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Introduction Motivation

Supervised Learning These Days

• Nowadays, there is an increasing amount of data available.
• These data can be a powerful source to extract automatically information.
• The huge amount of data implies a lot of spurious information that can lead to erroneous conclusions.

Definition (Supervised Learning)
The machine learning task of inferring a function from labelled training data.

• The problem is usually defined by a training set D = {(xi, yi)}p
i=1, where xi ∈ Rd and yi ∈ R (regression)

or yi ∈ {c1, . . . , cl} (classification).
• The objective is to approximate an unknown function f such that f (xi) ≈ yi through a certain model.

I This is usually stated as an optimization problem.
I The model is defined by some parameters.
I The parameters are selected to minimize a certain criterion.

• Is it enough to design the model just minimizing the error with respect to the targets?
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Introduction Motivation

Motivational Examples (I)
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Introduction Motivation

Motivational Examples (II)

Example (“Ill-Posed” Problem)
• Regression dataset E2006-log1p of the LIBSVM repository.

I 16 087 patterns for training, 3308 patterns for testing.
I 4 272 227 features.

• Even the simplest models (linear) will have 220 free parameters per pattern.
• The complexity of the model has to be controlled.
• Probably not all the features will be relevant.

I A model based on a subset of the features seems a sensible option.
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Introduction Motivation

Bias–Variance and Regularization

Bias–Variance Trade-Off
Bias Difference between the expected prediction of the model and the correct value to be predicted.

Variance Variability of a model prediction for a given data point.

Definition (Regularization)
The set of techniques that attempt to improve the estimates by biasing them away from their sample-based
values towards values that are deemed to be more “physically plausible”.

• The variance of the model is reduced to the expense of a potentially higher bias.
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Introduction Motivation

Over-Fitting and Under-Fitting (I)

Over-Fitting
• The resultant model is overly complex to describe the data under study.

I Limited number of training data.
I Learning machine too complex (many free parameters).
I Large variance.

Under-Fitting
• The resultant model is overly simple to describe the data under study.

I Learning machine too simple.
I Large bias.
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Over-Fitting and Under-Fitting (II): Example
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Introduction Regularized Learning

Regularized Learning

• Regularized learning consists in models trained by optimizing an objective function F of the form:

F = ED + γR .

• The main term of the objective function is an error term ED.
I It represents how well the model fits the training data D.
I Examples: mean squared error (regression) and minus (log)likelihood (classification).

• The additional term is a regularization term R.
I It penalizes the complexity of the model, with several purposes:

Avoid over-fitting.
Introduce prior knowledge.
Enforce certain desirable properties.

• γ is a regularization parameter.
I It is responsible for the balance between accuracy and complexity.
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Common Regularization Functions Introduction

Introduction

• An approach to regularize the models is needed.
• In the case of Regularized Learning, it is expressed as some function of the model.

I The model is defined by its parameters.
I A first idea is just to impose “simplicity” through the parameters.
I Indeed, in many models the information flows multiplied by the parameters.

Linear Models.
Neural Networks.

• Controlling the norm of the parameters looks like a sensible approach.
I Which norm should be used?
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Common Regularization Functions `2 Norm

`2 Norm (I)

• Classical term, also known as Tikhonov regularization.
• It corresponds to the sum of the squares of the entries:

R(x) = ‖x‖2
2 =

d∑
i=1

x2
i .

• It controls the complexity of the model.
• It is differentiable, and hence easy to optimize.
• It pushes the entries towards zero.
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Common Regularization Functions `2 Norm

`2 Norm (II)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

0

1

2

γ

x i
`2 Regularizer

C. M. Alaíz (EPS–UAM) Regularized Learning Tuesday 19th December, 2017 10 / 51



 

Common Regularization Functions `1 Norm

`1 Norm (I)

• It corresponds to the sum of the absolute values of the entries:

R(x) = ‖x‖1 =

d∑
i=1

|xi| .

• It controls the complexity of the model.
• The absolute value is non-differentiable around zero, and hence this term is more involved to optimize.
• It pushes the entries towards zero enforcing some of them to be identically zero.

