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ABSTRACT

Let X be a (compact) Riemann surface of genus g > 1. A symmetry α of X is
an anticonformal involution of the Riemann surface X. The fixed point set of a
symmetry α consists in a finite set of closed disjoint jordan curves in X, each
one of these curves is called oval. The maximal number of ovals for three and
four symmetries on surfaces of genus g was established by S. M. Natazon in [N1].
In this paper we determine the algebraic structure of the automorphisms groups
generated by three and four symmetries having maximal number of ovals.
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1. Introduction

Let X be a (compact) Riemann surface of genus g > 1. A symmetry α of X is an
anticonformal involution of the Riemann surface X. The fixed point set of a symmetry
α consists in a finite set of closed disjoint jordan curves in X, each one of these curves
is called oval. By a classical Theorem of Harnack ([H]) the number of ovals of a
symmetry runs between 0 and g + 1.

The determination of the best bound for the total number of ovals for three and
four symmetries for Riemann surfaces of a fixed genus has been obtained in [N1]. The

∗Both authors supported by BFM 2002-04801

73



E. Bujalance and A.F. Costa The group generated by three and four anticonformal involutions

study of the general case, for any finite set of symmetries, started in [N1] and [S] and
was completely solved in [N2] and [G]

We are interested in the study of Riemann surfaces admitting a set of symmetries
that have a maximal number of ovals between the Riemann surfaces with a given
genus. If we consider Riemann surfaces with two or three symmetries, such maximal
number of ovals is attained in the case that the symmetries commute (see [N1], [BCS]
and Theorem 2.2 in the next Section). Our main result in this article is to show that,
surprisingly, when we have more than three symmetries, the maximal number of ovals
can be attained by non-commuting symmetries (Theorem 2.3).

In [N1], Sergei M. Natanzon proved that if {αi}i=1,...,k, k = 3 or 4, is a set of
symmetries of a Riemann surface X of genus g then:

if k = 3, |α1| + |α2| + |α3| ≤ 2g + 4 (1)

and

if k = 4, |α1| + |α2| + |α3| + |α4| ≤ 2g + 8 (2).

Where |αi| means the number of ovals of the symmetry αi (i = 1, 2, 3, 4) (Theorem
3.1 in [N1]). Moreover, if G is the group of automorphims generated by {αi}i=1,...,k,
he established that:

1. For any odd g > 1 there exists a Riemann surface of genus g admitting three
symmetries that satisfy the equality in (1) and with G � Z2 ⊕ Z2 ⊕ Z2.

2. For each g ≥ 5 such that g ≡ 1mod4 there exists a Riemann surface of genus g
admitting four symmetries that satisfy the equality in (2) and with G � Z2 ⊕ Z2 ⊕
Z2 ⊕ Z2.

In this article we are going to describe completely the groups generated by sym-
metries satisfying the equalities in (1) and (2).

More precisely we shall prove:
- If three symmetries {α1}i=1,2,3 satisfy |α1|+|α2|+|α3| = 2g+4 then 〈α1, α2, α3〉 �

Z2 ⊕ Z2 ⊕ Z2 (Theorem 2.2)
- If four symmetries {αi}i=1,...,4 satisfy |α1| + |α2| + |α3| + |α4| = 2g + 8 then

〈α1, α2, α3, α4〉 � Dn ⊕ Z2 ⊕ Z2 (Theorem 2.3), where Dn is a dihedral group of 2n
elements.

2. Groups generated by three and four symmetries with maximal number
of ovals

In the case of surfaces with two symmetries, we have the following result of [BCS]
and [N1]:

Proposition 2.1 (Corollary 3 in [BCS]) Let X be a Riemann surface of genus g > 1
and α1, α2 be two non-commuting symmetries of X, then |α1| + |α2| ≤ g + 2.
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As a consequence, if X has two symmetries α1, α2 such that |α1| + |α2| = 2g + 2
(i. e. the maximal number) then 〈α1, α2〉 � Z2 ⊕ Z2.

For three symmetries with maximal number of ovals we have the following result:

Theorem 2.2 Let X be a Riemann surface of genus g > 1, admitting three symme-
tries α1, α2, α3 with |α1| + |α2| + |α3| = 2g + 4, then 〈α1, α2, α3〉 � Z2 ⊕ Z2 ⊕ Z2.

Proof. We need only to proof that the three symmetries α1, α2, α3 commute. If
αi, αj do not commute for some i �= j then |αi| + |αj | ≤ g + 2 and by the Harnack
Theorem |αk| ≤ g + 1, for i �= k �= j. Hence |α1|+ |α2|+ |α3| ≤ g + 1 + g + 2 ≤ 2g + 3
that contradicts the hypotesis |α1| + |α2| + |α3| = 2g + 4. �

Theorem 2.3 Let X be a Riemann surface of genus g > 1 admitting the symmetries
α1, α2, α3, α4 with |α1|+|α2|+|α3|+|α4| = 2g+8, then 〈α1, α2, α3, α4〉 � Dn⊕Z2⊕Z2.
Moreover for every integer n ≥ 2, if g ≥ 2n + 1 and g ≡ 1 mod 2n then there is a
Riemann surface Xg of genus g such that Xg has four symmetries α1, α2, α3, α4 with
|α1| + |α2| + |α3| + |α4| = 2g + 8 and 〈α1, α2, α3, α4〉 � Dn ⊕ Z2 ⊕ Z2.

