Pointwise descriptions of nearly incompressible vector fields with bounded curl

Banhirup Sengupta

Universitat Autònoma de Barcelona Joint work with Albert Clop (Barcelona)

May 26, 2022

Outline

- Introduction
 - Flow of a vector field
 - Di Perna Lions Theory
 - Borderline
- Reimann vector fields
 - Quasisymmetry/Quasiconformality and Q class
 - Reimann fields produce Hölder and Sobolev flows
- Euler equation in the plane
 - Euler flows are Hölder and Sobolev
 - Optimal regularity of flows
 - $\bullet \overline{Q}, R_{\theta}$

Introduction

Given a vector field $b: [0,T] \times \mathbb{R}^n \to \mathbb{R}^n$, we call $X_{t,t_0}(\cdot) = X(t,t_0,\cdot): [0,T] \times \mathbb{R}^n \to \mathbb{R}^n$ the flow of b if $\begin{cases} \frac{d}{dt}X(t,t_0,x) = b(t,t_0,X(t,t_0,x)) \\ X(t_0,t_0,x) = x. \end{cases}$

Given a vector field
$$b: [0,T] \times \mathbb{R}^n \to \mathbb{R}^n$$
, we call $X_{t,t_0}(\cdot) = X(t,t_0,\cdot): [0,T] \times \mathbb{R}^n \to \mathbb{R}^n$ the flow of b if
$$\begin{cases} \frac{d}{dt}X(t,t_0,x) = b(t,t_0,X(t,t_0,x)) \\ X(t_0,t_0,x) = x. \end{cases}$$

Existence and uniqueness of the flow

Cauchy-Lipschitz Theory: Existence and uniqueness (*b Lipschitz*)

Peano's Theorem: Existence (*b Continuous*) **Osgood's Theorem**: Uniqueness (*b Lip-Log*)

If $b(t, \cdot)$ has modulus of continuity η ,

$$|b(t,x)-b(t,y)| \le \eta(|x-y|)$$
 where $\int_0^\infty \frac{dr}{\eta(r)} = \infty$

then X_t admits modulus of continuity $\omega(r) = \omega_{t,\eta}(r)$,

$$|X_t(x) - X_t(y)| \le \omega(|x - y|)$$
, for x, y close enough.

If $b(t, \cdot)$ has modulus of continuity η ,

$$|b(t,x)-b(t,y)| \le \eta(|x-y|)$$
 where $\int_0^\infty \frac{dr}{\eta(r)} = \infty$

then X_t admits modulus of continuity $\omega(r) = \omega_{t,\eta}(r)$,

$$|X_t(x) - X_t(y)| \le \omega(|x - y|)$$
, for x, y close enough.

Modulus of continuity of the flow

- Lipschitz vector fields produce Lipschitz flows: If $\eta(r) = Cr$, then $\omega(r) = e^{Ct}r$.
- **2** Lip-Log vector fields produce Hölder flows: If $\eta(r) = r \log \frac{1}{r}$, then $\omega(r) = r^{e^{-t}}$.

Di Perna- Lions Theory

Di Perna, Lions (1989): Extension of the notion of flow for Sobolev vector fields.

Well-posedness of Sobolev vector fields

$$b \in L^{1}(0, T; W_{loc}^{1,p}) \quad \text{for some } p \ge 1$$
$$\text{div } b \in L^{1}(0, T; L^{\infty})$$
$$\frac{|b(t, x)|}{1 + |x|} \in L^{1}(0, T; L^{1}) + L^{1}(0, T; L^{\infty})$$

Di Perna- Lions Theory

Di Perna, Lions (1989): Extension of the notion of flow for Sobolev vector fields.

Well-posedness of Sobolev vector fields

$$b \in L^{1}(0, T; W_{loc}^{1,p}) \quad \text{for some } p \ge 1$$
$$\text{div } b \in L^{1}(0, T; L^{\infty})$$
$$\frac{|b(t, x)|}{1 + |x|} \in L^{1}(0, T; L^{1}) + L^{1}(0, T; L^{\infty})$$

Properties of Di Perna-Lions flow

Linear Distortion of Lebesgue measure

$$|X_t(E)| \le C(t)|E|$$
 $E \subset \mathbb{R}^n$ measurable

• Flow compatible with Linear Transport Equation

Di Perna - Lions Theory

Linear Transport Equation

LTE:
$$\begin{cases} \partial_t u + b \cdot \nabla u = 0 \\ u(0, x) = u_0(x) \end{cases}$$

