Regularized Learning: When Data Are Not Enough FuzzyMAD 2017

Carlos María Alaíz Gudín

Escuela Politécnica Superior Universidad Autónoma de Madrid

Tuesday 19th December, 2017

Introduction

- **2** Common Regularization Functions
- **3** Regularized Linear Models
- **4** Other Regularization Models and Approaches
- **(5)** Overview of Optimization

6 Conclusions

Introduction

Motivation Regularized Learning

Supervised Learning These Days

- Nowadays, there is an increasing amount of data available.
- These data can be a powerful source to extract automatically information.
- The huge amount of data implies a lot of spurious information that can lead to erroneous conclusions.

Definition (Supervised Learning)

The machine learning task of inferring a function from labelled training data.

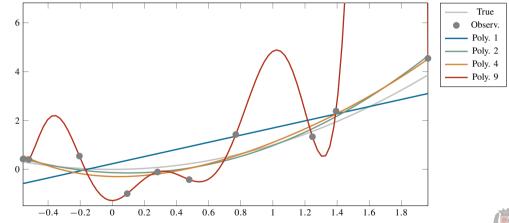
- The problem is usually defined by a training set $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^p$, where $x_i \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$ (regression) or $y_i \in \{c_1, \ldots, c_l\}$ (classification).
- The objective is to approximate an unknown function f such that $f(x_i) \approx y_i$ through a certain model.
 - ► This is usually stated as an optimization problem.
 - ► The model is defined by some parameters.
 - ▶ The parameters are selected to minimize a certain criterion.

• Is it enough to design the model just minimizing the error with respect to the targets?

Introduction Motivation

Motivational Examples (I)

POLYNOMIAL MODELS



3

х

Motivational Examples (II)

UAM

Example ("Ill-Posed" Problem)

- Regression dataset E2006-log1p of the LIBSVM repository.
 - 16087 patterns for training, 3308 patterns for testing.
 - 4 272 227 features.
- Even the simplest models (linear) will have 220 free parameters per pattern.
- The complexity of the model has to be controlled.
- Probably not all the features will be relevant.
 - A model based on a subset of the features seems a sensible option.

Bias-Variance and Regularization

Bias–Variance Trade-Off

Bias Difference between the expected prediction of the model and the correct value to be predicted.

Variance Variability of a model prediction for a given data point.

Definition (Regularization)

The set of techniques that attempt to improve the estimates by biasing them away from their sample-based values towards values that are deemed to be more "physically plausible".

• The variance of the model is reduced to the expense of a potentially higher bias.

Over-Fitting and Under-Fitting (I)

Over-Fitting

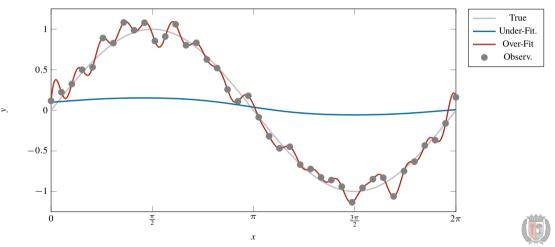
- The resultant model is overly complex to describe the data under study.
 - Limited number of training data.
 - Learning machine too complex (many free parameters).
 - Large variance.

Under-Fitting

- The resultant model is overly simple to describe the data under study.
 - Learning machine too simple.
 - Large bias.

Introduction Motivation

Over-Fitting and Under-Fitting (II): Example



C. M. Alaíz (EPS-UAM)

Regularized Learning

• Regularized learning consists in models trained by optimizing an objective function \mathcal{F} of the form:

 $\mathcal{F} = \mathcal{E}_{\mathcal{D}} + \gamma \mathcal{R} \ .$

- The main term of the objective function is an error term $\mathcal{E}_{\mathcal{D}}$.
 - It represents how well the model fits the training data \mathcal{D} .
 - Examples: mean squared error (regression) and minus (log)likelihood (classification).
- The additional term is a regularization term \mathcal{R} .
 - ▶ It penalizes the complexity of the model, with several purposes:
 - Avoid over-fitting.
 - Introduce prior knowledge.
 - Enforce certain desirable properties.
- γ is a regularization parameter.
 - ▶ It is responsible for the balance between accuracy and complexity.

Contents: Common Regularization Functions

2 Common Regularization Functions

Introduction ℓ_2 Norm

 ℓ_1 Norm

 $\ell_{2,1}$ Norm Transformed Norms Combinations

Introduction

- An approach to regularize the models is needed.
- In the case of **Regularized Learning**, it is expressed as some function of the model.
 - The model is defined by its parameters.
 - A first idea is just to impose "simplicity" through the parameters.
 - ▶ Indeed, in many models the information flows multiplied by the parameters.
 - Linear Models.
 - Neural Networks.
- Controlling the norm of the parameters looks like a sensible approach.
 - Which norm should be used?