I It enforces sparsity.
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Common Regularization Functions `1 Norm

`1 Norm (II)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

0

1

2

γ

x i
`1 Regularizer

C. M. Alaíz (EPS–UAM) Regularized Learning Tuesday 19th December, 2017 12 / 51



 

Common Regularization Functions `2,1 Norm

`2,1 Norm (I): Framework

• Each x is composed by dg groups of df =
d
dg

features each group:

x =
(
x1,1, . . . , x1,df , . . . , xdg,1, . . . , xdg,df

)>
,

where xg,f is the f -th entry of the g-th group.
I This framework can be easily extended to groups of different sizes.

• The variable x can be seen also as a matrix with df rows and dg columns.
• The regularizers should respect this structure.
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Common Regularization Functions `2,1 Norm

`2,1 Norm (II)

• The regularizer is the `2,1 norm:

R(x) = ‖x‖2,1 =

dg∑
g=1

√√√√ df∑
f=1

x2
g,f ,

which is just the `1 norm of the `2 norm of the different groups.
• It controls the complexity of the model.
• The `2 norm (non-squared) is non-differentiable around zero, and hence this term is more involved to

optimize.
• It pushes the groups towards zero enforcing some of them to be identically zero.

I It enforces sparsity at group level.
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Common Regularization Functions `2,1 Norm

`2,1 Norm (III)
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Common Regularization Functions Transformed Norms

Transformed Norms: Total Variation (I)

• The Total Variation is a special family of regularizers that penalize the differences between adjacent
entries.
I It assumes some spatial location.

• It is based on transforming the variable through a differentiating matrix D, with Di,i = −1, Di,i+1 = 1
and Di,j = 0 elsewhere.

• The TV1 regularizer penalizes the `1 norm of the differences:

R(x) = TV1(x) = ‖Dx‖1 =
d∑

i=2

|xi − xi−1| .

I The `1 norm enforces sparsity.
I Some of the terms xi − xi−1 are zero, and hence xi = xi−1.
I The vector x is piece-wise constant.
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Common Regularization Functions Transformed Norms

Transformed Norms: Total Variation (II)
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Common Regularization Functions Transformed Norms

Transformed Norms: Others

• There are several other approaches based on the norm of a transformed vector, ‖Mx‖.

Graph-Based Total Variation
• An extension of the Total Variation regularizer.
• The difference between any pair of entries connected according to a graph are penalized.
• The classical Total Variation is recovered when the graph is a chain.
• When the graph is a lattice, it becomes a two-dimensional Total Variation.

Trend Filtering
• Similar idea than Total Variation but for higher degrees.
• Instead of penalizing the first differences, higher orders are penalized.
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Common Regularization Functions Combinations

Combinations

• The previous regularizers can be combined to enforce several structures at the same time.

`1 + `2

• Advantages of the `1 and `2 approaches combined.
• The `2 term controls the overall complexity.
• The `1 term imposes sparsity.

`1 + TV1

• Some of the entries are identically zero.
• The remaining entries tend to be piece-wise constant.
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Regularized Linear Models Linear Regression Models

Linear Models

• There exists an increasing interest in problems with a big amount of data (big data), in terms of:
I A high dimensionality.
I A large number of patterns (samples).

• This has resulted in the revival of the linear models.

• Notation:
w Parameters (weights) of the model, w ∈ Rd.
X Matrix of inputs, X ∈ Rp×d; xi is the input vector of the i-th pattern.
y Vector of real outputs, y ∈ Rp.
ỹ Vector of predicted outputs, ỹ ∈ Rp.

• For an input vector x ∈ Rd, the predicted output is ỹx = x>w.
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Regularized Linear Models Linear Regression Models

Linear Models: Mean Squared Error

• For regression problems, the most common choice for ED is the Mean Squared Error (MSE):

MSE =
1
2p

‖ỹ − y‖2
2 =

1
2p

p∑
i=1

(ỹi − yi)
2
.

• In the case of a linear model with weights w:

ED(w) = MSE(w) =
1
2p

‖Xw − y‖2
2 .

• This term is differentiable, with Lipschitz gradient:

∇ED(w) =
1
p
(
X>Xw − Xy

)
.
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Regularized Linear Models Ridge Regression

Ridge Regression (I)

• This linear model uses the Tikhonov regularization:

R(w) =
1
d
‖w‖2

2 =
1
d

d∑
i=1

w2
i .