- LTE \Rightarrow Flow: The *i*-th component of X_t^{-1} is the solution u of LTE with datum $u_0(x) = x_i$.
- Flow ⇒ LTE: The solution of LTE is

$$u(t,x)=u_0\circ X_t^{-1}(x).$$

Di Perna - Lions Theory

Linear Transport Equation

LTE:
$$\begin{cases} \partial_t u + b \cdot \nabla u = 0 \\ u(0, x) = u_0(x) \end{cases}$$

- LTE \Rightarrow Flow: The *i*-th component of X_t^{-1} is the solution u of LTE with datum $u_0(x) = x_i$.
- Flow ⇒ LTE: The solution of LTE is

$$u(t,x)=u_0\circ X_t^{-1}(x).$$

Regularity of the flow

- measurable √
- differentiable in measure √ (Le Bris-Lyons)
- continuous X
- Sobolev X (Jabin, Alberti-Crippa-Mazzucato)

Difference in the two classical theories

- Cauchy-Lipschitz Theory: If $b \in W^{1,\infty}$ then the flow is Lipschitz
- **Di Perna Lions Theory**: If $b \in W^{1,p}$ for any $p < +\infty$ then the flow may not be even Sobolev

Difference in the two classical theories

- Cauchy-Lipschitz Theory: If $b \in W^{1,\infty}$ then the flow is Lipschitz
- **Di Perna Lions Theory**: If $b \in W^{1,p}$ for any $p < +\infty$ then the flow may not be even Sobolev

There exists a significant jump in between the two theories. Moreover, this jump contains a lot of vector fields!!

Difference in the two classical theories

- Cauchy-Lipschitz Theory: If $b \in W^{1,\infty}$ then the flow is Lipschitz
- **Di Perna Lions Theory**: If $b \in W^{1,p}$ for any $p < +\infty$ then the flow may not be even Sobolev

There exists a significant jump in between the two theories. Moreover, this jump contains a lot of vector fields!!

OPEN PROBLEM: To understand Sobolev regularity of the flow arising from vector fields in this jump

Difference in the two classical theories

- Cauchy-Lipschitz Theory: If $b \in W^{1,\infty}$ then the flow is Lipschitz
- **Di Perna Lions Theory**: If $b \in W^{1,p}$ for any $p < +\infty$ then the flow may not be even Sobolev

There exists a significant jump in between the two theories. Moreover, this jump contains a lot of vector fields!!

OPEN PROBLEM: To understand Sobolev regularity of the flow arising from vector fields in this jump

Principal Examples

- Geometric Function Theory (Reimann vector fields)
- Fluid Mechanics (Euler equations)

We say that a continuous vector field $b: \mathbb{R}^n \to \mathbb{R}^n$ is of Reimann's type and write $b \in \mathcal{Q}$ iff

$$\left| \frac{\langle b(x+h) - b(x), h \rangle}{|h|^2} - \frac{\langle b(x+k) - b(x), k \rangle}{|k|^2} \right| \le C$$

for all $x \in \mathbb{R}^n$, and $|h| = |k| \neq 0$.

We say that a continuous vector field $b: \mathbb{R}^n \to \mathbb{R}^n$ is of Reimann's type and write $b \in \mathcal{Q}$ iff

$$\left| \frac{\langle b(x+h) - b(x), h \rangle}{|h|^2} - \frac{\langle b(x+k) - b(x), k \rangle}{|k|^2} \right| \le C$$

for all $x \in \mathbb{R}^n$, and $|h| = |k| \neq 0$.

Lipschitz $\subseteq \mathcal{Q} \subseteq Zygmund$

We say that a continuous vector field $b: \mathbb{R}^n \to \mathbb{R}^n$ is of Reimann's type and write $b \in \mathcal{Q}$ iff

$$\left|\frac{\langle b(x+h)-b(x),h\rangle}{|h|^2}-\frac{\langle b(x+k)-b(x),k\rangle}{|k|^2}\right|\leq C$$

for all $x \in \mathbb{R}^n$, and $|h| = |k| \neq 0$.

