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One of the aims of Morse Theory is to study the global structure of a manifold
using a smooth function defined on the manifold. This theory reveals a deep rela-
tionship between the topology of the manifold and the properties of the map in the
neighborhood of its critical points. So, it establishes a connection between Analysis
and Topology and provides an illuminating example of a mathematical model in
which some local properties determine the global structure. There is another aspect
of this theory which is specially attractive, namely its relation with the theory of
flows and dynamical systems. The reason is that the critical points of the map are
stationary points of certain flows, the gradient and the Morse flows associated with
it. Therefore, the topology of the manifold and the dynamics of the flow are also
correlated. Adopting this point of view we obtain a fruitful connection between
Topology and Dynamics that allows a double perspective of each situation. In this
chapter we undertake the study of this topic. Our treatment of most notions of a
dynamical nature is essentially topological.

1.1 Gradient systems

Let f : Rn → R be a C∞ map. The gradient system of f is the system of differential
equations

x′ = − gradx f,

where

x = (x1, . . . , xn) and gradx f =
( ∂f
∂x1

(x), . . . ,
∂f

∂xn
(x)
)
.

The function f is sometimes called the potential function of the system, a termi-
nology which comes from Physics. In the sequel we shall make use of the fact that,
for y = (y1, . . . , yn) ∈ Rn,

dxf(y) = 〈gradx f, y〉 =
∑

i

∂f

∂xi
(x)yi,

where dxf : Rn → R is the derivative (Jacobian) of f at x ∈ Rn, and 〈 , 〉 denotes
the (Euclidean) scalar product.

If x(t) is a solution of the gradient system and we consider the function

γ(t) = f(x(t)),

then, by the chain rule, we have

γ′(t) = dx(t)f(x′(t)) = 〈gradx(t) f, x
′(t)〉 = 〈gradx(t) f,− gradx(t) f〉

= −‖ gradx(t) f‖2 ≤ 0.
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In other words, f decreases along the solutions of the system. We remark that γ′(t) =
0 if and only if gradx(t) f = 0, which happens only when x(t) is a constant solution
corresponding to a critical point of f . As a consequence, f is a strict Lyapunov map,
i.e. it is strictly decreasing along nonconstant solutions. It follows from this that a
periodic solution of the gradient system must necessarily be constant.

If x0 is an isolated critical point and also a local minimum of f then there is a
neighborhood V of x0 such that: (i) f(x) > f(x0) for every x ∈ V \ {x0}, and (ii)
f is strictly decreasing along orbits of points x ∈ V \ {x0}. As a consequence, x0 is
asymptotically stable.

Indeed, since x0 is a local minimum and an isolated singularity, it is a strict local
minimum. Let us see stability. We pick a neighborhood V of x0 where f(x) > f(x0)
for x 6= x0 and there is no other critical point. Now fix ε > 0. We can suppose
B[x0, ε] ⊂ V , so that µ = min{f(x) : x ∈ S(x0, ε)} > f(x0) and there is δ < ε such
that 0 < ‖x− x0‖ < δ implies f(x0) < f(x) < µ. This δ gives stability. Otherwise,
‖xt − x0‖ ≥ ε for some t > 0, hence ‖xs − x0‖ = ε for some s with 0 < s ≤ t,
and then µ ≤ f(xs). Since f decreases along trajectories f(x) > f(xs) ≥ µ, a
contradiction.

Asymptotic stability now. Suppose 0 < ‖x − x0‖ < δ. First note that stability
and the escape lemma imply that the domain of the integral curve of x is not bounded
from above. Thus we must see that limt→∞ xt = x0. Suppose, on the contrary, that
there are η > 0 and a sequence tk → ∞ such that ‖xtk − x0‖ ≥ η. Fix any s > 0.
By stability xtk ∈ B[x0, ε], which is compact, hence some subsequence of xtk has a
limit y 6= x0. We can suppose xtk → y and tk + s < tk+1. Thus

f(xtk) > f(x(tk + s)) > f(xtk+1) > f(x(tk+1 + s)).

Now, since xtk → y we have x(tk + s)→ ys, and so

f(y) = lim
k
f(xtk) = lim

k
f(x(tk + s)) = f(ys).

This is a contradiction, since y is not stationary and f must be strictly decreasing
on its trajectory.

When c is a regular value of f then f−1(c) is a level hypersuperface of Rn whenever
it is nonempty. The tangent hyperplane at a point x ∈ f−1(c) is given by

{v ∈ Rn : v ⊥ gradx f},

hence the solutions of the gradient system are ortogonal to the level hypersurfaces
of f . Moreover, f increases most rapidly at x in the direction of gradx f (that is,
‖dxf‖ = |dxf(u)| for u = gradx f/‖ gradx f‖).
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Remark 1.1.1 For n = 1 all systems x′ = F (x) are gradient as F (x) = − gradx f
with f(x) = −

∫ x
0
F (t)dt. On the other hand, for n > 1, a system x′ = F (x) must

satisfy the necessary condition
∂Fi
∂xj

=
∂Fj
∂xi

in order to be gradient since, in this case,

∂Fi
∂xj

= − ∂2f

∂xj∂xi
= − ∂2f

∂xi∂xj
=
∂Fj
∂xi

,

where f is the potential of the gradient. On the other hand, it is well known that
this condition is also sufficient [Fle].

If A is a real matrix, the system x′ = Ax is not, in general a gradient system.
The following proposition identifies the only case in which a linear system has this
property.

Proposition 1.1.2 The linear system x′ = Ax is gradient if and only if the matrix
A is symmetric.

Proof. If A = [aij] is symmetric then x′i =
∑n

j=1 aijxj with aij = aji. We define the
map

f : Rn → R : x = (x1, . . . , xn) 7→ −
n∑

i,j=1

1
2
aijxixj.

Clearly, −
∑n

j=1 aijxj is the i-th coordinate of gradx f and, thus, the system is a
gradient system. The converse is a consequence of the second part of the previous
remark.

Remark 1.1.3 It must be also observed that the solutions of gradient systems do
not define in general flows in Rn: the domains of some maximal integral curves can
be bounded from below or from above. The escape lemma mentioned before shows
that a sufficient (although by no means necessary) condition to have a true flow is
that each solution is contained in a compact set.

For instance, the gradient system of the function f : R → R defined by f(x) =
−1

3
x3 is x′ = x2. The solution x = 1

1−t blows up at the finite time t = 1 and cannot
be extended to the whole line, hence the solutions of this system do not define a
flow in R. The trajectories of this system are xt = x

1−xt , with maximal domain I(x)
given by 1− xt > 0:
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I(x) =


( 1
x
, ∞) if x < 0,

(−∞, ∞) = R if x = 0,

(−∞, 1
x
) if x > 0.

