VARIEDADES DIFERENCIABLES Muestras de examen

Febrero 2017

- # 1. (1) Definir el concepto de orientación en una variedad diferenciable.
 - (2) Justificar rigurosamente que una banda de Moebius no es orientable.
- (3) Demostrar que una hipersuperficie diferenciable es orientable si y sólo si tiene un campo normal global (sin ceros).
- # 2. Se considera la cuádrica reglada $M \subset \mathbb{R}^3$ de ecuación $x^2 + y^2 = z^2 + 1$.
- (1) Construir un difeomorfismo de M sobre el cilindro $\mathbb{S}^1 \times \mathbb{R}$, y deducir que M es difeomorfa al plano con un agujero $\mathbb{R}^2 \setminus \{(0,0)\}$.
 - (2) Construir un campo tangente a M sin ceros, de la forma

$$X_{(x,y,z)} = (-y + xz, x + yz, h(z))$$

para cierta función diferenciable h.

- (3) Mostrar que las órbitas de X son rectas contenidas en M.
- # 3. Denotamos S^+ y S^- los dos casquetes abiertos definidos en la esfera $\mathbb{S}^2 \subset \mathbb{R}^3$: $x^2 + y^2 + z^2 = 1$ por las condiciones z > 0 y z < 0. Sean p y q las restricciones a esos casquetes de la proyección lineal $(x, y, z) \mapsto (x, y)$.
- (1) Se orienta \mathbb{S}^2 compatible con su normal saliente $\nu(x,y,z)=(x,y,z)$ y \mathbb{R}^2 del modo usual. Estudiar si p y q conservan la orientación.
 - (2) Encontrar una forma diferencial $f(x,y)dx \wedge dy$ que coincida en la esfera con

$$\omega = yz(x^2 + y^2)dx \wedge dz.$$

- (3) Calcular la integral $\int_{\mathbb{S}^2} \omega$ utilizando las proyecciones p y q.
- (4) Utilizar el teorema de Stokes para predecir el resultado de (3) sin hacer ninguna integral.

Septiembre 2017

- # 1. (1) Definir el concepto de *flujo* y de *flujo completo* en una variedad y demostrar que en una variedad compacta todos los flujos son completos.
- (2) Explicar cómo se orienta el borde de una variedad orientada con borde. Ilustrarlo en el caso particular del semiespacio afín $\{x_1 \geq 0\} \subset \mathbb{R}^m$.
- # 2. Se considera la aplicación $\varphi: \mathbb{R}^2 \to \mathbb{R}^3: (u,v) \mapsto (v\cos u, v\sin u, u)$, y se pide:
- (1) Mostrar que φ es un difeomorfismo sobre su imagen $M = \varphi(\mathbb{R}^2)$, que en consecuencia es una superficie diferenciable sin borde.
 - (2) Encontrar un campo tangente a M de la forma $X_{(x,y,z)}=((x^2+y^2)x,(x^2+y^2)y,\star)$.
- # 3. Se considera en $\mathbb{R}^3 \setminus \{0\}$ la forma de grado 2

$$\alpha = \frac{-xz}{x^2 + y^2 + z^2} \mathrm{d}y \wedge \mathrm{d}z + \frac{yz}{x^2 + y^2 + z^2} \mathrm{d}x \wedge \mathrm{d}z.$$

Sean $M \subset \mathbb{R}^3$ el tronco de cilindro $x^2 + y^2 = 1, -1 \le z \le 1$, y ω la restricción de α a M.

- (1) Parametrizar M y buscar una primitiva de ω en M.
- (2) Calcular $\int_M \omega$ mediante el teorema de Stokes.

Febrero 2018

- # 1. Tema con demostraciones. Definir flujo y flujo completo y demostrar que el flujo de un campo con soporte compacto es siempre completo.
- # 2. Tema sin demostraciones. Orientabilidad de una variedad diferenciable.
- # 3. Se considera la superficie $M \subset \mathbb{R}^3$ dada por $z = x^2 y^2$.
- (1) Encontrar un campo tangente a M de la forma $X_{(x,y,z)} = (x, -y, \star)$ y expresarlo utilizando una referencia móvil.
 - (2) Estudiar las órbitas del campo X.
- # 4. Se considera el toro de revolución $T \subset \mathbb{R}^3$ parametrizado mediante

$$x = (2 + \cos u)\cos v$$
, $y = (2 + \cos u)\sin v$, $z = \sin u$,

- y la variedad $M = \{x \leq 0\} \cap T$ con borde $\partial M = \{x = 0\} \cap T$.
 - (1) Orientar M y su borde ∂M .
- (2) Calcular la integral en M de la forma diferencial $\omega = dy \wedge dz$, utilizando el teorema de Stokes.