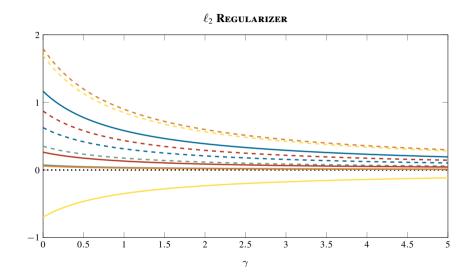
ℓ_2 Norm (I)

- Classical term, also known as Tikhonov regularization.
- It corresponds to the sum of the squares of the entries:

$$\mathcal{R}(x) = \|x\|_2^2 = \sum_{i=1}^d x_i^2$$
.

- It controls the complexity of the model.
- It is differentiable, and hence easy to optimize.
- It pushes the entries towards zero.

ℓ_2 Norm (II)



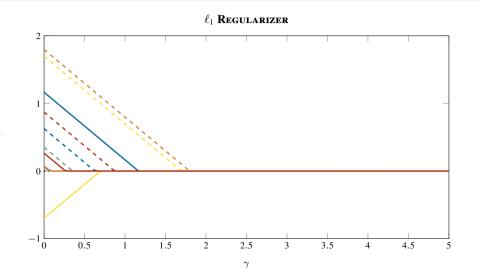
ℓ_1 Norm (I)

• It corresponds to the sum of the absolute values of the entries:

$$\mathcal{R}(x) = \|x\|_1 = \sum_{i=1}^d |x_i|$$
.

- It controls the complexity of the model.
- The absolute value is non-differentiable around zero, and hence this term is more involved to optimize.
- It pushes the entries towards zero enforcing some of them to be identically zero.
 - ► It enforces sparsity.

ℓ_1 Norm (II)



$\ell_{2,1}$ Norm (I): Framework

• Each *x* is composed by d_g groups of $d_f = \frac{d}{d_g}$ features each group:

$$x = \left(x_{1,1}, \ldots, x_{1,d_f}, \ldots, x_{d_g,1}, \ldots, x_{d_g,d_f}\right)^{\top}$$
,

where $x_{g,f}$ is the *f*-th entry of the *g*-th group.

- ▶ This framework can be easily extended to groups of different sizes.
- The variable x can be seen also as a matrix with d_f rows and d_g columns.
- The regularizers should respect this structure.

$\ell_{2,1}$ Norm (II)

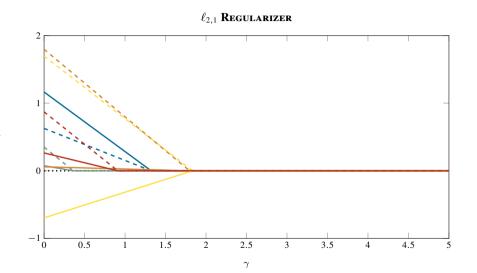
• The regularizer is the $\ell_{2,1}$ norm:

$$\mathcal{R}(x) = \|x\|_{2,1} = \sum_{g=1}^{d_g} \sqrt{\sum_{f=1}^{d_f} x_{g,f}^2} \; \; ,$$

which is just the ℓ_1 norm of the ℓ_2 norm of the different groups.

- It controls the complexity of the model.
- The ℓ_2 norm (non-squared) is non-differentiable around zero, and hence this term is more involved to optimize.
- It pushes the groups towards zero enforcing some of them to be identically zero.
 - ► It enforces sparsity at group level.

$\ell_{2,1}$ Norm (III)



Transformed Norms: Total Variation (I)

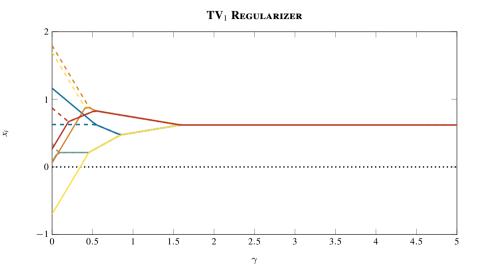
- The Total Variation is a special family of regularizers that penalize the differences between adjacent entries.
 - ► It assumes some spatial location.
- It is based on transforming the variable through a differentiating matrix D, with $D_{i,i} = -1$, $D_{i,i+1} = 1$ and $D_{i,j} = 0$ elsewhere.
- The TV_1 regularizer penalizes the ℓ_1 norm of the differences:

$$\mathcal{R}(x) = \mathrm{TV}_1(x) = \|Dx\|_1 = \sum_{i=2}^d |x_i - x_{i-1}|$$
.