-�

� cxr

-c
−x
r

t−t r
1/x

−1/x

R

Example 1.1.4 (1) Consider f : R2 → R2 defined by f(x1, x2) = 1
2
(x21 + x22), with

gradx f = (x1, x2). The origin is the only critical point and, also, a minimum of
f . Hence as explained before, the origin is asymptotically stable. This is easy to
check, as the gradient flow (the flow of − grad f) is given by ϕ(x, t) = e−t(x1, x2).
Obviously the origin is asymptotically stable. As a matter of fact, any open ball
B(0, δ) is positively invariant: if ‖x‖ < δ and t > 0 then

‖ϕ(x, t)‖ = e−t‖x‖ < ‖x‖ < δ.

More generally, such an estimation shows that for any x 6= 0 and t > log(‖x‖/δ),
it is ‖ϕ(x, t)‖ < δ, so that all trajectories enter at a finite time any neigborhood of
the origin. We see that the origin is a global attractor: it is the ω-limit of all points.
The figure below, left, represents this flow.

The figure above right represents the opposite situacion: for the function −f , the
gradient flow is ϕ(x,−t) and the origin is a global repeller.

(2) Let now f : R2 → R2 be f(x1, x2) = 1
2
(x21 − x22), with gradx f = (x1,−x2).

The origin is the only critical point but is not an extreme and not asymptotically
stable. The gradient flow is given by ϕ(x, t) = (e−tx1, e

tx2), depicted below, left.
Below right is the opposite gradient flow.
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Suppose now that x0 is a critical point of f . The linearized system of grad f at
x0 is given by

y′ = −(dx0 grad f)(y),

where the differential dx0 grad f : Rn → Rn is a linear map whose jacobian matrix is

[aij] =
( ∂2f

∂xi∂xj
(x0)
)
.

Since mixed partial derivatives are equal, we have that aij = aji and the matrix
[aij] is symmetric. This matrix is called the Hessian matrix of f at x0. As it is
well known, symmetric matrices have only real eigenvalues. The critical point x0 is
said to be non-degenerate if its Hessian matrix is non-degenerate. It follows from
the inverse function theorem applied to the function grad f : Rn → Rn that every
non-degenerate critical point x0 has a neighborhood where there are no other criti-
cal points (take any neighborhood of 0 diffeomorphically mapped by grad f onto a
neighborhood of 0, so that grad f is injective in that neighborhood). In other words,
non-degenerate critical points are isolated. Moreover, non-degenerate critical points
are hyperbolic points of the gradient system. As a matter of fact, the lineariza-
tion −dx0 grad f has only positive and negative eigenvalues and, by the Hartman-
Grobman linearization theorem (although more directly here we can use the Morse
Lemma 1.5.5 to get a local diffeomorphism and not only a homeomorphism), the
gradient flow is conjugate to the flow of the linearized system in a neighborhood of x0.
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1.2 Gradients on manifolds

All the previous notions can be defined in the more general framework of C∞ maps
f : M → R, where M ⊂ Rp is a C∞-manifold of dimension m ≤ p (in particular,
M can be an open subset of Rm or a hypersurface of Rm+1). For every x ∈ M ,
the differential dxf : TxM → R is a linear form on the tangent space at x and,
hence, there exists a unique vector in TxM , which again we denote by gradx f , such
that dxf(y) = 〈gradx f, y〉 for every y ∈ TxM. In this way, we define a function
grad f : M → Rp, the gradient field of f , that maps each point x ∈ M to a tangent
vector to M at x, a particular case of tangent field on M . Let us specify the local
representation.

Let x be a point of M and suppose that ϕ : U → M is a parametrization of a
neighborhood of x (since M ⊂ Rp we may also see ϕ as a function from U to Rp).
Consider the basis { ∂ϕ

∂u1
(u), . . . ,

∂ϕ

∂um
(u)
}

of TxM , where u ∈ U and ϕ(u) = x. Then gradx f can be expressed in terms of this
basis

gradx f =
m∑
i=1

ρi(u)
∂ϕ

∂ui
(u).

We are interested in obtaining the expression of the local coordinates ρi(u) of gradx f .

We have that

∂(f ◦ ϕ)

∂uj
(u) = dxf(

∂ϕ

∂uj
(u)) =

〈
gradx f,

∂ϕ

∂uj
(u)
〉

=
〈 m∑
i=1

ρi(u)
∂ϕ

∂ui
(u),

∂ϕ

∂uj
(u)
〉

=
m∑
i=1

ρi(u)
〈 ∂ϕ
∂ui

(u),
∂ϕ

∂uj
(u)
〉

=
m∑
i=1

ρi(u)gij(u), gij(u) =
〈 ∂ϕ
∂ui

(u),
∂ϕ

∂uj
(u)
〉
.

Thus G(u) = [gij(u)] is the Gramm matrix of the scalar product in TxM with respect
to the basis

{
∂ϕ
∂uj

(u)
}

, and is consequently a nonsingular matrix. The linear system

of equations
m∑
i=1

ρi(u)gij(u) =
∂(f ◦ ϕ)

∂uj
(u), j = 1, . . . ,m,

expressed in matrix form as

(ρ1(u), ..., ρm(u))G(u) =

(
∂(f ◦ ϕ)

∂u1
(u), . . . ,

∂(f ◦ ϕ)

∂um
(u)

)
,
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has a unique solution for the local coordinates ρi(u) of gradx f , namely

(ρ1(u), . . . , ρm(u)) =

(
∂(f ◦ ϕ)

∂u1
(u), . . . ,

∂(f ◦ ϕ)

∂um
(u)

)
G(u)−1,

which are obviously of class C∞. Hence the gradient field of a C∞-function on a
manifold is C∞ as well. It is important to note that, in general, it is not true that
(grad f) ◦ ϕ = grad(f ◦ ϕ), as we will stress later.

Remark 1.2.1 If F : W → R is a C∞ function on an open set W of Rp which con-
tains the manifold M , then the gradient (tangent) field of f = F |M can be expressed
in the following terms: given x ∈M consider gradx F . Then gradx f = πx(gradx F ),
where πx : Rp → TxM denotes the ortogonal projection. Indeed, the component
of gradx F ortogonal to TxM does not play any role when multiplied by vectors of
TxM . This statement can also be interpreted locally.

As in the Euclidean case, the equation

x′ = − gradx f

defines a system of differential equations in the manifold M , also called gradient
system, such that the function f is a strict Lyapunov map for the system. Again,
not every system x′ = ξ(x) of differential equations on M defines a flow, that is,
there may be maximal integral curves with domain bounded from above or from
below. It does define a flow ϕ : M × R → M when the tangent field ξ vanishes off
a compact set, which is always the case if M is compact.