• The objective function is:
F(w) = MSE(w) +

γ

2d
‖w‖2

2 .

• The complexity of the model is controlled, but no structure is imposed.
• The resultant model typically depends on all the variables.
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Regularized Linear Models Ridge Regression
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Regularized Linear Models Lasso

Lasso (I)

• This linear model uses as regularizer the `1 norm:

R(w) =
1
d
‖w‖1 =

1
d

d∑
i=1

|wi| .

• The objective function is:
F(w) = MSE(w) +

γ

d
‖w‖1 .

• This regularizer enforces some of the coefficient to be identically zero.
I The model performs an implicit feature selection, the features with coefficient equal to zero can be

discarded.
I It also avoids the over-fitting.
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Regularized Linear Models Lasso

Lasso (II)
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Regularized Linear Models Elastic Net

Elastic Net (I)

• This linear model combines the advantages of the `1 norm with those of the `2 norm.
• It is more stable than Lasso regarding feature selection.
• The regularizer is therefore a combination of both:

R(w) =
1
d
‖w‖1 +

γ′2
2d

‖w‖2
2 .

• Thus the objective function is:

F(w) = MSE(w) +
γ1

d
‖w‖1 +

γ2

2d
‖w‖2

2 .
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Regularized Linear Models Elastic Net

Elastic Net (II)
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Regularized Linear Models Group Variants

Group Variants

• In certain circumstances, some features are grouped as corresponding to the same source.
I For example, different meteorological variables (wind speed, temperature) corresponding to the

same geographical point.
• A grouping effect in the features is thus desirable.

I All the features of a group should be active, or inactive, at the same time.
I But they are different features, and they can have different coefficients.

• In this way, relevant groups can be detected.
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Regularized Linear Models Group Variants

Group Lasso and Group Elastic Net

• Group versions of the previous models can be formulated.

Group Lasso Model
• This linear model uses as regularizer the `2,1 norm, R(w) = 1

d‖w‖2,1.
• The objective function is:

F(w) = MSE(w) +
γ

d
‖w‖2,1 .

Group Elastic Net Model
• The regularizer is a combination of the `2,1 norm and the `2 norm.
• The objective function is:

F(w) = MSE(w) +
γ1

d
‖w‖2,1 +

γ2

2d
‖w‖2

2 .
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Regularized Linear Models Fused Lasso

Fused Lasso

• This linear model uses as regularizer the `1 norm and the TV1 regularizer:

R(w) =
1
d
‖w‖1 +

γ2′

d
TV1(w) .

• It assumes that the features have some spatial location, and that they are ordered according to it.
I A sensible model should assign similar coefficients to adjacent features.

• The coefficients tend to be sparse and piece-wise constant.
• The objective function is:

F(w) = MSE(w) +
γ1

d
‖w‖1 +

γ2

d
TV1(w) .
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Regularized Linear Models Illustration

Illustration
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Regularized Linear Models Illustration

Illustration
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Illustration
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Other Regularization Models and Approaches Application to Other Models

Application to Other Models (I)

• The regularization terms defined above can be used for many other models.
I For example, for classification linear models by changing only the error term, to get regularized

logistic regression.
• They are specially well suited when the parameters can be interpreted as weights.

I The correspondence between the inputs and the parameters is more clear.
• Depending on the optimization framework, adding these terms can be complex.

I Proximal Methods provide a useful modular approach.
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Other Regularization Models and Approaches Application to Other Models

Application to Other Models (II): Regularized Multilayer Perceptron

• The MLP can be too complex if the number of hidden units and/or layers is large.
I It will tend to over-fit the data.
I Some form of regularization is needed.

• The previously defined regularization functions can be used.
• When the `2 norm is used, it becomes the classical weight decay term.

I This term pushes the weights towards zero at each gradient-descent step.
• When the `1 norm is used some of the weights go to zero.

