathbb{R})$.

- $\operatorname{sign}(\xi) \in \mathscr{M}_{p, p}(\mathbb{R})$ for $1<p<\infty$.
- $|2 \pi \xi|^{-\alpha} \in \mathscr{M}_{p, q}(\mathbb{R})$ for $0<\alpha<1,1 / q=1 / p-\alpha$.
- $\mathscr{M}_{p, q}(\mathbb{R})=\mathscr{M}_{q^{\prime}, p^{\prime}}(\mathbb{R})$ where $1 / p+1 / p^{\prime}=1$.
- $\mathscr{M}_{2,2}(\mathbb{R})=L^{\infty}(\mathbb{R})$.
- $\mathscr{M}_{1,1}(\mathbb{R})=\{\hat{\mu}: \mu \in M(\mathbb{R})\}$

$G=\mathbb{R}$

A bounded measurable function m defined in \mathbb{R} is $\left(\Phi_{1}, \Phi_{2}\right)$-multiplier on \mathbb{R} if there exists $C>0$ such that

$$
\begin{equation*}
T_{m}(f)(x)=\int_{\mathbb{R}} m(\xi) \hat{f}(\xi) e^{2 \pi i x \xi} d \xi \tag{8}
\end{equation*}
$$

satisfies $N_{\Phi_{2}}\left(T_{m}(f)\right) \leq C N_{\Phi_{1}}(f)$ for any $f \in \mathscr{S}(\mathbb{R})$, which in case that Φ_{1} satisfies Δ_{2} is equivalent to the fact that T_{m} extends to a bounded operator from $L^{\Phi_{1}}(\mathbb{R})$ into $L^{\Phi_{2}}(\mathbb{R})$.
There are a lot of results known about (p, q)-multipliers corresponding to $\Phi_{1}(x)=x^{p}$ and $\Phi_{2}(x)=x^{q}$ and denoted by $\mathscr{M}_{p, q}(\mathbb{R})$.

- $\operatorname{sign}(\xi) \in \mathscr{M}_{p, p}(\mathbb{R})$ for $1<p<\infty$.
- $|2 \pi \xi|^{-\alpha} \in \mathscr{M}_{p, q}(\mathbb{R})$ for $0<\alpha<1,1 / q=1 / p-\alpha$.
- $\mathscr{M}_{p, q}(\mathbb{R})=\mathscr{M}_{q^{\prime}, p^{\prime}}(\mathbb{R})$ where $1 / p+1 / p^{\prime}=1$.
- $\mathscr{M}_{2,2}(\mathbb{R})=L^{\infty}(\mathbb{R})$.
- $\mathscr{M}_{1,1}(\mathbb{R})=\{\hat{\mu}: \mu \in M(\mathbb{R})\}$
- $\mathscr{M}_{p, q}(\mathbb{R})=\{0\}$ for $p>q$.

The dilation operator D_{λ}

Denote $D_{\lambda}(f)(x)=f(\lambda x)$ for $\lambda>0$.

$$
C_{\Phi}(\lambda)=\left\|D_{\lambda}\right\|_{L^{\Phi}(\mathbb{R}) \rightarrow L^{\Phi}(\mathbb{R})}=\sup \left\{N_{\Phi}\left(D_{\lambda}(f)\right): N_{\Phi}(f) \leq 1\right\}
$$

Of course $C_{\Phi}(\lambda)$ is non-increasing, submultiplicative and $C_{\Phi}(1)=1$.

The dilation operator D_{λ}

Denote $D_{\lambda}(f)(x)=f(\lambda x)$ for $\lambda>0$.

$$
C_{\Phi}(\lambda)=\left\|D_{\lambda}\right\|_{L^{\Phi}(\mathbb{R}) \rightarrow L^{\Phi}(\mathbb{R})}=\sup \left\{N_{\Phi}\left(D_{\lambda}(f)\right): N_{\Phi}(f) \leq 1\right\}
$$

Of course $C_{\Phi}(\lambda)$ is non-increasing, submultiplicative and $C_{\Phi}(1)=1$.