 $Lipschitz \subseteq Q \subseteq Zygmund$

Reimann 1976

b Reimann $\Rightarrow X_t$ is η_t – quasisymmetric

Quasisymmetry and Quasiconformality

Quasisymmetric map

 $f: \mathbb{R}^n \to \mathbb{R}^n$ is η -quasisymmetric (η -QS) if

$$\frac{|f(y) - f(x)|}{|f(z) - f(x)|} \le \eta \left(\frac{|y - x|}{|z - x|}\right) \qquad \forall x, y, z$$

for some $\eta:[0,\infty)\to[0,\infty)$.

Quasisymmetry and Quasiconformality

Quasisymmetric map

 $f: \mathbb{R}^n \to \mathbb{R}^n$ is η -quasisymmetric (η -QS) if

$$\frac{|f(y) - f(x)|}{|f(z) - f(x)|} \le \eta \left(\frac{|y - x|}{|z - x|}\right) \qquad \forall x, y, z$$

for some $\eta:[0,\infty)\to[0,\infty)$.

Quasiconformal map

A homeomorphism $f: \mathbb{R}^n \to \mathbb{R}^n$ is K-quasiconformal (K-QC) if $f \in W^{1,n}_{loc}$, $J(\cdot, f) \ge 0$ and

$$|Df(z)|^n \le K \cdot J(z, f)$$

at almost every point z.

Quasisymmetry and Quasiconformality

Quasisymmetric map

 $f: \mathbb{R}^n \to \mathbb{R}^n$ is η -quasisymmetric (η -QS) if

$$\frac{|f(y) - f(x)|}{|f(z) - f(x)|} \le \eta \left(\frac{|y - x|}{|z - x|}\right) \qquad \forall x, y, z$$

for some $\eta:[0,\infty)\to[0,\infty)$.

Quasiconformal map

A homeomorphism $f: \mathbb{R}^n \to \mathbb{R}^n$ is K-quasiconformal (K-QC) if $f \in W^{1,n}_{loc}$, $J(\cdot, f) \ge 0$ and

$$|Df(z)|^n \le K \cdot J(z, f)$$

at almost every point z.

Quasisymmetry and quasiconformality are equivalent

Reimann's Theorem

b Reimann \Leftrightarrow b is differentiable a.e., $Sb \in L^{\infty}$ and $\frac{|b(x)|}{|x| \log |x|} \le C$

$$Sb(x) = \frac{Db(x) + Db(x)^{T}}{2} - \frac{\operatorname{div} b(x)}{n} Id$$

Reimann's Theorem

b Reimann \Leftrightarrow b is differentiable a.e., $Sb \in L^{\infty}$ and $\frac{|D(X)|}{|X|\log |X|} \leq C$

$$Sb(x) = \frac{Db(x) + Db(x)^{T}}{2} - \frac{\operatorname{div} b(x)}{n} Id$$

If b is differentiable in x, then

$$b(x+h) - b(x) \simeq Db(x)h = Sb(x)h + Ab(x)h,$$

$$Ab(x) = \frac{Db(x) - Db(x)^{T}}{2} + \frac{\operatorname{div} b(x)}{n}Id$$

Reimann's Theorem

b Reimann \Leftrightarrow b is differentiable a.e., $Sb \in L^{\infty}$ and $\frac{|D(X)|}{|X|\log |X|} \leq C$

$$Sb(x) = \frac{Db(x) + Db(x)^{T}}{2} - \frac{\operatorname{div} b(x)}{n} Id$$

If b is differentiable in x, then

$$b(x+h) - b(x) \simeq Db(x)h = Sb(x)h + Ab(x)h,$$

$$Ab(x) = \frac{Db(x) - Db(x)^{T}}{2} + \frac{\operatorname{div}b(x)}{n}Id$$

$$\frac{\langle b(x+h) - b(x), h \rangle}{|h|^{2}} \simeq \frac{\langle Sb(x)h, h \rangle}{|h|^{2}} + \frac{\operatorname{div}b(x)}{n}$$

Reimann's Theorem

b Reimann \Leftrightarrow b is differentiable a.e., $Sb \in L^{\infty}$ and $\frac{|b(x)|}{|x| \log |x|} \le C$

$$Sb(x) = \frac{Db(x) + Db(x)^T}{2} - \frac{\operatorname{div} b(x)}{n}Id$$

If b is differentiable in x, then

$$b(x+h) - b(x) \simeq Db(x)h = Sb(x)h + Ab(x)h,$$

$$Ab(x) = \frac{Db(x) - Db(x)^{T}}{2} + \frac{\operatorname{div}b(x)}{n}Id$$

$$\frac{\langle b(x+h) - b(x), h \rangle}{|h|^{2}} \simeq \frac{\langle Sb(x)h, h \rangle}{|h|^{2}} + \frac{\operatorname{div}b(x)}{n}$$

$$\left| \frac{\langle b(x+h) - b(x), h \rangle}{|h|^{2}} - \frac{\langle b(x+k) - b(x), k \rangle}{|k|^{2}} \right| \simeq 2|Sb(x)|$$