Julio 2018

- # 1. Tema sin demostraciones. La diferencial exterior de una forma en una variedad.
- # 2. Tema con demostraciones. La derivada de una función diferenciable entre dos variedades.
- # 3. Se considera la superficie $M \subset \mathbb{R}^3$ dada por $x^2 + y^2 z^4 = 1$.
 - (1) Encontrar un campo tangente a M de la forma $X_{(x,y,z)}=(2xz^3,2yz^3,h(z))$.
- (2) Describir las órbitas (en M) del campo X. (No hace falta resolver el sistema de las tres EDOs, basta comparar las dos primeras.)
- # 4. Se consideran en \mathbb{R}^3 las superficies con borde

$$M: x^2 + y^2 = 1, \ 0 \le z \le 1,$$
 $N: u^2 + v^2 = w, \ 0 \le w \le 1.$

- y una aplicación diferenciable $h: M \to N$ tal que $h(x, y, z) = (\lambda x, \lambda y, z^2)$.
 - (1) Calcular λ y la forma $\omega = h^*(du \wedge dv)$
- (2) Definir orientaciones en las variedades anteriores y calcular la integral en M de la forma diferencial ω , utilizando el teorema de Stokes en N.

Enero 2019

- # 1. Tema con demostraciones. Demostrar utilizando particiones diferenciables de la unidad la existencia de funciones meseta y la extensión por cero de una función diferenciable en un entorno de un punto.
- # 2. Tema sin demostraciones. Formas diferenciales.
- # 3. Se considera la cuádrica $M \subset \mathbb{R}^3$ de ecuación $x^2 y^2 = z$
- (1) Encontrar un campo tangente a M de la forma $X_{(x,y,z)} = (-y^3, x^3, \star)$ y expresarlo utilizando una referencia móvil.
 - (2) Estudiar las órbitas del campo X.
- # 4. Se consideran las formas diferenciales

$$\alpha = \frac{1}{(x^2 + y^2 + z^2)^{\frac{3}{2}}} (x dy \wedge dz - y dx \wedge dz + z dx \wedge dy) \quad y \quad \beta = \frac{1}{z} dx \wedge dy.$$

Se denotan S^+ y S^- los hemisferios abiertos z>0 y z<0 de $\mathbb{S}^2\subset\mathbb{R}^3$. Se pide:

- (1) Orientar S^+ , S^- mediante el vector normal $\nu(x,y,z) = (x,y,z)$, y estudiar si la proyección $(x,y,z) \mapsto (x,y)$ conserva orientaciones.
- (2) Mostrar que β coincide con α en los hemisferios abiertos y usar esto para expresar (sin calcular) las integrales $\int_{S^+} \alpha$ y $\int_{S^-} \alpha$ en las coordenadas (x, y).
- (3) Aplicar el teorema de Stokes en cada hemisferio *cerrado* y mostrar que si α fuera exacta, entonces las dos integrales anteriores serían opuestas. ¿Concuerda esto con (2)?

Junio 2019

- # 1. Tema sin demostraciones. Orientación del borde de una variedad.
- # 2. Tema con demostraciones. Parametrizaciones adaptadas a una subvariedad.
- # 3. Se considera en la esfera unidad $\mathbb{S}^2 \subset \mathbb{R}^3$: $x^2 + y^2 + z^2 = 1$ un campo tangente de la forma

$$X_{(x,y,z)} = (xz - y, yz + x, h(x,y)).$$

- (1) Determinar la función h y las órbitas estacionarias de X.
- (2) Probar que toda curva integral no constante c(t) = (x(t), y(t), z(t)) tiene su tercera componente z(t) estrictamente decreciente.
- (3) Deducir que todas las curvas integrales c(t) no constantes de X son inyectivas y $\lim_{t\to \pm\infty} c(t)=(0,0,\pm 1)$.
- # 4. Se consideran en \mathbb{R}^3 las superficies con borde

$$M: x^2+y^2+z^2=1, \ z\leq 0, \qquad N: u^2+v^2+w^2=1, \ w\geq 0,$$

y la aplicación diferenciable biyectiva $h: M \to N$ dada por $h(x, y, z) = \frac{(x, y, z^2)}{\sqrt{1 - z^2 + z^4}}$.