$$
\alpha(\Phi)=\lim _{\lambda \rightarrow 0} \frac{\log C_{\Phi}\left(\frac{1}{\lambda}\right)}{\log \lambda}, \quad \beta(\Phi)=\lim _{\lambda \rightarrow \infty} \frac{\log C_{\Phi}\left(\frac{1}{\lambda}\right)}{\log \lambda} .(\text { Boyd indices })
$$

The dilation operator D_{λ}

Denote $D_{\lambda}(f)(x)=f(\lambda x)$ for $\lambda>0$.

$$
C_{\Phi}(\lambda)=\left\|D_{\lambda}\right\|_{L^{\Phi}(\mathbb{R}) \rightarrow L^{\Phi}(\mathbb{R})}=\sup \left\{N_{\Phi}\left(D_{\lambda}(f)\right): N_{\Phi}(f) \leq 1\right\}
$$

Of course $C_{\Phi}(\lambda)$ is non-increasing, submultiplicative and $C_{\Phi}(1)=1$.

$$
\alpha(\Phi)=\lim _{\lambda \rightarrow 0} \frac{\log C_{\Phi}\left(\frac{1}{\lambda}\right)}{\log \lambda}, \quad \beta(\Phi)=\lim _{\lambda \rightarrow \infty} \frac{\log C_{\Phi}\left(\frac{1}{\lambda}\right)}{\log \lambda} .(\text { Boyd indices })
$$

$\alpha(\Phi)>0$ implies Φ satisfies Δ_{2} and $\beta(\Phi)<1$ implies Φ satisfies ∇_{2}.

New results

Theorem

Let Φ_{1}, Φ_{2} be Young functions satisfying Δ_{2}. If $\mathscr{M}_{\Phi_{1}, \Phi_{2}}(\mathbb{R}) \neq\{0\}$ then $\beta\left(\Phi_{1}\right) \geq \alpha\left(\Phi_{2}\right)$.

Corollary

Let $\Phi_{p, q}(t)=\max \left\{t^{p}, t^{q}\right\}$. If $\max \left\{p_{2}, q_{2}\right\}<\min \left\{p_{1}, q_{1}\right\}$ then $\mathscr{M}_{\Phi_{p_{1}, q_{1}}, \Phi_{p_{2}, q_{2}}}(\mathbb{R})=\{0\}$.

The Bohr group

It is well-known that $\hat{\mathrm{D}}$ is the Bohr compactification of D . We use the notation $A P(\mathbb{R})$ for the set of all continuous almost periodic functions on \mathbb{R}, that is to say uniform limits of polynomials $\sum_{k=1}^{n} \alpha_{k} e^{2 \pi i x_{k} t}$ where $x_{k} \in \mathbb{R}$ and $\alpha_{k} \in \mathbb{C}$.

The Bohr group

It is well-known that $\hat{\mathrm{D}}$ is the Bohr compactification of D . We use the notation $A P(\mathbb{R})$ for the set of all continuous almost periodic functions on \mathbb{R}, that is to say uniform limits of polynomials $\sum_{k=1}^{n} \alpha_{k} e^{2 \pi i x_{k} t}$ where $x_{k} \in \mathbb{R}$ and $\alpha_{k} \in \mathbb{C}$.
Recall now the Besicovich-Orlicz spaces for almost periodic functions: If $f \in A P(\mathbb{R})$ and Φ is a Young function we define

$$
\tilde{\rho}_{\Phi}(f)=\overline{\lim }_{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} \Phi(|f(x)|) d x=\overline{\lim }_{T \rightarrow \infty} \int_{-1 / 2}^{1 / 2} \Phi\left(\left|D_{T} f(x)\right|\right) d x
$$

and

$$
\|f\|_{B^{\Phi}}=\inf \left\{k>0: \tilde{\rho}_{\Phi}(f / k) \leq 1\right\} .
$$