I The network gets a structure based on the data.
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Other Regularization Models and Approaches SVMs

Support Vector Machines

• The SVMs are regularized by their own definition.
I Maximizing the margin corresponds to minimizing ‖w‖2

2.
I Similar to the Tikhonov regularization.

• In the classification case, the error term is encoded in the constraints.
I For hard-margin SVMs, no errors are allowed.
I For soft-margin SVMs, the errors are minimized in the objective function.

• The regularization parameter γ is substituted by C.

min
w,b

{
1
2
‖w‖2

2 + C
p∑

i=1

ξi

}
s.t. yi

(
w>xi + b

)
≥ 1 − ξi, ξi ≥ 0 .
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Other Regularization Models and Approaches Generation of Patterns

Generation of Patterns

Generation of Patterns
• The over-fitting problem often arises when there are no enough training data.
• A possible solution is to generate new samples.

I Naive approach: repeat the same samples corrupting them with some noise.
I Advanced approaches: try to fit the distribution of the data, or use some expert knowledge about the

possible corruptions (such as rotations, dilations...).

Relation with Regularization
• The larger number of patterns reduces the variance of the model.
• This can be considered as a form of regularization.
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Overview of Optimization Motivation

Optimization

Definition (Optimize)
To make the best or most effective use of (a situation or resource).

• An optimization problem consists in finding the best element of a certain space S with respect to some
criteria given by an objective function F :

min
x∈S

{F(x)} .

• Many learning machines are trained by solving an optimization problem.
I The minimization is done over the parameters that define the model.
I The “best” model according to some criteria and data is obtained:

min
p pars

{F(p)} .

I Examples: Linear Models, SVMs, Multilayer Perceptrons...
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Overview of Optimization Motivation

Examples (I)

Example (Ridge Regression)
• Parameters w ∈ Rd, data D =

{
X ∈ Rp×d, y ∈ Rp}.

• ED(w) = 1
2p‖Xw − y‖2

2 ; R(w) = 1
2d‖w‖2

2 = 1
2d

∑d
i=1 w2

i .

Example (Multilayer Perceptron with Weight Decay)
• Parameters w ∈ RM , data D =

{
X ∈ Rp×d, y ∈ Rp}.

• ED(w) = ‖fMLP(X,w)− y‖2
2 ; R(w) = 1

2d‖w‖2
2 = 1

2
∑d

i=1 w2
i .

Example (Lasso)
• Parameters w ∈ Rd, data D =

{
X ∈ Rp×d, y ∈ Rp}.

• ED(w) = 1
2p‖Xw − y‖2

2 ; R(w) = 1
d‖w‖1 = 1

d
∑d

i=1|wi|.

C. M. Alaíz (EPS–UAM) Regularized Learning Tuesday 19th December, 2017 37 / 51



 

Overview of Optimization Motivation

Examples (II)

Example (Ridge Regression)

• Closed-form solution: w∗ =
(
X>X + γp

d I
)−1X>y.

Example (Multilayer Perceptron with Weight Decay)

• Iterative solution: w(k+1) = w(k) − λ(k)∇ED
(
w(k))− λ(k) γ

d w(k).
• The current solution is updated with a gradient-descent step.

Example (Lasso)
• R(w) is not differentiable, its gradient is not defined at every point.
• An alternative to gradient-descent is needed:

I Proximity operator proxR.
Between the gradient-descent step and the projection.

I Iterative solution: w(k+1) = proxλ(k)γR
(
w(k) − λ(k)∇ED

(
w(k))).
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Overview of Optimization Convex Optimization

Convex Optimization

Definition (Convexity)
An extended real function f is called convex if dom f is a convex set, and ∀x, y ∈ E and ∀t ∈ [0, 1]

f (tx + (1 − t)y) ≤ tf (x) + (1 − t)f (y) .

x y

Convex function.

x y

Non-convex function.

• The convexity of a problem guarantees the uniqueness of the minimum.
I Regularized learning is often based on convex formulations.
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Overview of Optimization Convex Optimization

Gradient-Based Optimization

• If the objective function F is convex and differentiable, a minimum x∗ is characterized by the zeros of
the gradient:

∇F(x∗) = 0 .

I In some cases, this equation has a closed-form solution.
I The classical gradient-descent step can also be applied:

x(k+1) = x(k) − λ(k)∇F
(

x(k)
)

.