- The ℓ_1 norm enforces sparsity.
- Some of the terms $x_i x_{i-1}$ are zero, and hence $x_i = x_{i-1}$.
- The vector x is piece-wise constant.

IIAM

Transformed Norms: Total Variation (II)



Transformed Norms: Others

• There are several other approaches based on the norm of a transformed vector, ||Mx||.

Graph-Based Total Variation

- An extension of the Total Variation regularizer.
- The difference between any pair of entries connected according to a graph are penalized.
- The classical Total Variation is recovered when the graph is a chain.
- When the graph is a lattice, it becomes a two-dimensional Total Variation.

Trend Filtering

- Similar idea than Total Variation but for higher degrees.
- Instead of penalizing the first differences, higher orders are penalized.

Combinations

• The previous regularizers can be combined to enforce several structures at the same time.

$\ell_1+\ell_2$

- Advantages of the ℓ_1 and ℓ_2 approaches combined.
- The ℓ_2 term controls the overall complexity.
- The ℓ_1 term imposes sparsity.

$\ell_1 + TV_1$

- Some of the entries are identically zero.
- The remaining entries tend to be piece-wise constant.

Contents: Regularized Linear Models

3 Regularized Linear Models

Linear Regression Models Ridge Regression Lasso Elastic Net Group Variants Fused Lasso Illustration

Linear Models

- There exists an increasing interest in problems with a big amount of data (big data), in terms of:
 - A high dimensionality.
 - A large number of patterns (samples).
- This has resulted in the revival of the linear models.
- Notation:
 - *w* Parameters (weights) of the model, $w \in \mathbb{R}^d$.
 - *X* Matrix of inputs, $X \in \mathbb{R}^{p \times d}$; x_i is the input vector of the *i*-th pattern.
 - y Vector of real outputs, $y \in \mathbb{R}^p$.
 - \tilde{y} Vector of predicted outputs, $\tilde{y} \in \mathbb{R}^p$.
- For an input vector $x \in \mathbb{R}^d$, the predicted output is $\tilde{y}_x = x^\top w$.

Linear Models: Mean Squared Error

• For regression problems, the most common choice for $\mathcal{E}_{\mathcal{D}}$ is the Mean Squared Error (MSE):

$$MSE = \frac{1}{2p} \|\tilde{y} - y\|_2^2 = \frac{1}{2p} \sum_{i=1}^p (\tilde{y}_i - y_i)^2 .$$

• In the case of a linear model with weights *w*:

$$\mathcal{E}_{\mathcal{D}}(w) = \text{MSE}(w) = \frac{1}{2p} \|Xw - y\|_2^2$$
.

• This term is differentiable, with Lipschitz gradient:

$$\nabla \mathcal{E}_{\mathcal{D}}(w) = \frac{1}{p} \left(X^{\top} X w - X y \right) \; .$$

Ridge Regression (I)

• This linear model uses the Tikhonov regularization:

$$\mathcal{R}(w) = \frac{1}{d} \|w\|_2^2 = \frac{1}{d} \sum_{i=1}^d w_i^2$$
.

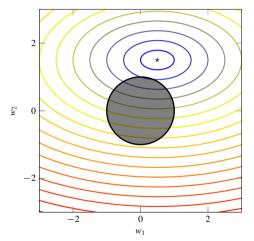
• The objective function is:

$$\mathcal{F}(w) = \text{MSE}(w) + \frac{\gamma}{2d} \|w\|_2^2$$

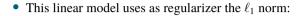
- The complexity of the model is controlled, but no structure is imposed.
- The resultant model typically depends on all the variables.

Ridge Regression (II)

Example Ridge Regression



Lasso (I)



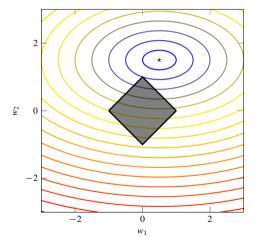
$$\mathcal{R}(w) = rac{1}{d} \|w\|_1 = rac{1}{d} \sum_{i=1}^d |w_i|$$
 .

• The objective function is:

$$\mathcal{F}(w) = \text{MSE}(w) + \frac{\gamma}{d} ||w||_1 .$$

- This regularizer enforces some of the coefficient to be identically zero.
 - The model performs an implicit feature selection, the features with coefficient equal to zero can be discarded.
 - ► It also avoids the over-fitting.

Example Lasso



Elastic Net (I)

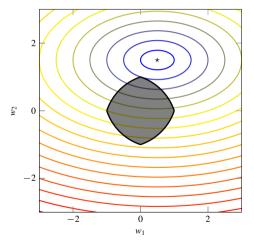
- This linear model combines the advantages of the ℓ_1 norm with those of the ℓ_2 norm.
- It is more stable than Lasso regarding feature selection.
- The regularizer is therefore a combination of both:

$$\mathcal{R}(w) = rac{1}{d} \|w\|_1 + rac{\gamma_2'}{2d} \|w\|_2^2$$

• Thus the objective function is:

$$\mathcal{F}(w) = \text{MSE}(w) + \frac{\gamma_1}{d} \|w\|_1 + \frac{\gamma_2}{2d} \|w\|_2^2$$
.