The Bohr group

It is well-known that $\hat{\mathrm{D}}$ is the Bohr compactification of D . We use the notation $A P(\mathbb{R})$ for the set of all continuous almost periodic functions on \mathbb{R}, that is to say uniform limits of polynomials $\sum_{k=1}^{n} \alpha_{k} e^{2 \pi i x_{k} t}$ where $x_{k} \in \mathbb{R}$ and $\alpha_{k} \in \mathbb{C}$.
Recall now the Besicovich-Orlicz spaces for almost periodic functions: If $f \in A P(\mathbb{R})$ and Φ is a Young function we define

$$
\tilde{\rho}_{\Phi}(f)=\overline{\lim }_{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} \Phi(|f(x)|) d x=\overline{\lim }_{T \rightarrow \infty} \int_{-1 / 2}^{1 / 2} \Phi\left(\left|D_{T} f(x)\right|\right) d x
$$

and

$$
\|f\|_{B^{\Phi}}=\inf \left\{k>0: \tilde{\rho}_{\Phi}(f / k) \leq 1\right\} .
$$

A basic fact to use for the Bohr group is that if μ is any measure defined on \mathbb{R} having support on a finite number of points, then $\hat{\mu} \in A P(\mathbb{R})$ and

$$
\begin{equation*}
\|\hat{\mu}\|_{B_{\Phi}(\mathbb{R})}=\|\mu\|_{L^{\Phi}(\hat{\mathrm{D}})} . \tag{9}
\end{equation*}
$$

Multipliers for $G=\mathrm{D}$

Let Φ_{1}, Φ_{2} be Young functions. A bounded function $m \in \mathscr{M}_{\Phi_{1}, \Phi_{2}}(\mathrm{D})$ if there exists a constant $C>0$ such that

$$
\begin{equation*}
N_{\Phi_{2}}\left(\sum \alpha_{t} m(t) \chi_{t}\right) \leq C N_{\Phi_{1}}\left(\sum \alpha_{t} \chi_{t}\right) \tag{10}
\end{equation*}
$$

for any $\alpha=\sum \alpha_{t} \chi_{t}$ (finite sum).

Multipliers for $G=\mathrm{D}$

Let Φ_{1}, Φ_{2} be Young functions. A bounded function $m \in \mathscr{M}_{\Phi_{1}, \Phi_{2}}(\mathrm{D})$ if there exists a constant $C>0$ such that

$$
\begin{equation*}
N_{\Phi_{2}}\left(\sum \alpha_{t} m(t) \chi_{t}\right) \leq C N_{\Phi_{1}}\left(\sum \alpha_{t} \chi_{t}\right) \tag{10}
\end{equation*}
$$

for any $\alpha=\sum \alpha_{t} \chi_{t}$ (finite sum).
Assume that Φ_{2} satisfies ∇_{2} and m is a bounded function on \mathbb{R}. The following are equivalent:
(i) $m \in \mathscr{M}_{\Phi_{1}, \Phi_{2}}$ (D).
(ii) There exists a constant K such that

$$
\begin{equation*}
\left|\sum_{t \in \mathbb{R}} m(t) \mu(t) \lambda(t) d x\right| \leq C\|\hat{\mu}\|_{B_{\phi_{1}}}\|\hat{\lambda}\|_{B_{\psi_{2}}} \tag{11}
\end{equation*}
$$

for any measures μ and λ on \mathbb{R} having supports on a finite number of points.

Multipliers for $G=\mathrm{D}$

Let Φ_{1}, Φ_{2} be Young functions. A bounded function $m \in \mathscr{M}_{\Phi_{1}, \Phi_{2}}(\mathrm{D})$ if there exists a constant $C>0$ such that

$$
\begin{equation*}
N_{\Phi_{2}}\left(\sum \alpha_{t} m(t) \chi_{t}\right) \leq C N_{\Phi_{1}}\left(\sum \alpha_{t} \chi_{t}\right) \tag{10}
\end{equation*}
$$

for any $\alpha=\sum \alpha_{t} \chi_{t}$ (finite sum).
Assume that Φ_{2} satisfies ∇_{2} and m is a bounded function on \mathbb{R}. The following are equivalent:
(i) $m \in \mathscr{M}_{\Phi_{1}, \Phi_{2}}$ (D).
(ii) There exists a constant K such that

$$
\begin{equation*}
\left|\sum_{t \in \mathbb{R}} m(t) \mu(t) \lambda(t) d x\right| \leq C\|\hat{\mu}\|_{B_{\phi_{1}}}\|\hat{\lambda}\|_{B_{\psi_{2}}} \tag{11}
\end{equation*}
$$

for any measures μ and λ on \mathbb{R} having supports on a finite number of points.