Let x0 ∈ M be a critical point of f and ϕ : U ⊂ Rm → M a parametrization
of a neighborhood of x0 with ϕ(u0) = x0, where u0 ∈ U . The differential dx0 grad f
can be seen as a linear map from Tx0M to Rp. We are interested in its equation
and, more specifically, in the local representation (the jacobian) of the differential
respect to the basis ∂ϕ

∂uj
(u0) of Tx0M .

In order to calculate the jacobian, we have

dx0 grad f
( ∂ϕ
∂ui

(u0)
)

=
∂

∂ui

(ρ1, . . . , ρm)


∂ϕ
∂u1
...
∂ϕ
∂um


(u0)

=
∂

∂ui

(∂(f ◦ ϕ)

∂u1
, . . . ,

∂(f ◦ ϕ)

∂um

)
G(u0)

−1


∂ϕ
∂u1
...
∂ϕ
∂um


(u0).
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This derivative is simply

(∂2(f ◦ ϕ)

∂ui∂u1
(u0), . . . ,

∂2(f ◦ ϕ)

∂ui∂um
(u0)

)
G(u0)

−1


∂ϕ
∂u1

(u0)
...

∂ϕ
∂um

(u0)

 ,

since the fact that

0 = (ρ1(u0), . . . , ρm(u0)) =
(∂(f ◦ ϕ)

∂u1
(u0), . . . ,

∂(f ◦ ϕ)

∂um
(u0)
)
G(u0)

−1

(because x0 is a critical point) implies

∂(f ◦ ϕ)

∂u1
(u0) = · · · = ∂(f ◦ ϕ)

∂um
(u0) = 0.

Of course: being a critical point is preserved by diffeomorphisms, in particular by
parametrizations.

We get two consequences from the above calculations. First, when x0 is a critical
point of f , the map dx0 grad f is, in fact, an endomorphism of Tx0M . Second, if
x0 = ϕ(u0), the matrix of dx0 grad f with respect to the basis ∂ϕ

∂uj
(u0) of Tx0M is

H(u0)G(u0)
−1, where

H(u0) = [hij(u0)], hij(u0) =
∂2(f ◦ ϕ)

∂ui∂uj
(u0)

is the Hessian matrix of the map f ◦ ϕ at the point u0 and G(u0) is the Gramm
matrix of the scalar product on the tangent space at the point u0. Here we use
matrices of linear mappings via rows, that is, u 7→ uL, to write formulas better.

Remark 1.2.2 An important consequence of the previous discussion is that when
the basis of the partial derivatives ∂ϕ

∂uj
(u0) of Tx0M is orthonormal then the matrix

of dx0 grad f is the Hessian matrix H(u0). It is easy to see that such a basis always
exists. Therefore, since H(u0) is symmetric, when x0 is a critical point all the eigen-
values of dx0 grad f are real.

Example 1.2.3 An interesting example is that of spherically symmetric fields, for
instance the Coulomb field of a negative charge. A field F : Rn \ {0} → Rn is
spherically symmetric if there is a C∞ function λ : R+ → R such that F (x) =
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λ(‖x‖)x for all x ∈ Rn \ {0}. Consider a primitive h of the function tλ(t), i.e. a
function h : R+ → R such that h′(t) = tλ(t) for every t ∈ R+. Then the system
x′ = F (x) is gradient with potential f : Rn \ {0} → R defined by f(x) = −h(‖x‖).
Indeed,

− ∂f
∂xi

= h′(‖x‖)∂‖x‖
∂xi

= ‖x‖λ(‖x‖) 2xi
2‖x‖

= λ(‖x‖)xi,

hence − gradx f = λ(‖x‖)x = F (x).

Back to the previous discussion, we say that the critical point x0 ∈ M is non-
degenerate if the Hessian matrix H(u0) of the map f ◦ ϕ at the point u0, with
ϕ(u0) = x0, is non-degenerate. Since the matrix of dx0 grad f is H(u0)G(u0)

−1 and
the Gramm matrix G(u0) is nonsingular, this is equivalent to saying that dx0 grad f
is an automorphism of Tx0M. In particular, this notion does not depend on the local
parametrization ϕ. Furthermore, since all eigenvalues of dx0 grad f are real, the
non-degenerate critical points are hyperbolic points of the gradient flow.

Obviously, the Hessian matrix of the map f ◦ϕ depends on the parametrizacion
ϕ. We can, however, use it to define an intrinsic notion in Tx0M : let Qx0(f) be the
quadratic form whose matrix with respect to the basis of the partial derivatives is
the matrix H(u0) = [hij(u0)] above. This quadratic form is called the Hessian of f
at x0, and does not depend on ϕ:

Proposition 1.2.4 With the notations above, let v ∈ Tx0M . Then for any curve
γ(t) in M with γ(0) = x0 and v = γ′(0) (there are many), we have

Qx0(f)(v) = (f ◦ γ)′′(0).

Proof. Set x = ϕ(u). Let v = (v1, . . . , vm) be the coordinates of v with respect to
the basis of the partial derivatives, which means that v = du0ϕ(v). Then

Qx(f)(v) =
∑
ij

∂2(f ◦ ϕ)

∂ui∂uj
(u)vivj.

Let γ(t) be a curve as in the statement (for instante γ(t) = ϕ(u0 + tv)). We denote
γ(t) = ϕ−1(γ(t)) = (γ1(t), . . . , γm(t)), so that γ(0) = u0, γi

′(0) = vi. Now we have

(f ◦ γ)′(t) = (f ◦ ϕ ◦ γ)′(t) = dγ(t)(f ◦ ϕ)(γ ′(t)) =
∑

i

∂(f ◦ ϕ)

∂ui
(γ(t))γi

′(t),
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and then

(f ◦ γ)′′(t) =
∑
ij

∂2(f ◦ ϕ)

∂uj∂ui
(γ̄(t))γj

′(t)γi
′(t) +

∑
i

∂(f ◦ ϕ)

∂ui
(γ̄(t))γi

′′(t).

The last summand here vanishes at t = 0 because γ(0) = u0 is a critical point of
f ◦ ϕ, hence we conclude

(f ◦ γ)′′(0) =
∑
ij

∂2(f ◦ ϕ)

∂uj∂ui
(x)γj

′(0)γi
′(0) =

∑
ij

∂2(f ◦ ϕ)

∂uj∂ui
(x)vjvi,

as wanted.

(1.2.5) Hamiltonian Systems. A type of systems related to gradient systems
of great importance in classical mechanics are the Hamiltonians. Let U be an open
set in Rn and H : U × Rn → R a C∞ map. The Hamiltonian field of H is the field

F : U × Rn → R2n : (x, y) 7→ F (x, y) =
(∂H(x,y)

∂y
,−∂H(x,y)

∂x

)
.

The corresponding system of differential equations{
x′ = ∂H(x,y)

∂y
,

y′ = −∂H(x,y)
∂x

,

is called the Hamiltonian system with Hamiltonian function H.