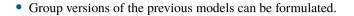
Example Elastic Net



Group Variants

- In certain circumstances, some features are grouped as corresponding to the same source.
 - For example, different meteorological variables (wind speed, temperature) corresponding to the same geographical point.
- A grouping effect in the features is thus desirable.
 - All the features of a group should be active, or inactive, at the same time.
 - But they are different features, and they can have different coefficients.
- In this way, relevant groups can be detected.

Group Lasso and Group Elastic Net



Group Lasso Model

- This linear model uses as regularizer the $\ell_{2,1}$ norm, $\mathcal{R}(w) = \frac{1}{d} ||w||_{2,1}$.
- The objective function is:

$$\mathcal{F}(w) = \text{MSE}(w) + \frac{\gamma}{d} \|w\|_{2,1}$$

Group Elastic Net Model

- The regularizer is a combination of the $\ell_{2,1}$ norm and the ℓ_2 norm.
- The objective function is:

$$\mathcal{F}(w) = \text{MSE}(w) + \frac{\gamma_1}{d} \|w\|_{2,1} + \frac{\gamma_2}{2d} \|w\|_2^2$$

Fused Lasso

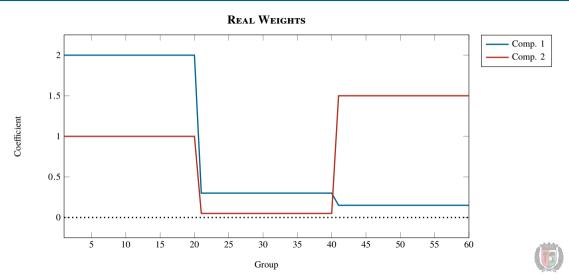
• This linear model uses as regularizer the ℓ_1 norm and the TV₁ regularizer:

$$\mathcal{R}(w) = rac{1}{d} \|w\|_1 + rac{\gamma_{2'}}{d} \mathrm{TV}_1(w) \; \; .$$

- It assumes that the features have some spatial location, and that they are ordered according to it.
 - A sensible model should assign similar coefficients to adjacent features.
- The coefficients tend to be sparse and piece-wise constant.
- The objective function is:

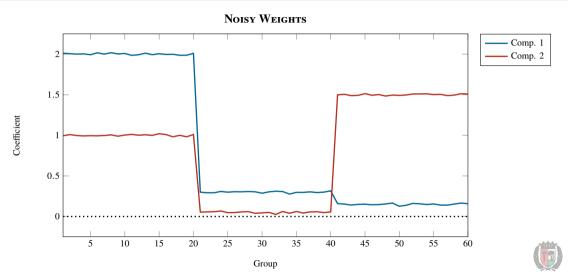
$$\mathcal{F}(w) = \text{MSE}(w) + \frac{\gamma_1}{d} \|w\|_1 + \frac{\gamma_2}{d} \text{TV}_1(w) .$$

Illustration

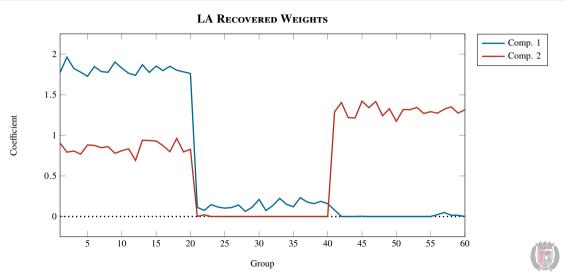


C. M. Alaíz (EPS–UAM)

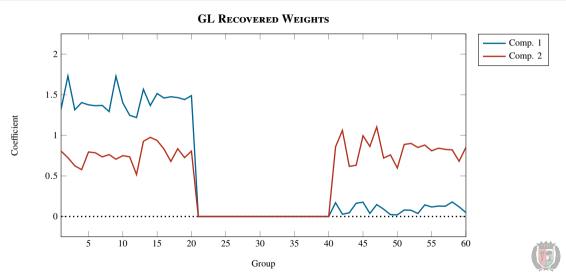
Illustration

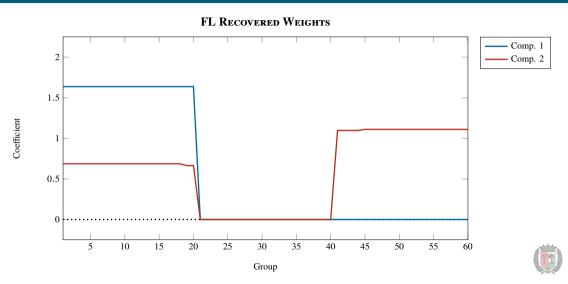


Illustration



Illustration





Contents: Other Regularization Models and Approaches

Other Regularization Models and Approaches Application to Other Models SVMs Generation of Patterns