Main results 1

Theorem

Let m be a bounded continuous function on \mathbb{R} and let Φ_{1}, Φ_{2} be Young functions such that Φ_{2} satisfies ∇_{2} and

$$
\begin{equation*}
\sup _{\lambda>1} C_{\Phi_{1}}(\lambda) C_{\Phi_{2}}(1 / \lambda)<+\infty . \tag{12}
\end{equation*}
$$

If $m \in \mathscr{M}_{\Phi_{1}, \Phi_{2}}(\mathrm{D})$ then $m \in \mathscr{M}_{\Phi_{1}, \Phi_{2}}(\mathbb{R})$.

Main results 1

Theorem

Let m be a bounded continuous function on \mathbb{R} and let Φ_{1}, Φ_{2} be Young functions such that Φ_{2} satisfies ∇_{2} and

$$
\begin{equation*}
\sup _{\lambda>1} C_{\Phi_{1}}(\lambda) C_{\Phi_{2}}(1 / \lambda)<+\infty . \tag{12}
\end{equation*}
$$

If $m \in \mathscr{M}_{\Phi_{1}, \Phi_{2}}(\mathrm{D})$ then $m \in \mathscr{M}_{\Phi_{1}, \Phi_{2}}(\mathbb{R})$.

Corollary

Let m be a bounded continuous function on \mathbb{R} such that $m \in \mathscr{M}_{\Phi_{1}, \Phi_{2}}$ (D) and let Φ_{1}, Φ_{2} be Young functions such that $\alpha\left(\Phi_{1}\right)>\beta\left(\Phi_{2}\right)$. Then $m \in \mathscr{M}_{\Phi_{1}, \Phi_{2}}(\mathbb{R})$.

Main results 2

Theorem

Let m be a bounded continuous function on \mathbb{R} and let Φ_{1}, Φ_{2} be Young functions satisfying that Φ_{2} has ∇_{2} condition and

$$
\sup _{0<\lambda<1} C_{\Phi_{1}}(\lambda) C_{\Phi_{2}}(1 / \lambda)<+\infty .
$$

If $m \in \mathscr{M}_{\Phi_{1}, \Phi_{2}}(\mathbb{R})$ then $m \in \mathscr{M}_{\Phi_{1}, \Phi_{2}}(\mathrm{D})$.

Main results 2

Theorem

Let m be a bounded continuous function on \mathbb{R} and let Φ_{1}, Φ_{2} be Young functions satisfying that Φ_{2} has ∇_{2} condition and

$$
\sup _{0<\lambda<1} C_{\Phi_{1}}(\lambda) C_{\Phi_{2}}(1 / \lambda)<+\infty .
$$

If $m \in \mathscr{M}_{\Phi_{1}, \Phi_{2}}(\mathbb{R})$ then $m \in \mathscr{M}_{\Phi_{1}, \Phi_{2}}(\mathrm{D})$.

Corollary

Let m be a bounded continuous in \mathbb{R} and Φ be a Young function satisfying ∇_{2} and

$$
\begin{equation*}
\sup _{\lambda>0} C_{\Phi}(\lambda) C_{\Phi}\left(\frac{1}{\lambda}\right)<\infty . \tag{14}
\end{equation*}
$$

Then $m \in \mathscr{M}_{\Phi}(\mathbb{R})$ iff $m \in \mathscr{M}_{\Phi}(\mathrm{D})$.

$G=\mathbb{Z}$

A bounded sequence $m=\left(m_{n}\right)_{n \in \mathbb{Z}}$ is $\left(\Phi_{1}, \Phi_{2}\right)$-multiplier on \mathbb{Z} if there exists $C>0$ such that

$$
\begin{equation*}
T_{m}(P)(t)=\sum_{k \in \mathbb{Z}} m_{k} \alpha_{k} e^{2 \pi i k t} \tag{15}
\end{equation*}
$$

satisfies $N_{\Phi_{2}}\left(T_{m}(P)\right) \leq C N_{\Phi_{1}}(P)$ for any $P(t)=\sum_{k \in \mathbb{Z}} \alpha_{k} e^{2 \pi i k t} \in P(\mathbb{T})$, or equivalently, in case that Φ_{1} satisfies Δ_{2}, extends to a bounded operator from $L^{\Phi_{1}}(\mathbb{T})$ to $L^{\Phi_{2}}(\mathbb{T})$.