One of the simplest examples is the system of differential equations in R2 de-
scribing the motion of a harmonic oscillator{ x′ = y,

y′ = −x,

where x measures the distance from equilibrium and y is the velocity. Here H is the
total energy H(x, y) = 1

2
(x2 + y2).

Clearly, the equilibria of a Hamiltonian system are the critical points of the
Hamiltonian function H. The main property of Hamiltonian systems, proved in the
next proposition, is that H is constant along every solution. In classical terms, H
is a first integral of the system. Therefore, the solutions lie in the level sets H(x) =
constant.
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Proposition 1.2.6 Let (x′, y′) = F (x, y) be a Hamiltonian system with Hamilto-
nian function H : U × Rn → R. Then H is constant along every solution.

Proof. The proof is a simple verification. Supose (x(t), y(t)) is a solution ot the
system. Then

d

dt
H(x(t)) =

∑
i

∂H

∂xi
x′i(t) +

∂H

∂yi
y′i(t) =

∑
i

∂H

∂xi

∂Hi

∂yi
− ∂H

∂yi

∂Hi

∂xi
= 0.

It follows that H(x(t)) is constant.

A significant result, which we do not prove here, is the Liouville Theorem, accord-
ing to which the flow of a Hamiltonian system is volume preserving. In turn, volume
preserving systems have important recurrence properties given by the Poincaré re-
currence theorem.

1.3 Gradientlike flows

The previous notions can be defined in the even more general framework of flows in
metric spaces. With this aim we introduce the following definition.

Definition 1.3.1 Suppose that ϕ : M × R → M : ϕ(x, t) = xt, is a flow in the
metric space M . We say that ϕ is gradientlike if there exists a map f : M → R which
is strictly decreasing along non-stationary trajectories of ϕ, i.e. if f(xs) < f(xt) for
all non-stationary points x ∈ M and all s > t. We still say that f is a strict
Lyapunov map for ϕ.

Note that f is strictly decreasing along non-stationary trajectories if and only
if f(xt) < f(x) for every stationary point x and every t > 0 (because f(xs) =
f(xt(s− t)) for s > t).

Remark 1.3.2 The examples that interest us here come mainly from gradient
fields, whose solution may well not be a flow, that is, the maximal integral curves
may be defined in intervals I 6= R. In that case the theory does not apply, or so
it seems. However, any system x′ = f(x) can be modified to another x′ = g which
truly defines a flow and its trajectories are positive reparametrizations of those of
the initial system. Consequently the dynamics of both systems are the same. For
instance, a function strictly decreasing on non-stationary trajectories for x′ = f is
properly called Lyapunov for the flow of x′ = g.
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The argument is easy. Let x′ = f be defined in a manifold M , which we can
suppose a closed subset of an affine space Rp. Consider the function g = θf , where
θ = 1/(1 + ‖f‖2) (the square preserves the class of f). Since θ > 0 the trajectories
of x′ = g are indeed positive reparametrizations. But furthermore ‖g‖ ≤ 1, and
this implies those trajectories are defined for all times. Otherwise, let γ(t) be a
trajectory of x′ = g not defined for t ≥ δ. But for t < δ we have

d(γ(0), γ(t)) ≤
∫ t

0

‖γ′(t)‖dt =

∫ t

0

‖f(γ(t)‖
1+‖f(γ(t))‖2dt ≤

∫ t

0

dt = t ≤ δ,

which is not possible by the escape lemma: as M is closed in Rp, the intersection
M ∩B[γ(0), δ] is compact. For negative trajectories the argument is analogous.

The next proposition provides an important property of the omega limit (as
t→∞) and the alpha limit (as t→−∞) of the trajectories of gradientlike flows.

Proposition 1.3.3 Suppose that ϕ : M × R → M is a gradientlike flow in the
metric space M . Then for every x ∈M the omega limit ω(x) (resp. the alpha limit
α(x)), if non-empty, is composed of stationary points of ϕ.

Proof. If x is stationary the proposition is obvious, thus we assume that x is non-
stationary. Let y be an arbitrary point of ω(x). Then there exists a sequence
tn →∞, that we can suppose strictly increasing, such that xtn → y. If f is a strict
Lyapunov map for ϕ, we have that f(y) < f(xtn+1) < f(xtn) for every n. Suppose,
to get a contradiction, that yt 6= y for some t > 0. Select for every n a kn > n
such that tn + t < tkn . Hence f(xtkn) < f(x(tn + t)). But f(xtkn) → f(y) and
f(x(tn + t)) → f(yt), which implies that f(y) ≤ f(yt) and, thus, f is not strictly
decreasing along the trajectory of y, in contradiction with the hypothesis. A similar
argument can be used when y is a point of α(x).

A consequence is that if a point x is not stationary then ω(x) ∩ α(x) = ∅ (if
y ∈ ω(x)∩ α(x), then f(y) > f(x) > f(y)!). In particular, gradientlike flows do not
have homoclinic trajectories. It is easy to see that they do not have recurrent points
either, that is, non-stationary points x such that x ∈ ω(x).

From 1.3.3 we get:

Corollary 1.3.4 Suppose that ϕ : M ×R→M is a gradientlike flow in the metric
space M whose stationary points are isolated. Let x be a point such that its positive
semitrajectory γ+(x) is contained in a compact subset of M . Then ω(x) consists
exactly of one point. An analogous statement holds for α(x).
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Proof. Since γ+(x) is contained in a compact subset of M we have that ω(x) is non-
empty, compact and connected. That it is non-empty comes from compactness of
x[0,∞). On the other hand, if x is non-stationary, then ω(x)∩x[0,∞) = ∅ by Lya-
punov monotony. Then ω(x) = x[0,∞) \x[0,∞) =

⋂
n x[n,∞) and any intersection

of a decreasing family of compact connected sets is connected. Since all points in
ω(x) are stationary, they are isolated and, hence, ω(x) has the discrete topology. As
a consequence ω(x) must consist exactly of one point. The proof for α(x) is similar.

We see in the following example how the above results can be used to analyse a
local difeomorphism of the euclidean space.

Example 1.3.5 (1) Let h : Rn → Rn be a proper local diffeomorphism. Then h
is closed an open, hence onto by connectedness. Let us see h is injective, hence a
homeomorphism.

Fix a ∈ Rn and consider the function f = 1
2
‖h(x)− a‖2. Some easy calculations

show that the critical (stationary) points of the gradient field grad f are the local
minima of f , that is, the points x ∈ Rn with h(x) = a, which are isolated. Then
consider the flow ϕ of − grad f and set

Wx = {y ∈ Rn : ω(y) = x} for every stationary point x.