Reimann fields produce Hölder flows

b Reimann
$$\Rightarrow$$
 b Zygmund \Rightarrow b Lip-Log \Rightarrow $X_t \in C_{loc}^{\alpha(t)}$.

Reimann fields produce Hölder flows

b Reimann \Rightarrow b Zygmund \Rightarrow b Lip-Log \Rightarrow $X_t \in C_{loc}^{\alpha(t)}$.

HOWEVER: *K*-QC maps are C_{loc}^{α} , for some $\alpha = \alpha(K)$.

Reimann fields produce Hölder flows

b Reimann
$$\Rightarrow$$
 b Zygmund \Rightarrow b Lip-Log \Rightarrow $X_t \in C_{loc}^{\alpha(t)}$.

HOWEVER: K-QC maps are C_{loc}^{α} , for some $\alpha = \alpha(K)$.

b Reimann
$$\Rightarrow X_t$$
 is K_t -QC $\Rightarrow X_t \in C^{\alpha}_{loc}$, $\alpha = \alpha(K_t)$.

Reimann fields produce Sobolev flows

K-QC maps are $W_{loc}^{1,p}$ for some p = p(n, K) > n.

Reimann fields produce Sobolev flows

K-QC maps are $W_{loc}^{1,p}$ for some p = p(n, K) > n.

b Reimann
$$\Rightarrow X_t$$
 is K_t -QC $\Rightarrow X_t \in W_{loc}^{1,p}$ for $p(n, K_t) > n$

Euler equation in the plane

Planar Euler equation in vorticity form

Euler equation

$$extit{EE}: egin{cases} \omega_t + v \cdot
abla \omega = 0, \ \omega(0, \cdot) = \omega_0, \ v = K * \omega \end{cases}$$

- $v(t, \cdot): \mathbb{R}^2 \to \mathbb{R}^2$ velocity field
- $\omega(t, \cdot) : \mathbb{R}^2 \to \mathbb{R}$ vorticity
- K = Convolution Kernel

$$K(z) = K(x, y) = \frac{iz}{2\pi |z|^2} \equiv \frac{1}{2\pi} \frac{(-y, x)}{x^2 + y^2}$$

Planar Euler equation in vorticity form

Euler equation

$$EE: egin{cases} \omega_t + v \cdot
abla \omega = 0, \ \omega(0, \cdot) = \omega_0, \ v = K * \omega \end{cases}$$

- $v(t, \cdot) : \mathbb{R}^2 \to \mathbb{R}^2$ velocity field
- $\omega(t,\cdot): \mathbb{R}^2 \to \mathbb{R}$ vorticity
- K = Convolution Kernel

$$K(z) = K(x, y) = \frac{iz}{2\pi |z|^2} \equiv \frac{1}{2\pi} \frac{(-y, x)}{x^2 + y^2}$$

Biot-Savart Law

$$v = K * \omega \iff \begin{cases} \operatorname{div}(v) = 0 \\ \operatorname{curl}(v) = \omega \end{cases} \iff \partial_z v = \frac{i\omega}{2}$$

Euler Flows are Hölder

Yudovich (1963)

If $\omega_0 \in L_c^{\infty}$, then there exists an unique solution $\omega \in L^{\infty}(0, T; L^{\infty})$.

Euler Flows are Hölder

Yudovich (1963)

If $\omega_0 \in L^{\infty}$, then there exists an unique solution $\omega \in L^{\infty}(0, T; L^{\infty}).$

If ω is an Yudovich solution, then $\omega(t,\cdot) \in L^{\infty}$

$$\Rightarrow \partial_z v = \frac{i\omega}{2} \in L^{\infty}$$

$$\Rightarrow \partial_{\bar{z}} v \in BMO$$

$$\Rightarrow$$
 v is Zygmund

$$\Rightarrow$$
 v is Lip – Log

$$\Rightarrow$$
 v has flow $X_t \in C^{\alpha(t)}$

Euler Flows are Hölder

Yudovich (1963)

If $\omega_0 \in L_c^{\infty}$, then there exists an unique solution $\omega \in L^{\infty}(0, T; L^{\infty})$.