Application to Other Models (I)

- The regularization terms defined above can be used for many other models.
 - For example, for classification linear models by changing only the error term, to get regularized logistic regression.
- They are specially well suited when the parameters can be interpreted as weights.
 - ► The correspondence between the inputs and the parameters is more clear.
- Depending on the optimization framework, adding these terms can be complex.
 - **Proximal Methods** provide a useful modular approach.

Application to Other Models (II): Regularized Multilayer Perceptron

- The MLP can be too complex if the number of hidden units and/or layers is large.
 - ► It will tend to over-fit the data.
 - Some form of regularization is needed.
- The previously defined regularization functions can be used.
- When the ℓ_2 norm is used, it becomes the classical weight decay term.
 - ► This term pushes the weights towards zero at each gradient-descent step.
- When the ℓ_1 norm is used some of the weights go to zero.
 - The network gets a structure based on the data.

TAN

Support Vector Machines

- The SVMs are regularized by their own definition.
 - Maximizing the margin corresponds to minimizing $||w||_2^2$.
 - Similar to the Tikhonov regularization.
- In the classification case, the error term is encoded in the constraints.
 - ► For hard-margin SVMs, no errors are allowed.
 - ► For soft-margin SVMs, the errors are minimized in the objective function.
- The regularization parameter γ is substituted by *C*.

$$\min_{w,b} \left\{ \frac{1}{2} \|w\|_2^2 + C \sum_{i=1}^p \xi_i \right\} \quad \text{s.t. } y_i (w^\top x_i + b) \ge 1 - \xi_i, \ \xi_i \ge 0$$

Generation of Patterns

UAM

Generation of Patterns

- The over-fitting problem often arises when there are no enough training data.
- A possible solution is to generate new samples.
 - Naive approach: repeat the same samples corrupting them with some noise.
 - Advanced approaches: try to fit the distribution of the data, or use some expert knowledge about the possible corruptions (such as rotations, dilations...).

Relation with Regularization

- The larger number of patterns reduces the variance of the model.
- This can be considered as a form of regularization.

Contents: Overview of Optimization

(5) Overview of Optimization

Motivation Convex Optimization Proximity Operator Proximal Methods Proximal Methods for Regularized Linear Models

Optimization

UAM

Definition (Optimize)

To make the best or most effective use of (a situation or resource).

• An optimization problem consists in finding the best element of a certain space S with respect to some criteria given by an objective function \mathcal{F} :

 $\min_{x\in\mathcal{S}} \{\mathcal{F}(x)\} \ .$

- Many learning machines are trained by solving an optimization problem.
 - ► The minimization is done over the parameters that define the model.
 - ▶ The "best" model according to some criteria and data is obtained:

 $\min_{p \text{ pars}} \{\mathcal{F}(p)\} .$

Examples: Linear Models, SVMs, Multilayer Perceptrons...

Examples (I)

UAM

Example (Ridge Regression)

- Parameters $w \in \mathbb{R}^d$, data $\mathcal{D} = \{X \in \mathbb{R}^{p \times d}, y \in \mathbb{R}^p\}.$
- $\mathcal{E}_{\mathcal{D}}(w) = \frac{1}{2p} \|Xw y\|_2^2$; $\mathcal{R}(w) = \frac{1}{2d} \|w\|_2^2 = \frac{1}{2d} \sum_{i=1}^d w_i^2$.

Example (Multilayer Perceptron with Weight Decay)

- Parameters $w \in \mathbb{R}^M$, data $\mathcal{D} = \{X \in \mathbb{R}^{p \times d}, y \in \mathbb{R}^p\}.$
- $\mathcal{E}_{\mathcal{D}}(w) = \|f_{\mathrm{MLP}}(X, w) y\|_2^2$; $\mathcal{R}(w) = \frac{1}{2d} \|w\|_2^2 = \frac{1}{2} \sum_{i=1}^d w_i^2$.

Example (Lasso)

- Parameters $w \in \mathbb{R}^d$, data $\mathcal{D} = \{X \in \mathbb{R}^{p \times d}, y \in \mathbb{R}^p\}.$
- $\mathcal{E}_{\mathcal{D}}(w) = \frac{1}{2p} \|Xw y\|_2^2$; $\mathcal{R}(w) = \frac{1}{d} \|w\|_1 = \frac{1}{d} \sum_{i=1}^d |w_i|.$

Examples (II)

UAM

Example (Ridge Regression)

• Closed-form solution: $w^* = \left(X^\top X + \frac{\gamma p}{d}I\right)^{-1} X^\top y$.