Asymptotic stability implies that the Wx’s are open. Since h is proper, so is f , and
every trajectory γ+(y) ⊂ f−1[0, f(y)] is bounded. Consequently ω(y) is a unique
stationary point x and y ∈ Wx. Thus we have a covering of Rn by disjoint open
sets, and by connectedness again, there is only one such Wx, or in other words only
one stationary point. We are done

(2) Of course, this fact is well known: a proper local homeomorphism is a cover-
ing, and Rn has no proper coverings. Thus, the above argument hides the triviality
of the fundamental group. Whence, it is interesting to consider proper local diffeo-
morphisms of non simply connected spaces. The first example are complex powers
in the punctured plane C\{0}, say h(z) = zk. One can mimic the construction of f
and − grad f to get a flow and try the argument of (1). Here there are for instance
the plots of the flows corresponding to k = 2 and 3 for a = (1, 0):
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We see the critical points at the roots of the unit: (±1, 0) for k = 2 on the left
and (1, 0), 1

2
(−1,±

√
3) for k = 3 on the right, which are all attractors. But we

furthermore have another critical point at the origin, explaining why the Wx’s do
not cover. Indeed, they miss the points whose ω-limit is the origin: (i) the axis
x = 0 on the left, and (ii) the three semilines {y = 0, x < 0}, {y = ±

√
3, x > 0}, on

the right. In other words, the missing points escape towards the hole that makes
the space not simply connected.

For M noncompact the following notion is useful. We say that a function f :
M → R is uniformly unbounded if for every L ∈ R there exists a compact subset
C ⊂ M such that f(x) > L for every x ∈ M \ C. In other words, f is proper from
above: f−1(−∞, L] is compact for every L ∈ R.

Proposition 1.3.6 Suppose that ϕ : M×R→M is a gradientlike flow in the metric
space M . Suppose that f : M → R is a uniformly unbounded strict Lyapunov map
for ϕ. Then for every x ∈ M the positive semitrajectory γ+(x) is contained in
a compact set and, as a consequence, ω(x) is non-empty. In particular, if all the
stationary points are isolated then ω(x) consists exactly of one point.

Proof. Just note that every positive semitrajectory γ+(x) is contained in the com-
pact set f−1(−∞, f(x)].

The following result states an important attraction property related to the exis-
tence of uniformly unbounded Lyapunov maps.

Proposition 1.3.7 Suppose that ϕ : M × R → M is a gradientlike flow in the
locally compact metric space M such that there exists a uniformly unbounded strict
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Lyapunov map for ϕ. Suppose that the set K of stationary points is compact. Then
there exists a global attractor A of ϕ. Moreover, this attractor consists of all the
points x ∈M with non-empty alpha-limit (or, equivalently, A is the unstable mani-
fold W u(K) of K). In particular, if K is finite, then A is the union of all trajectories
connecting points of K.

Proof. We define the set

A =
{
y ∈M : there are xn→ x ∈ K and tn→ +∞ such that xntn→ y

}
We shall prove that A is a global attractor. It is straightforward to see that A is
closed and invariant. Since the space is locally compact, balls with small enough
radius (depending on the center) are compact, and from this it follows that if ε > 0
is small enough B[K, ε] is compact. We show that there exists T > 0 such that
A ⊂ B[K, ε][0, T ].

For every x ∈ S(K, ε) define τx = inf{t > 0 : xt ∈ B(K, ε)}. This number is
well defined since ∅ 6= ω(x) ⊂ K. Set T = sup{τx : x ∈ S(K, ε)}. We claim that
T < +∞. Otherwise, there is a sequence xn ∈ S(K, ε) such that τxn → +∞. By
compactness, we may assume, without loss of generality, that xn → x ∈ S(K, ε).
Let τ > 0 be such that xτ ∈ B(K, ε). Then xnτ ∈ B(K, ε) and τxn ≤ τ for almost
every n, which is a contradiction.

Now suppose that y ∈ A \ B[K, ε]. Then there are xn ∈ M and tn → +∞
such that xn → x with x ∈ K and xntn → y. For almost every n, xn ∈ B(K, ε)
and xntn /∈ B[K, ε]. Now let sn = sup{s : xns ∈ B(K, ε), 0 ≤ s ≤ tn}, so that
0 < sn < tn and xnsn ∈ S(K, ε). We have xns /∈ B(K, ε) for sn ≤ s ≤ tn. Thus
for 0 ≤ t = s − sn ≤ tn − sn we have (xnsn)t = xns /∈ B(K, ε). This implies
tn−sn ≤ τxnsn , hence tn−sn ≤ T . It follows that xntn = xnsn(tn−sn) ∈ B[K, ε][0, T ],
and since this set is closed, y ∈ B[K, ε][0, T ]. As a consequence, A is a closed subset
of B[K, ε][0, T ], which is a compact set and thus A is compact.

Moreover A is stable. Otherwise, there is an ε > 0, a sequence xn → x ∈ A
and times tn ≥ 0 such that xntn → z ∈ S(A, ε). If tn is bounded, then there is a
convergent subsequence tnk

→ t0 and, as a consequence, xnk
tnk
→ xt0 ∈ A. On the

other hand, xnk
tnk
→ z ∈ S(A, ε), which is a contradiction. If tn is unbounded we

may suppose, without loss of generality, that tn → +∞. Since ω(x) ⊂ K, then there
exists a sequence t′n → +∞, such that t′n− tn > n and xt′n → w ∈ K. Now, for every
k there is nk such that d(xnk

t′k, xt
′
k) < 1/k and tnk

− t′k > k. By the first condition

d(xnk
t′k, w) ≤ d(xnk

t′k, xt
′
k) + d(xt′k, w) < 1

k
+ d(xt′k, w)→ 0,

and xnk
t′k → w. Since tnk

− t′k →∞ and xnk
t′k(tnk

− t′k) = xnk
tnk
→ z, we conclude

that z ∈ A. This is a contradiction with the fact that z ∈ S(A, ε). As a consequence,
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A is a compact invariant set which is stable and attracts all points in M . Indeed,
suppose it does not attract x: d(xtn, A) ≥ ε for times tn → +∞ and ε > 0.
Since positive semitrajectories are contained in compact sets, there is a subsequence
xtnk

→ z ∈ K ⊂ A, hence d(xtnk
, A) < ε for k large, a contradiction. Hence A is a

global attractor.

Now the moreover. If there is y ∈ α(x) ⊂ K ⊂ A, we have yn = xsn → y for
some sn → −∞. Now we use stability. For every ε > 0 there is yn close enough
to y so that ynt ∈ B(A, ε) for all t > 0. But for t = −sn > 0, ynt = x and thus
d(x,A) < ε. As A is closed, we conclude x ∈ A. Conversely, consider a point x ∈ A.
Since A is invariant, γ−(x) ⊂ A, an since A is compact, α(x) 6= ∅.