If ω is an Yudovich solution, then $\omega(t,\cdot) \in L^{\infty}$

$$\Rightarrow \partial_z v = \frac{i\omega}{2} \in L^{\infty}$$

$$\Rightarrow \partial_{\bar{z}} v \in BMO$$

$$\Rightarrow$$
 v is Zygmund

$$\Rightarrow$$
 v is Lip – Log

$$\Rightarrow$$
 v has flow $X_t \in C^{\alpha(t)}$

Bahouri-Chemin (1993)

$$\alpha(t) \leq e^{-t \|\omega_0\|_{\infty}}$$

Euler Flows are Sobolev

Clop-Jylhä (2019)

If $\omega \in L^{\infty}(L^{\infty})$ is an Yudovich solution, and $v = K * \omega$, then

$$X_t \in W_{loc}^{1,p}$$

for
$$1$$

Euler Flows are Sobolev

Clop-Jylhä (2019)

If $\omega \in L^{\infty}(L^{\infty})$ is an Yudovich solution, and $v = K * \omega$, then

$$X_t \in W^{1,p}_{loc}$$

for
$$1$$

- For only small t
- Optimal if $t \rightarrow 0$
- t large???

Optimal Sobolev regularity of the flows

- b Reimann: OK for all t > 0
 - $Q \Rightarrow QS$
 - $QS \Rightarrow QC$
 - Astala 1994 (Optimal regularity QC)

•
$$X_t \in W_{loc}^{1,p}$$
 if $p < \frac{2}{1 - \exp(-2\int_0^t \|\partial_{\bar{z}}v\|_{\infty}ds)}$

- v Euler:
 - Conjecture : $X_t \in W_{loc}^{1,p}$ if $p < \frac{2}{1 \exp\left(-2\int_0^t \|\partial_z v\|_{\infty} ds\right)}$
 - CJ 2019 : Conjecture true if $t \rightarrow 0^+$
 - OPEN PROBLEM: t large???
 - Conjecture + Sobolev embedding ⇒ Bahouri Chemin

GOAL: To find analogue of Q for $\partial_z v \in L^{\infty}$ and its geometric interpretation.

$\overline{\mathcal{Q}}$ class

We say that a continuous planar vector field $v \in \overline{\mathcal{Q}}$ if

$$\left| \frac{\langle v(x+h) - v(x), \bar{h} \rangle}{|h|^2} - \frac{\langle v(x+k) - v(x), \bar{k} \rangle}{|k|^2} \right| \le C$$

for all $x \in \mathbb{R}^2$, $t \in [0, T]$ and $|h| = |k| \neq 0$.

$\overline{\mathcal{Q}}$ class

We say that a continuous planar vector field $v \in \overline{\mathcal{Q}}$ if

$$\left| \frac{\langle v(x+h) - v(x), \bar{h} \rangle}{|h|^2} - \frac{\langle v(x+k) - v(x), \bar{k} \rangle}{|k|^2} \right| \le C$$

for all $x \in \mathbb{R}^2$, $t \in [0, T]$ and $|h| = |k| \neq 0$.

CS 2021

Let $v:[0,T]\times\mathbb{R}^2\to\mathbb{R}^2$ be continuous. TFAE:

- $0 v \in \overline{\mathcal{Q}}$
- 2 It is true that:
 - $\frac{|v(t,x)|}{|x| \log |x|} \le C$ when $|x| \to \infty$
 - v is differentiable a.e. and $\|\partial_z v(t,\cdot)\|_{\infty} \le C$ for some $C \ge 0$

\mathcal{R}_{θ} class

Given $\theta \in [0, 2\pi]$, we say that a continuous planar vector field $v \in \mathcal{R}_{\theta}$, if

$$\left| \frac{\langle v(x+h) - v(x), e^{i\theta} k \rangle - \langle v(x+k) - v(x), e^{i\theta} h \rangle}{|h| |k|} \right| \le C$$

for $x \in \mathbb{R}^2$, $t \in [0, T]$, and $|h| = |k| \neq 0$.