I There are other methods that use higher order information (e.g. Newton).
I There are projected methods to deal with constraints.

• This only makes sense for differentiable functions.
I It is limited to simple cases.
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Overview of Optimization Convex Optimization

Ad Hoc Methods

• There are specific algorithms for many regularized models.

SVMs
• The dual problem is usually solved.
• The most popular approach is SMO, a coordinate descent method that optimizes over two dual variables

at each iteration.

Lasso
• The problem is non-differentiable.
• When only one variable is considered, there exists a closed-form solution.

I Coordinate descent methods are often the choice.

• A general framework can make the regularized model design easier.
I Proximal Methods.
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Overview of Optimization Proximity Operator

Proximity Operator (I)

Definition (Proximity Operator)
For a function f ∈ Γ0(E), its proximity operator, proxf , is the function defined as the solution, at each point
x ∈ E, of the problem:

proxf (x) = argmin
x̂∈E

{ 1
2‖x̂ − x‖2 + f (x̂)

}
.

• It is also the resolvent of the subdifferential.
• It can be interpreted as a generalization of the gradient-descent step, and of the projection operator.
• The fixed points of the proximity operator are the minima of the objective function.
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Overview of Optimization Proximity Operator

Proximity Operator (II): Some Examples

Example (Proximity Operator of the `1 Norm.)
• Absolute value function, f : R → R, λf (x) = λ|x|.

proxλf (x) = softλ (x) = sign (x) (|x| − λ)
+
=


x + λ if x ≤ −λ ,

0 if − λ ≤ x ≤ +λ ,

x − λ if x ≥ +λ .

−λ +λ0

Case 1 Case 3 Case 2

C. M. Alaíz (EPS–UAM) Regularized Learning Tuesday 19th December, 2017 43 / 51



 

Overview of Optimization Proximity Operator

Proximity Operator (III): Some Examples

Example (Proximity Operator of the `2 Norm.)
• Euclidean (`2) norm function, f : Rd → R, λf (x) = λ‖x‖2.

proxλf (x) = x
(

1 − λ

‖x‖2

)+

=

{
0 if ‖x‖2 ≤ λ ,

x
(

1 − λ
‖x‖2

)
if ‖x‖2 ≥ λ .

λ0

Case 1 Case 2
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Proximity Point Algorithm

• A first approach to minimize a certain function f ∈ Γ0(E) is to iterate the proximity operator.

Proximal Point
Input: f ∈ Γ0(E);
Output: x(k) ' x∗ = argminx∈E {f (x)};
Initialization: x(0) ∈ E;

set λ(k) ∈
(
λmin, λmax);

for k = 0, 1, . . . do
x(k+1) ← prox

λ(k) f

(
x(k)

)
;

end for

• This method requires the computation of the proximity operator.
I It is an optimization problem itself.

• Alternative: Proximal Methods.
I Exploit the structure of the problem.
I Proximal Methods are based precisely on a convenient splitting of the objective function.
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ISTA

• The Iterative Shrinking–Thresholding Algorithm (ISTA) is a method to minimize the sum of a smooth
and a non-smooth functions.

ISTA
Input: f1 ∈ Γ0(E); f2 convex with∇f2 β-Lipschitz;
Output: x(k) ' x∗ = argminx∈E {f1(x) + f2(x)};
Initialization: x(0) ∈ E;

for k = 0, 1, . . . do
x(k+1) ← prox 1

β
f1

(
x(k) − 1

β∇f2
(

x(k)
))

;

end for

• There are approaches to estimate β automatically.
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FISTA

• The Fast ISTA (FISTA) is a modification that accelerates the convergence.
• It is based on the improved gradient method of Nesterov.

FISTA
Input: f1 ∈ Γ0(E); f2 convex with∇f2 β-Lipschitz;
Output: x(k) ' x∗ = argminx∈E {f1(x) + f2(x)};
Initialization: x(0) ∈ E;

y(1) ← x(0); t(0) ← 1;
for k = 0, 1, . . . do

x(k) ← prox 1
β

f1

(
y(k) − 1

β∇f2
(

y(k)
))

;

t(k+1) ← 1
2

(
1 +

√
1 + 4

(
t(k)

)2
)

;

y(k+1) ← x(k) + t(k)−1
t(k+1)

(
x(k) − x(k−1)

)
;

end for

• There are approaches to estimate β automatically.
• The current interest on Nesterov accelerations has produced several recent improvements.
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Other Proximal Methods

• There are many more Proximal Methods.