Remark 1.3.8 The last part of the preceding proof could be simplified using the
definition of A instead of stability. Indeed, for yn → y ∈ K and tn = −sn → ∞ as
there, yntn = x → x. But our claim was that any global attractor is that attrac-
tor. Furthermore, our little detour gives an argument that works in general to show
that for all gradientlike flows in locally compact metric spaces (not only for those
with unbounded Lyapunov maps) there is at most one global compact attractor: the
unstable manifold of K. But note that there may not be any attractor at all! In
particular, if K is finite, then A is the union of all trajectories connecting points of
K.

The next result provides a clear picture of a gradientlike system in the Euclidean
space when all its stationary points are isolated.

Proposition 1.3.9 (Structure of isolated stationary points in Rn) Consider
a gradientlike flow ϕ : Rn×R→ Rn whose stationary points are isolated. Let x ∈ Rn.
If γ+(x) is bounded then ω(x) consists exactly of one point. Otherwise, γ+(x)→∞.
An analogous statement holds for γ−(x) and α(x).

Proof. The first statement is a consequence of Corollary 1.3.4. Now, let x be a point
such that γ+(x) is not bounded. Assume, to get a contradiction, that γ+(x) does
not tend to infinity. Then there exists a closed ball Bk0 with center the origin and
radius k0 and a sequence tn →∞ such that xtn ∈ Bk0 for every n. Moreover, since
γ+(x) is not bounded, for every k ∈ R there exists a sequence skn → +∞ as n→ +∞
such that xskn /∈ Bk, the ball with center the origin and radius k. As a consequence,
for every k ≥ k0 there is a sequence rkn → +∞ for n → +∞, such that xrkn ∈ Sk,
the sphere with center the origin and radius k. It follows from this that in every
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Sk with k ≥ k0 there is a point belonging to ω(x). An easy argument establishes
now that in every Sk with k ≥ k0 there is a point which is limit of points of ω(x)
belonging to spheres Sk+εn with εn → 0. This point is stationary but nonisolated.
This contradiction proves that γ+(x)→ +∞. The proof for α(x) is similar.

The following is one of the classical examples of gradient system. Using the
previous results we can get a full picture of the flow.

Example 1.3.10 Consider the function f : R2 → R defined by

f(x, y) = x2(x− 1)2 + y2

and the corresponding gradient system

(x′, y′) = − grad f(x, y) = (−2x(x− 1)(2x− 1),−2y).

The function f is uniformly unbounded and, as a consequence, all positive semi-
trajectories of the flow are bounded. From the expression above we see that the
critical points of f are (0, 0), (1/2, 0), (1, 0) and, thus, γ+(x, y) tends to one of these
points for every (x, y) ∈ R2. The linearization of − grad f(x, y) at the critical points
provides the following matrices(

−2 0
0 −2

)
,

(
1 0
0 −2

)
,

(
−2 0
0 −2

)
,

which shows that (0, 0) and (1, 0) are sinks, hence asymptotically stable, and (1/2, 0)
is a saddle. On the other hand, it can be readily seen that the x and y axes and the
lines x = 1/2 and x = 1 are invariant. The fact that y′ = −2y on the line x = 1/2
implies that the stable manifold at (1/2, 0) is the line x = 1/2 itself. The unstable
manifold at this critical point is the interval (0, 1) on the x-axis.
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To complete the description, we have that the negative bounded semitrajectories
must also tend to one of the critical points, which means that there are just two,
lying in the x-axis with α-limit equal to (1/2, 0). The rest of negative semiorbits
tend to ∞ as t→ −∞.

In the preceding discussion we have not cared whether the system defines a flow
or not, because our qualitative discussion works the same by Remark 1.3.2. In fact,
the solution of the system is

ϕ(x, t) =
(
1
2

+ 1
2

2x−1√
(2x−1)2−4x(x−1)e2t

,−2ye−2t
)
,

whose domain is the set

Ω ⊂ R2 × R : (2x− 1)2 − 4x(x− 1)e2t > 0.

In any case, we do not even need to know this to describe the dynamics!

1.4 Lusternik-Schnirelmann category

An important connection between topology and the theory of gradientlike flows is
provided by the Lusternik-Schnirelmann Theorem, which gives an estimation from
below of the number of stationary points.

First we recall the following notion. Suppose that M is a metric space and X
is a closed subset of M . The Lusternik-Schnirelmann category of X in M , denoted
by catM(X), is the smallest k such that X is the union X = X1 ∪ · · · ∪ Xk of k
closed subsets X1, . . . , Xk which are contractible in M ; if no such k exists we write
catM(X) = ∞. If there is no possibility of confusion we write cat(X) = catM(X).
It is straightforward to see that the Lusternik-Schnirelmann category is subadditive:
cat(A∪B) ≤ cat(A) + cat(B) for A,B ⊂M and that it is monotonous with respect
to deformations: if f : A → M is a deformation of a closed set A of M then
cat(A) ≤ cat(f(A)).

For instance, for a n-sphere cat(Sn) = 2: it is the union of two contractible
hemispheres but not contractible in itself. On the other hand, it is known that the
unit sphere S∞ in an infinite dimensional normed vector space M is a retract of
M and from this it follows that S∞ is contractible in itself and cat(S∞) = 1. In
general, the calculation of the category is not an easy matter, but some important
examples are well-know. For instance, for the n-torus cat(Tn) = n + 1. Also, if M
is a compact manifold of dimension m, cat(M) ≤ m+ 1.

The estimation of stationary points is as follows:
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Theorem 1.4.1 (Lusternik-Schnirelmann) Let ϕ : M × R → M be a gradi-
entlike flow on a locally (or, more generally, semilocally) contractible and compact
metric space M . Then the number of stationary points of ϕ is bounded from below
by catM(M).

Proof. Suppose that the number of stationary points is finite (otherwise there
is nothing to prove). Label the stationary points x1, . . . , xr in such a way that
f(xi) ≤ f(xi+1) (where f is the Lyapunov map). Then, by Corollary 1.3.4, for ev-
ery nonstationary point x ∈ M the omega-limit ω(x) and the alpha-limit α(x) are
stationary points, xi and xj respectively, with f(xi) < f(x) < f(xj), hence i < j.
Note that this implies ω(x) 6= α(x), that is, ω = α exactly for stationary points.
On the other hand, f(x) ≤ f(xr) for all x, and f(x) < f(xr) if x is not stationary
(because then f(x) < f(α(x)) = f(xk) ≤ f(xr)).

For 0 ≤ k ≤ r we define

Mk = {x ∈M : α(x) = xj, j ≤ k},
M∗

k = {x ∈M : ω(x) = xi, i > k}.

Notice that the opposite flow ϕ(x,−t) has the opposite Lyapunov map −f and the
same critical points ordered backwards. Consequently Mk and M∗

` change places
with ` = r − k and everything we prove for the Mk’s follows for the M∗

` ’s.