$G=\mathbb{Z}$

A bounded sequence $m=\left(m_{n}\right)_{n \in \mathbb{Z}}$ is $\left(\Phi_{1}, \Phi_{2}\right)$-multiplier on \mathbb{Z} if there exists $C>0$ such that

$$
\begin{equation*}
T_{m}(P)(t)=\sum_{k \in \mathbb{Z}} m_{k} \alpha_{k} e^{2 \pi i k t} \tag{15}
\end{equation*}
$$

satisfies $N_{\Phi_{2}}\left(T_{m}(P)\right) \leq C N_{\Phi_{1}}(P)$ for any $P(t)=\sum_{k \in \mathbb{Z}} \alpha_{k} e^{2 \pi i k t} \in P(\mathbb{T})$, or equivalently, in case that Φ_{1} satisfies Δ_{2}, extends to a bounded operator from $L^{\Phi_{1}}(\mathbb{T})$ to $L^{\Phi_{2}}(\mathbb{T})$.
If Φ_{2} satisfying ∇_{2} and let $m=\left(m_{n}\right)$ be a bounded sequence on \mathbb{Z}. The following are equivalent:
(i) $m \in \mathscr{M}_{\Phi_{1}, \Phi_{2}}(\mathbb{Z})$.
(ii) There exists a constant K such that

$$
\begin{equation*}
\left|\sum_{n \in \mathbb{Z}} m_{n} \alpha_{n} \beta_{n}\right| \leq C N_{\Phi_{1}}(P) N_{\psi_{2}}(Q) \tag{16}
\end{equation*}
$$

for any $P(t)=\sum_{n \in \mathbb{Z}} \alpha_{n} e^{2 \pi i n t}$ and $Q(t)=\sum_{n \in \mathbb{Z}} \beta_{n} e^{2 \pi i n t}$ in $P(\mathbb{T})$.

Main results 3

Theorem

Let m be a bounded continuous function on \mathbb{R} and Φ_{1}, Φ_{2} be Young functions with Φ_{2} satisfying ∇_{2}.
(i) Assume that

$$
\begin{equation*}
\sup _{0<\lambda<1} C_{\Phi_{1}}(\lambda) C_{\Phi_{2}}(1 / \lambda)<\infty . \tag{17}
\end{equation*}
$$

If $m \in \mathscr{M}_{\Phi_{1}, \Phi_{2}}(\mathbb{R})$ then $m_{n}=(m(n)) \in \mathscr{M}_{\Phi_{1}, \Phi_{2}}(\mathbb{Z})$.
(ii) Assume that

$$
\begin{equation*}
\sup _{\lambda>1} C_{\Phi_{1}}(\lambda) C_{\Phi_{2}}(1 / \lambda)<\infty . \tag{18}
\end{equation*}
$$

If $\left(D_{1 / N} m(n)\right) \in \mathscr{M}_{\Phi_{1}, \Phi_{2}}(\mathbb{Z})$ for all $N \in \mathbb{N}$ with
$\sup _{N}\left\|\left(D_{1 / N} m\right)_{n}\right\|_{\left(\Phi_{1}, \Phi_{2}\right)}<\infty$ then $m \in \mathscr{M}_{\Phi_{1}, \Phi_{2}}(\mathbb{R})$.
(19 DeLeeuw, K. On L $_{p}$-multipliers. Ann. Math. 91 [1965], pp 364-379.
Rao, M. M., Ren, Z.D. Theory of Orlicz spaces. CRM Press [1991].
Rudin, W. Fourier Analysis on Groups. Interscience, New York, [1962].

THANK YOU VERY MUCH FOR YOUR ATTENTION!