Proof. Assume that α1, α2, α3, α4 are four symmetries of a Riemann surface X and
|α1| ≥ |α2| ≥ |α3| ≥ |α4|. In the proof of the Theorem 3.1 in [N1] it is shown that
α1α2 = α2α1, α2α3 = α3α2, α1α4 = α4α1, α1α3 = α3α1 if |α1|+ |α2|+ |α3|+ |α4| >
2g + 6. Now we shall show that α2α4 = α4α2 if |α1|+ |α2|+ |α3|+ |α4| = 2g + 8 (and
in consequence 〈α1, α2, α3, α4〉 � Dn ⊕ Z2 ⊕ Z2).

Let Γ be a Fuchsian group uniformizing X, i.e. X = D/Γ where D is the complex
unit disc, and let Γ′ be a non-euclidean crystallographic (NEC) group containing Γ
and uniformizing the orbifold X/ 〈α2, α4〉. For the terminology, notation and basic
results of NEC group see [BEGG]. In the proof of Theorem 3.1 of [N1] it is shown
that if α2α4 �= α4α2 the order of 〈α2, α4〉 must be 8 and there is no link periods in
the signature of Γ′ (i.e. there is no corner points in the orbifold X/ 〈α2, α4〉).

Assume that Γ′ has signature (g′;±; [m1, ...,mr]; {(−), k..., (−)}). Since #〈α2, α4〉 =
8, by the Riemann-Hurwitz formula we have:

2g − 2
ηg′ − 2 + r + k +

∑
(1 + 1

mi
)

= 8, where η = 1 or 2.

Hence

k ≤ g+7
4 .

By Theorem 2 in [BCS], |α2| + |α4| ≤ 2k, thus |α2| + |α4| ≤ g+7
2 .

Since |α1| + |α2| + |α3| ≤ 2g + 4, then |α4| ≥ 4 and |α3| ≤ |α2| ≤ g−1
2 . Hence

|α1| + |α2| + |α3| + |α4| ≤ g+7
2 + g−1

2 + g + 1 = 2g + 4 that is a contradiction.
Consequentely α2α4 = α4α2 and 〈α1, α2, α3, α4〉 ∼= Dn ⊕ Z2 ⊕ Z2.
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Given an integer n ≥ 2 and g ≥ 2n + 1, g ≡ 1 mod 2n, we shall construct a
Riemann surface Xg such that Xg admits four symmetries α1, α2, α3, α4 with |α1| +
|α2| + |α3| + |α4| = 2g + 8 and 〈α1, α2, α3, α4〉 ∼= Dn ⊕ Z2 ⊕ Z2.

Set δ = g−1
n + 4 and let ∆ be an NEC group with signature (0; +; [−]; {(2, δ..., 2)}.

Let
〈
c0, ...., cδ, e : c2j = (cici+1)2 = ec0e

−1cδ = 1
〉

be a canonical presentation of ∆.
We define the epimorphism

θ : ∆ → Z2 ⊕ Z2 ⊕ Dn =

〈
x, y, z, t :

x2 = y2 = z2 = t2 = (zt)n= 1
xy = yx, xt = tx, xz = zx
yt = ty, yz = zy

〉
,

by:
θ(c0) = x, θ(c1) = y, θ(c2) = x, θ(c3) = z, θ(c4) = x, θ(c5) = t, θ(c2i) = x,

θ(c2i+1) = y, 3 ≤ i ≤ δ/2, θ(e) = 1.
The surface Xg = D/ ker θ has four symmetries α1, α2, α3, α4, such that Xg/ 〈α1〉

is uniformized by θ−1(〈x〉), Xg/ 〈α2〉 is uniformized by θ−1(〈y〉), Xg/ 〈α3〉 is uni-
formized by θ−1(〈z〉), Xg/ 〈α4〉 is uniformized by θ−1(〈t〉).

Since θ−1(〈x〉), θ−1(〈y〉) and θ−1(〈z, t〉) are normal subgroups of ∆ then, by Sec-
tion 2.3 in [BEGG], the NEC group θ−1(〈x〉) has exactly g+1 empty period cycles in
his signature, θ−1(〈y〉) has g−1 empty period cycles and θ−1(〈z, t〉) has four. The hy-
perbolic generators associate to each period cycle of θ−1(〈z, t〉) is sent to the identity
by θ, thus by Theorem 2 in [BCS], the number of empty period cycles in θ−1(〈z〉) plus
the number of period cycles in θ−1(〈t〉) is 8. Hence |α1|+ |α2|+ |α3|+ |α4| = 2g+8.
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