Douglas–Rachford
• Method to minimize the sum of two non-smooth functions.
• It is based on the iteration of a fixed equation.

Dykstra
• Method to minimize the sum of two non-smooth functions, f1 and f2, plus a deviation term that represent

the distance to a reference point, 1
2‖· − r‖2:

min
x∈E

{ 1
2‖x − r‖2 + f1(x) + f2(x)

}
.

• The unique solution is precisely proxf1+f2 , which can be hard to compute directly.
• It therefore allows to compute complex proximity operator decomposing them into “easier” ones.
• There are extensions to compute the proximity operator of the sum of an arbitrary number of functions.
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FISTA for Regularized Linear Models (I): Gradients and Proximity Operators

MSE

f2(w) = MSE(w) =⇒ ∇f2(w) =
1
p

(
X>Xw − Xy

)
.

MSE + `2 Norm

f2(w) = MSE(w) + γ2

2d
‖w‖2

2 =⇒ ∇f2(w) =
1
p

(
X>Xw − Xy

)
+

γ2

d
w .

`1 Norm

f1(w) =
γ

d
‖w‖1 =⇒

(
proxλf1 (w)

)
i
= sign (wi)

(
|wi| − λ

γ

d

)+

.

`2,1 Norm

f1(w) =
1
d
‖w‖2,1 =⇒

(
proxλf1 (w)

)
g,f

= sign (wg,f )

(
|wg,f | − λ

γ

d‖wg‖2

)+

.
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FISTA for Regularized Linear Models (II)

Model ED(w) γR(w) Solution

RR 1
2p‖Xw− y‖2

2
γ
2d ‖w‖

2
2 w∗ =

(
X>X + γp

d I
)−1

X>y
LA 1

2p‖Xw− y‖2
2

γ
d ‖w‖1 FISTA

ENet 1
2p‖Xw− y‖2

2
γ1
d ‖w‖1 +

γ2
2d ‖w‖

2
2 FISTA

GL 1
2p‖Xw− y‖2

2
γ
d ‖w‖2,1 FISTA

GENet 1
2p‖Xw− y‖2

2
γ1
d ‖w‖2,1 +

γ2
2d ‖w‖

2
2 FISTA

FL 1
2p‖Xw− y‖2

2
γ1
d ‖w‖1 +

γ2
d TV1(w) FISTA

Model f1

(
proxλf1

(w)
)

g,f

LA γ
d ‖w‖1 sign (wg,f )

(
|wg,f | − λ γ

d
)+

ENet γ1
d ‖w‖1 sign (wg,f )

(
|wg,f | − λ

γ1
d
)+

GL γ
d ‖w‖2,1 sign (wg,f )

(
|wg,f | − λ γ

d‖wg‖2

)+

GENet γ1
d ‖w‖2,1 sign (wg,f )

(
|wg,f | − λ

γ1
d‖wg‖2

)+

FL γ1
d ‖w‖1 +

γ2
d TV1(w) Dual problem + Soft-thresholding
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Conclusions

Conclusions

• Regularized Learning permits to adapt models avoiding over-fitting, inducing a certain structure and/or
using prior knowledge.

• Regularized models minimize two terms: an error term and a regularization term.
• Several regularization functions:

I `2 Norm.
I `1 Norm.
I `2,1 Norm.
I Transformations, combinations...

• The regularizers allow to define a family of regularized linear models, but it can also be extended to
other types of learning machines.

• There are other approaches: SVMs, pattern generation, ensembles...
• A general framework is required to solve non-differentiable convex problems: proximal methods.
• The gradient descent step is substituted by the proximity operator.
• Several algorithms allow to take advantage of the problem structure.
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Questions and Comments

Regularized Learning: When Data Are Not Enough

Carlos María Alaíz Gudín

Thank you for your attention.
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