Let us list some immediate facts (one sees the duality just mentioned):

1. x` ∈Mk for ` ≤ k, x` ∈M∗
k for ` > k, Mk ∩M∗

k = ∅, Mk ∩M∗
k−1 = {xk}.

Consequently, if x /∈Mk (resp. M∗
` ), then α(x) ∈M∗

k (resp. ω(x) ∈M`).

2. Mk−1 ⊂ Mk, M
∗
k ⊂ M∗

k−1, M0 = M∗
r = ∅, M1 = {x1},M∗

r−1 = {xr}, Mr =
M∗

0 = M .

3. Mk and M∗
` are invariant, and we can restrict the flow to them.

4. Mk attracts all points in M \M∗
k and M∗

` repells all points in M \M`.

More delicate is that

5. Mk and M∗
` are closed, hence compact.

Indeed, first we consider Mr−1. Suppose there is a sequence xn → x with xn ∈Mr−1.
Then α(xn) = xj with j < r and we can assume the same j for all xn. Thus we
find a decreasing sequence tn → −∞ with xntn → xj. By way of contradiction,
let x /∈ Mr−1, that is α(x) = xr. Thus for each n, xνtn → xtn, hence for each n
there is νn ≥ n with d(xνntn, xtn) < 1/n and since α(x) = xr, we get xνntn → xr.
Next, choose ε > 0 such that B[xj, ε] contains no critical point but xj. For almost
all n we have xνntνn ∈ B(xj, ε), xνntn /∈ B[xj, ε], and there is xνnsn ∈ S(xj, ε) with
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tνn < sn < tn; by compactness of S(xj, ε) we can suppose xνnsn → y ∈ S(xj, ε). We
have f(xj) > f(xνnsn) > f(xνntn), so in the limit f(xj) ≥ f(y) ≥ f(xr). But this
implies f(xj) = f(y) = f(xr) and y is a critical point. Contradiction, as there is
none in S(xj, ε).

For k < r the same argument shows that Mk is closed in Mk+1, where the flow
can be restricted and we are left with the critical points x1, . . . , xk+1. For M∗

` we
use duality.

Finally we prove stability:

6. Mk (resp. M∗
` ) has a neighborhood basis of positively (resp. negatively) invari-

ant neighborhoods.

Since M \M∗
k is open, it is a neigborhood of Mk, and we have to prove that for any

closed neighborhood U ⊂M \M∗
k of Mk the set

W = {x ∈ U : γ+(x) ⊂ U}

is a neighborhood of every point x ∈Mk. But otherwise there would be a sequence
xn → x and tn > 0 such that xntn /∈ U . Since x is interior to U we get xntn ∈ ∂U
for a new tn, and ∂U being compact, we can take tn = min{t ≥ 0 : xnt ∈ ∂U}.
If tn has a convergent subsequence, we can simply suppose tn → t0, and then
xntn → xt0 ∈ Mk ∩ ∂U , impossible. Hence let tn → ∞. As ∂U is compact, we
can suppose xntn → y ∈ ∂U . Then for every s < 0 we have xn(tn + s) → ys and
xn(tn + s) ∈ U (recall the choice of tn). Since U is closed, ys ∈ U for s < 0, and
α(y) ∈ U . But since y /∈ Mk, then xj = α(y) ∈ M∗

k . Since y /∈ Mk, j > k and thus
xj ∈M∗

k ∩ U , contradiction. The assertiion for M∗
` follows by duality.

Consequently, we can say that Mk is an attractor.and M∗
k is a repeller. In

particular each pair (Mk−1, xk) is an attractor-repeller decomposition of the flow
restricted to Mk (recall that Mk ∩M∗

k−1 = {xk}).
Now we come to the key construction to estimate cat(M).

There is a sequence of positively invariant closed neighborhoods Uk ⊂M \M∗
k of

Mk and closed contractible neighborhoods Vk ⊂ Uk of xk such that Uk−1 ∪ Vk is a
closed neighborhood of Mk:

(∗) Mk ⊂ Uk−1∪Vk ⊂ Uk ⊂M\M∗
k .

Here U0 = ∅.

We start with Ur = M and by descent suppose Uk given and are to construct Uk−1
and Vk. Note that Uk is a neighborhhod of Mk, hence of Mk−1. Since xk ∈Mk ⊂ Uk
and M is semilocally simply conected, pick any closed neighboorhood Vk ⊂ Uk of
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xk which is contractible in M , and choose B = B(xk, ε) ⊂ Vk. By stability, Mk−1
has a positively invariant closed neighborhood U ⊂ (M \M∗

k ) ∩ Uk; let W ⊂ Wk be
the interiors of U ⊂ Uk respectively. If Mk ⊂ W ∪ B, then Uk−1 = U does the job,
hence we suppose Mk 6⊂ W ∪ B. Then the Lyapunov function f has a maximum
on the nonempty compact set Mk \W ∪ B, which is < f(xk), hence < a < f(xk)
for suitable a. Indeed, if x ∈ Mk \W ⊂ Mk \Mk−1 and x 6= xk, then α(x) = xk
and f(x) < f(xk). In this situation Uk−1 = U ∪

(
f−1(−∞, a] ∩ Uk

)
is a positively

invariant closed neighborhood of Mk−1. Besides,

Mk ⊂ W ∪
(
f−1(−∞, a) ∩Wk) ∪B,

hence Uk−1∪Vk ⊂ Uk a closed neighborhood of Mk. This completes the construction.

As announced, we are now ready to estimate cat(M) using (∗) above. Firstly, the
flow gives a deformation of Uk into E = Uk−1∪Vk, because Uk is positively invariant
and there is a > 0 such that ϕa(Uk) ⊂ E. For, otherwise, we find sequences xn ∈ Uk,
and tn → +∞ such that xntn /∈ E. Then xn /∈ M∗

k and ω(xn) ∈ Mk ⊂ E, hence
xnt ∈ W for t large, and xntn ∈ ∂E for a bigger tn. By compactness, taking
subsequences we have xntn → y ∈ ∂E and xn → x ∈ Uk. Thus ω(x) ∈ Mk and
a trick used before gives xνntn → ω(x) with tνn > tn. Choose now, by stability, a
positively invariant closed neighborhood F of Mk (hence of ω(x)) contained in the
interior of E. We have, for large n,

xνntνn = xνntn(tνn − tn) ∈ F (tνn − tn) ⊂ F.

Then y ∈ F = F , which is impossible because F does not meet ∂E. Note that this
works the same for k = 1, so that U1 can be deformed into U0 ∪ V1 = V1.

Once we are given this deformation, by the basic properties of the category,

cat(Uk) ≤ cat(Uk−1) + 1,

which includes cat(U1) = 1. Hence:

cat(M) = cat(Ur) ≤ cat(Ur−1)+1 ≤ (cat(Ur−2)+1)+1

= cat(Ur−2)+2 ≤ · · · ≤ cat(U1)+r−1 = r.