\mathcal{R}_{θ} class

Given $\theta \in [0, 2\pi]$, we say that a continuous planar vector field $v \in \mathcal{R}_{\theta}$, if

$$\left| \frac{\langle v(x+h) - v(x), \mathbf{e}^{i\theta} k \rangle - \langle v(x+k) - v(x), \mathbf{e}^{i\theta} h \rangle}{|h| |k|} \right| \le C$$

for $x \in \mathbb{R}^2$, $t \in [0, T]$, and $|h| = |k| \neq 0$.

CS 2021

Let $v:[0,T]\times\mathbb{R}^2\to\mathbb{R}^2$ be continuous. TFAE:

- **1** $v \in \mathcal{R}_{\theta}$ for all $\theta \in [0, 2\pi]$
- It is true that:
 - $\frac{|v(t,x)|}{|x| \log |x|} \le C$ when $|x| \to \infty$
 - v is differentiable a.e. and $\|\partial_z v(t,\cdot)\|_{\infty} \le C$ for some $C \ge 0$

R₀ class

- $\bullet \ \overline{\mathcal{Q}} = \bigcap_{0 \le \theta \le 2\pi} \mathcal{R}_{\theta} = \mathcal{R}_{0} \cap \mathcal{R}_{\frac{\pi}{2}}$
- $R_{\theta}(\theta \neq 0)$, difficult to extend to \mathbb{R}^n , $n \geq 2$
- \bullet More room to play with \mathcal{R}_0

R₀ class

- $\bullet \ \overline{\mathcal{Q}} = \bigcap_{0 \le \theta \le 2\pi} \mathcal{R}_{\theta} = \mathcal{R}_{0} \cap \mathcal{R}_{\frac{\pi}{2}}$
- $R_{\theta}(\theta \neq 0)$, difficult to extend to \mathbb{R}^n , $n \geq 2$
- ullet More room to play with \mathcal{R}_0

CS 2021

If $n \ge 2$ and $v \in \mathcal{R}_0$ then the distribution

$$Dv - D^tv$$

is an L^{∞} function.

R₀ class

- $\bullet \ \overline{\mathcal{Q}} = \bigcap_{0 \le \theta \le 2\pi} \mathcal{R}_{\theta} = \mathcal{R}_{0} \cap \mathcal{R}_{\frac{\pi}{2}}$
- $R_{\theta}(\theta \neq 0)$, difficult to extend to \mathbb{R}^n , $n \geq 2$
- \bullet More room to play with \mathcal{R}_0

CS 2021

If $n \ge 2$ and $v \in \mathcal{R}_0$ then the distribution

$$DV - D^tV$$

is an L^{∞} function.

Remarks:

- \mathcal{R}_0 is Lip-Log and grows like $|x| \log |x|$
- ullet \mathcal{R}_0 is not differentiable a.e. in general
- $n = 2 \Rightarrow Dv D^t v \equiv \operatorname{curl}(v) = \operatorname{Im}(\partial_z v)$

CS 2021

Let $n \ge 2$ and v be continuous.

 $v \in \mathcal{R}_0 + \operatorname{div}(v) \in L^{\infty} \Rightarrow v$ differentiable a.e. and

$$Av = \left(\frac{Dv - D^tv}{2} + \frac{\operatorname{div}(v)}{n}\operatorname{Id}\right) \in L^{\infty}$$

- 2 If
- $\frac{|v(x)|}{|x|\log|x|} \le C$ when $|x| \to \infty$
- $Av \in L^{\infty}$

then $v \in \mathcal{R}_0$.

CS 2021

Let $n \ge 2$ and v be continuous.

 $v \in \mathcal{R}_0 + \operatorname{div}(v) \in L^{\infty} \Rightarrow v$ differentiable a.e. and

$$Av = \left(\frac{Dv - D^tv}{2} + \frac{\operatorname{div}(v)}{n}\operatorname{Id}\right) \in L^{\infty}$$

- 4 If
- $\frac{|v(x)|}{|x|\log|x|} \le C$ when $|x| \to \infty$
- $Av \in L^{\infty}$

then $v \in \mathcal{R}_0$.

- If $\operatorname{div}(v) \in L^{\infty}$, then $v \in \mathcal{R}_0 \iff Dv D^t v \in L^{\infty}$
- $\operatorname{div}(v) \in L^p, p > n$
- $n = 2 \Rightarrow Av \equiv \partial_z v \equiv \operatorname{div}(v) + i \operatorname{curl}(v)$

Thanks for your attention