Example (Multilayer Perceptron with Weight Decay)

- Iterative solution: $w^{(k+1)} = w^{(k)} \lambda^{(k)} \nabla \mathcal{E}_{\mathcal{D}}(w^{(k)}) \lambda^{(k)} \frac{\gamma}{d} w^{(k)}$.
- The current solution is updated with a gradient-descent step.

Example (Lasso)

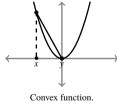
- $\mathcal{R}(w)$ is not differentiable, its gradient is not defined at every point.
- An alternative to gradient-descent is needed:
 - Proximity operator $\operatorname{prox}_{\mathcal{R}}$.
 - Between the gradient-descent step and the projection.
 - Iterative solution: $w^{(k+1)} = \operatorname{prox}_{\lambda^{(k)}\gamma\mathcal{R}} (w^{(k)} \lambda^{(k)}\nabla\mathcal{E}_{\mathcal{D}}(w^{(k)})).$

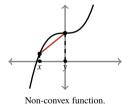
Convex Optimization

Definition (Convexity)

An extended real function f is called convex if dom f is a convex set, and $\forall x, y \in \mathbb{E}$ and $\forall t \in [0, 1]$

$$f(tx + (1 - t)y) \le tf(x) + (1 - t)f(y)$$
.





- The convexity of a problem guarantees the uniqueness of the minimum.
 - Regularized learning is often based on convex formulations.

Gradient-Based Optimization

• If the objective function \mathcal{F} is convex and differentiable, a minimum x^* is characterized by the zeros of the gradient:

$$\nabla \mathcal{F}(x^*) = 0$$

- ▶ In some cases, this equation has a closed-form solution.
- The classical gradient-descent step can also be applied:

$$x^{(k+1)} = x^{(k)} - \lambda^{(k)}
abla \mathcal{F}\left(x^{(k)}
ight) \; .$$

- ▶ There are other methods that use higher order information (e.g. Newton).
- There are projected methods to deal with constraints.
- This only makes sense for differentiable functions.
 - ► It is limited to simple cases.

Ad Hoc Methods

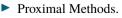
• There are specific algorithms for many regularized models.

SVMs

- The dual problem is usually solved.
- The most popular approach is SMO, a coordinate descent method that optimizes over two dual variables at each iteration.

Lasso

- The problem is non-differentiable.
- When only one variable is considered, there exists a closed-form solution.
 - Coordinate descent methods are often the choice.
- A general framework can make the regularized model design easier.



Proximity Operator (I)

UAM

Definition (Proximity Operator)

For a function $f \in \Gamma_0(\mathbb{E})$, its proximity operator, prox_f , is the function defined as the solution, at each point $x \in \mathbb{E}$, of the problem:

$$\operatorname{prox}_{f}(x) = \operatorname*{arg\,min}_{\hat{x} \in \mathbb{E}} \left\{ \frac{1}{2} \| \hat{x} - x \|^{2} + f(\hat{x}) \right\} .$$

- It is also the resolvent of the subdifferential.
- It can be interpreted as a generalization of the gradient-descent step, and of the projection operator.
- The fixed points of the proximity operator are the minima of the objective function.

Proximity Operator (II): Some Examples

Example (Proximity Operator of the ℓ_1 Norm.)

• Absolute value function, $f : \mathbb{R} \to \mathbb{R}$, $\lambda f(x) = \lambda |x|$.

$$\operatorname{prox}_{\lambda f}(x) = \operatorname{soft}_{\lambda}(x) = \operatorname{sign}(x) \left(|x| - \lambda\right)^{+} = \begin{cases} x + \lambda & \text{if } x \leq -\lambda \\ 0 & \text{if } -\lambda \leq x \leq +\lambda \\ x - \lambda & \text{if } x \geq +\lambda \end{cases},$$

Proximity Operator (III): Some Examples

Example (Proximity Operator of the ℓ_2 Norm.)

• Euclidean (ℓ_2) norm function, $f : \mathbb{R}^d \to \mathbb{R}, \lambda f(x) = \lambda ||x||_2$.

$$\operatorname{prox}_{\lambda f}(x) = x \left(1 - \frac{\lambda}{\|x\|_2}\right)^+ = \begin{cases} 0 & \text{if } \|x\|_2 \le \lambda \\ x \left(1 - \frac{\lambda}{\|x\|_2}\right) & \text{if } \|x\|_2 \ge \lambda \end{cases}$$

Proximity Point Algorithm

• A first approach to minimize a certain function $f \in \Gamma_0(\mathbb{E})$ is to iterate the proximity operator.