- (1) Orientar M y N, y estudiar dónde h es un difeomorfismo y si conserva o invierte la orientación.
- (2) Comprobar el teorema del cambio de variable para una forma exacta $\alpha = d\omega$ mediante el teorema de Stokes.

Enero 2020

- # 1. Tema sin demostraciones. Integración de campos tangentes.
- # 2. Tema con demostraciones. La diferencial exterior: concepto y unicidad.
- # 3. Se considera la superficie $M \subset \mathbb{R}^3$ de ecuación $x^3 y^2 = z$.
- (1) Encontrar un campo X tangente a M (no idénticamente nulo) cuyas curvas integrales estén cada una contenida en un plano horizontal z = cte.
 - (2) Estudiar las órbitas del campo X.
- # 4. Se considera el toro de revolución $T \subset \mathbb{R}^3$ de ecuación $(\sqrt{x^2+y^2}-2)^2+z^2=1$ y la variedad con borde $M=T\cap\{z\leq 0\}$.
- (1) Orientar T mediante una forma de grado 2 como borde de su interior en \mathbb{R}^3 . Orientar con esa misma orientación M y ∂M como borde de M.
- (2) Denotamos $p:M\to\mathbb{R}^2$ la proyección $(x,y,z)\mapsto (x,y)$. Comprobar el teorema de Stokes para la forma $\omega=p^*\left(\frac{-y\,\mathrm{d} x+x\,\mathrm{d} y}{x^2+y^2}\right)$.

Septiembre 2020

- # 1. Tema sin demostraciones. El espacio tangente a una variedad en un punto.
- # 2. Se considera la superficie $M \subset \mathbb{R}^3$ de ecuación $x^2 + y^2 = z^2 + 1$.
 - (1) Encontrar un campo tangente a M de la forma $X_{(x,y,z)}=(\star,-x^2z,x^2y).$
- (2) Mostrar que las órbitas no estacionarias de X están contenidas en los cilindros $y^2 + z^2 = \text{cte}$.
 - (3) Describir geométricamente todas esas órbitas.
- # 3. Se considera en \mathbb{R}^3 la superficie con borde $M: x^2+y^2-z^2=1, -1\leq z\leq 1$, y en ella la forma diferencial α restricción de

$$dx \wedge dz + dx \wedge dy.$$

- (1) Orientar M y su borde ∂M .
- (2) Estudiar si el difeomorfismo $\sigma(x,y,z)=(-x,-y,-z)$ conserva la orientación de $\partial M.$
 - (3) Encontrar una primitiva de α y calcular $\int_M \alpha$ mediante el teorema de Stokes.

Enero 2022

1. (1) Encontrar un campo tangente a la esfera \mathbb{S}^2 (de la forma

$$X = -xz\frac{\partial}{\partial x} - yz\frac{\partial}{\partial y} + h\frac{\partial}{\partial z}$$

y probar que la función $\pi(x, y, z) = z$ es estrictamente creciente en las órbitas no estacionarias.

- (2) Describir geométricamente las órbitas de X.
- # 2. (1) Orientar el tronco de cono $M: x^2 + y^2 = z^2$, $1 \le z \le 2$ y su borde.
 - (2) Integrar en M la forma diferencial $\omega = \frac{1}{z} dx \wedge dy$, usando el teorema de Stokes.

Junio 2022

1. Se considera la superficie $M \subset \mathbb{R}^3$ de ecuación $x^2 + y^2 = z^2 + h(z)$. Determinar h para que el campo $X_{(x,y,z)} = (yz,xz,xy)$ sea tangente a M y $(0,0,\pm 1) \in M$. Describir geométricamente las órbitas de X.

2. Se consideran el tronco de cilindro $M: x^2 + y^2 = 1, 0 \le z \le 1$, y el tronco de paraboloide $N: u^2 + v^2 = w, 0 \le w \le 1$.

- (1) Orientar ambas variedades y sus bordes.
- (2) Determinar en qué puntos la aplicación $f:M\to N$ dada por

$$f(x, y, z) = (z(y^2 - x^2), -2xyz, z^2)$$

es difeomorfismo local, y si conserva la orientación.

(3) Calcular mediante el teorema de Stokes la integral $\int_M f^*(d v \wedge d w)$.