Proximal Point

```
\begin{array}{l} \text{Input: } f \in \Gamma_0(\mathbb{E});\\ \text{Output: } x^{(k)} \simeq x^* = \arg\min_{x \in \mathbb{E}} \ \{f(x)\};\\ \text{Initialization: } x^{(0)} \in \mathbb{E};\\ \text{set } \lambda^{(k)} \in (\lambda^{\min}, \lambda^{\max});\\ \text{for } k = 0, 1, \dots \text{ do}\\ x^{(k+1)} \leftarrow \operatorname{prox}_{\lambda^{(k)}f} \left(x^{(k)}\right);\\ \text{end for} \end{array}
```

- This method requires the computation of the proximity operator.
 - ► It is an optimization problem itself.
- Alternative: Proximal Methods.
 - Exploit the structure of the problem.
 - **Proximal Methods** are based precisely on a convenient splitting of the objective function.

ISTA

• The Iterative Shrinking–Thresholding Algorithm (ISTA) is a method to minimize the sum of a **smooth** and a **non-smooth** functions.

ISTA

Input: $f_1 \in \Gamma_0(\mathbb{E})$; f_2 convex with $\nabla f_2 \beta$ -Lipschitz; Output: $x^{(k)} \simeq x^* = \arg \min_{x \in \mathbb{E}} \{f_1(x) + f_2(x)\}$; Initialization: $x^{(0)} \in \mathbb{E}$; for $k = 0, 1, \dots$ do $x^{(k+1)} \leftarrow \operatorname{prox} \frac{1}{\beta} f_1 \left(x^{(k)} - \frac{1}{\beta} \nabla f_2 \left(x^{(k)} \right) \right)$; end for

• There are approaches to estimate β automatically.

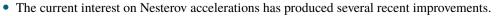
FISTA

- The Fast ISTA (FISTA) is a modification that accelerates the convergence.
- It is based on the improved gradient method of Nesterov.

FISTA

 $\begin{array}{ll} \text{Input: } f_{1} \in \Gamma_{0}(\mathbb{E}); f_{2} \text{ convex with } \nabla f_{2} \ \beta \text{-Lipschitz}; \\ \text{Output: } x^{(k)} \simeq x^{*} = \arg\min_{x \in \mathbb{E}} \ \{f_{1}(x) + f_{2}(x)\}; \\ \text{Initialization: } x^{(0)} \in \mathbb{E}; \\ y^{(1)} \leftarrow x^{(0)}; t^{(0)} \leftarrow 1; \\ \text{for } k = 0, 1, \dots \text{ do} \\ x^{(k)} \leftarrow \operatorname{prox}_{\frac{1}{\beta}f_{1}} \left(y^{(k)} - \frac{1}{\beta} \nabla f_{2} \left(y^{(k)}\right)\right); \\ t^{(k+1)} \leftarrow \frac{1}{2} \left(1 + \sqrt{1 + 4(t^{(k)})^{2}}\right); \\ y^{(k+1)} \leftarrow x^{(k)} + \frac{t^{(k)} - 1}{t^{(k+1)}} \left(x^{(k)} - x^{(k-1)}\right); \\ \text{end for} \end{array}$

• There are approaches to estimate β automatically.



Other Proximal Methods

• There are many more Proximal Methods.

Douglas-Rachford

- Method to minimize the sum of two non-smooth functions.
- It is based on the iteration of a fixed equation.

Dykstra

• Method to minimize the sum of two non-smooth functions, f_1 and f_2 , plus a deviation term that represent the distance to a reference point, $\frac{1}{2} \| \cdot - r \|^2$:

$$\min_{x \in \mathbb{E}} \left\{ \frac{1}{2} \|x - r\|^2 + f_1(x) + f_2(x) \right\} .$$

- The unique solution is precisely $prox_{f_1+f_2}$, which can be hard to compute directly.
- It therefore allows to compute complex proximity operator decomposing them into "easier" ones.
- There are extensions to compute the proximity operator of the sum of an arbitrary number of functions.

IIAM

FISTA for Regularized Linear Models (I): Gradients and Proximity Operators

MSE

$$f_2(w) = \text{MSE}(w) \implies \nabla f_2(w) = \frac{1}{p} \left(X^\top X w - X y \right) \;.$$

MSE + ℓ_2 Norm

$$f_2(w) = \operatorname{MSE}(w) + \frac{\gamma_2}{2d} \|w\|_2^2 \implies \nabla f_2(w) = \frac{1}{p} \left(X^\top X w - X y \right) + \frac{\gamma_2}{d} w .$$

ℓ_1 Norm

$$f_1(w) = \frac{\gamma}{d} \|w\|_1 \implies \left(\operatorname{prox}_{\lambda f_1}(w) \right)_i = \operatorname{sign}\left(w_i \right) \left(|w_i| - \lambda \frac{\gamma}{d} \right)^+$$

$\ell_{2,1}$ Norm

$$f_1(w) = \frac{1}{d} \|w\|_{2,1} \implies \left(\operatorname{prox}_{\lambda f_1}(w) \right)_{g,f} = \operatorname{sign}(w_{g,f}) \left(|w_{g,f}| - \lambda \frac{\gamma}{d \|w_g\|_2} \right)^+$$

C. M. Alaíz (EPS-UAM)

.

FISTA for Regularized Linear Models (II)

T	
~	2002

Model	${\mathcal E}_{\mathcal D}(w)$	$\gamma \mathcal{R}(\mathbf{w})$	Solution
RR	$\frac{1}{2p} \ Xw - y\ _2^2$	$\frac{\gamma}{2d} \ w\ _2^2$	$w^* = \left(X^\top X + \frac{\gamma p}{d}I\right)^{-1} X^\top y$
LA	$\frac{\frac{1}{2p}}{\frac{1}{2p}} \ Xw - y\ _{2}^{2}$ $\frac{\frac{1}{2p}}{\frac{1}{2p}} \ Xw - y\ _{2}^{2}$	$\frac{\gamma}{d} \ w\ _1$	FISTA
ENet	$\frac{1}{2p} \ Xw - y\ _2^2$	$\frac{\gamma_1}{d} \ w\ _1 + \frac{\gamma_2}{2d} \ w\ _2^2$	FISTA
GL	$\frac{1}{2p} \ Xw - y\ _2^2$	$\frac{\gamma}{d} \ w\ _{2,1}$	FISTA
GENet	$\frac{1}{2p} \ Xw - y\ _2^2$	$\frac{\gamma_1}{d} \ w\ _{2,1} + \frac{\gamma_2}{2d} \ w\ _2^2$	FISTA
FL	$\frac{1}{2p} Xw - y _2^2 \\ \frac{1}{2p} Xw - y _2^2$	$\frac{\gamma_1}{d} \ w\ _1 + \frac{\gamma_2}{d} \mathrm{TV}_1(w)$	FISTA

Model	f ₁	$\left(\operatorname{prox}_{\lambda \mathbf{f}_{1}} \left(\mathbf{w} \right) \right)_{\mathbf{g},\mathbf{f}}$
LA	$\frac{\gamma}{d} \ w\ _1$	$\operatorname{sign}\left(w_{g,f}\right)\left(w_{g,f} -\lambda\frac{\gamma}{d}\right)^+$
ENet	$\frac{\gamma_1}{d} \ w\ _1$	$ ext{sign}\left(w_{g,f} ight)\left(w_{g,f} -\lambdarac{\gamma_{1}}{d} ight)^{+}$
GL	$\frac{\gamma}{d} w _{2,1}$	$ \begin{array}{l} \operatorname{sign}\left(w_{g,f}\right) \left(w_{g,f} - \lambda \frac{\gamma}{d w_{g} _{2}}\right)^{+} \\ \operatorname{sign}\left(w_{g,f}\right) \left(w_{g,f} - \lambda \frac{\gamma}{d w_{g} _{2}}\right)^{+} \end{array} $
GENet	$\frac{\gamma_1}{d} \ w\ _{2,1}$	$\operatorname{sign}(w_{g,f})\left(w_{g,f} - \lambda \frac{\gamma_1}{d w_g _2}\right)^+$
FL	$\frac{\gamma_1}{d} \ w\ _1 + \frac{\gamma_2}{d} \operatorname{TV}_1(w)$	Dual problem + Soft-thresholding

Contents: Conclusions

6 Conclusions

Conclusions

- **Regularized Learning** permits to adapt models avoiding over-fitting, inducing a certain structure and/or using prior knowledge.
- Regularized models minimize two terms: an **error** term and a **regularization** term.
- Several regularization functions:
 - \triangleright ℓ_2 Norm.
 - \triangleright ℓ_1 Norm.
 - ▶ $\ell_{2,1}$ Norm.
 - ► Transformations, combinations...
- The regularizers allow to define a family of **regularized linear models**, but it can also be extended to other types of learning machines.
- There are other approaches: SVMs, pattern generation, ensembles...
- A general framework is required to solve non-differentiable convex problems: proximal methods.
- The gradient descent step is substituted by the **proximity operator**.
- Several algorithms allow to take advantage of the **problem structure**.

Regularized Learning: When Data Are Not Enough

Carlos María Alaíz Gudín

THANK YOU FOR YOUR ATTENTION.