This completes the proof.

Before the theorem we listed the values of some categories, and from the previous
theorem we deduce now that every gradientlike flow in Sn has at least two stationary
points, in S∞ at least one, in T n at least n+ 1.



22 GRADIENT FLOWS AND ELEMENTS OF MORSE THEORY

Remark 1.4.2 It is worth noting that in the proof of Theorem 1.4.1 we have con-
structed a filtration of M by attractors

∅ = M0 ⊂M1 ⊂ · · · ⊂Mk ⊂ · · · ⊂Mr = M

and another filtration by repellers

∅ = M∗
r ⊂M∗

r−1 ⊂ · · · ⊂M∗
r−k ⊂ · · · ⊂M∗

0 = M

such that for every k the set M \ (Mk ∪M∗
k ) is composed of the connecting orbits,

i.e. the orbits γ(x) such that ω(x) ⊂ Mk and α(x) ⊂ M∗
k . In other words, the pair

(Mk,M
∗
k ) defines an attractor-repeller decomposition of M .

1.5 Morse functions

In this section, M stands for a compact m-manifold. When needed, we can suppose
M embedded in an affine space, say M ⊂ Rp.

We introduce the following basic definition.

Definition 1.5.1 A smooth function f : M → R is called a Morse function when
all its critical points are non-degenerate.

As we know, non-degenerate critical points are isolated, so Morse functions have
only a finite number of critical points. At each one of them the Hessian matrix of a
localization f ◦ ϕ is symmetric and its eigenvalues are all real 6= 0. The number of
negative eigenvalues is called the Morse index of f at the critical point. This notion
does not depend on the particular parametrization ϕ. By 1.2.2 and the comments
that follow, the Morse index of f at a critical point x0 agrees with the number of
negative eigenvalues of dx0 grad f , and x0 is a hyperbolic point of the gradient flow.
This is of course relevant for our later discussion of gradient flows of Morse functions.

It is not difficult to see that Morse functions abound:

Proposition 1.5.2 Let f : M → R be a smooth function. Recall we can assume
M ⊂ Rp, and for every a ∈ Rp define fa : M → R by fa(x) = f(x) + 〈a, x〉. Let
M ⊂ Rp be the set of all a ∈ Rp such that fa is a Morse function. Then M is a
residual, hence dense, subset of Rp.
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Proof. Here residual means thatM contains a countable intersection of dense open
sets, which implies dense by the Baire Theorem. Since being Morse is a local matter,
and M has a countable basis, we are reduced to consider a parametrization ϕ : U →
M , where U is an open set of Rm. Thus let us see that the a ∈ Rp such that

fa ◦ ϕ(u) = f ◦ ϕ(u) + 〈a, ϕ(u)〉

is a Morse function (on U) form a residual set; we write ga = fa ◦ ϕ and g = f ◦ ϕ.
We are to define a smooth function h : N → Rp such that ga is Morse if and only if
a is a regular value of h, which by the Sard-Brown Theorem implies what we want.

To that end define G : Rp ×U → Rm : (a, u) 7→ gradu ga. Some little calculation
gives:

Gi =
∂g

∂ui
+
∑
k

ak
∂ϕk
∂ui

,
∂Gi

∂ak
=
∂ϕk
∂ui

,
∂Gi

∂uj
=

∂2ga
∂uj∂ui

,

and we have the jacobian matrix

JG =
(
Jϕt |Hess(ga)

)
.

(where the upperscript t means transpose). Clearly N = G−1(0) collects all pairs
(a, u) such that u is a critical point of ga. This N is a manifold by the implicit
function theorem, because rk(JG) ≥ rk(Jϕ) = m because ϕ is a parametrization.
Finally the most natural h we have at hand is the linear projection N → Rp :
(a, u) 7→ a.

After this preparation we only have to check what is a regular value a of h. So
let a be one, that is all (a, u) ∈ N are regular points, and recall these u’s are exactly
the critical points of ga. Back to regularity, the derivative d(a,u)h : T(a,u)N → Rp

must be surjective. Now, N has codimension m in Rp × U , hence dimension p, and
that derivative is surjective if and only if it is injective. On the other hand h is the
restriction of the linear projection, hence d(a,u)h is the linear projection too. Thus
injectivity means that if (0, v) is tangent to N at (a, u) then v = 0. But T(a,u)N is
the kernel of d(a,u)G, hence (0, v) is tangent if and only if

0 = d(a,u)G(0, v) = Hessu(ga)(v).

Thus (a, u) is a regular point if and only if that Hessian is non-degenerate. We
conclude that a is a regular value of h if and only if all critical points u of ga are
non-degenerate.

From this it follows easily a more qualitative density result:
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Corollary 1.5.3 Any continuous function f : M → R can be approximated by
Morse functions.

Proof. Again let M ⊂ Rp. By the previous proposition, there is a ∈ Rp with ‖a‖
arbitrarily small such that fa is a Morse function. Since M is compact, it is bounded,
say M ⊂ B[0, R], and we have

|f(x)− fa(x)| = |〈a, x〉| ≤ ‖a‖‖x‖ ≤ ‖a‖R.

Hence, for ‖a‖ small enough fa is arbitrarily close to f .

By the previous considerations, the critical points of a Morse function f : M → R
are the stationary points of the gradient flow of x′ = − gradx f , which hence are
finitely many. In particular, each critical level of f , that is, the set of critical points
with a given critical value, is finite. In fact, we can even find Morse functions with
a single critical point at each critical level. Namely:

Corollary 1.5.4 Any continuous function f : M → R can be approximated by
Morse functions g whose critical levels are singletons.

Proof. By the previous corollary we can suppose f is a Morse function. Then it has
finitely many critical points, say a1, . . . , ar. Choose diffeomorphisms ϕi : Rm → Ui
onto disjoint open neighborhoods Ui of the ai’s, with ai = ϕi(0). Fix any bump
function θ : Rn → [0, 1] which is ≡ 1 on ‖x‖ ≤ 1 and ≡ 0 on ‖x‖ ≥ 2, and define
θi = θ ◦ϕ−1i : M → R (θi ≡ 0 off Ui). We claim that for generic t = (t1, . . . , tr) near
0 ∈ Rr the function

g = f +
∑

i
tiθi

solves our problem.

Indeed, first note that ‖f − g‖ ≤
∑

i |ti| is arbitrarily small for t is close to 0,
hence g approximates f . Now let us look at the critical points of g.

Firstly, g ≡ f off the sets ϕi(‖x‖ ≥ 2), hence g has no critical point there.
Secondly, g ≡ f + ti on each ϕi(‖x‖ ≤ 1), hence ai is the unique critical point of
g in that set. Thus we are left with the sets ϕi(1 < ‖x‖ < 2). There we write
gi = g ◦ ϕi, fi = f ◦ ϕi, so that gi = fi + tiθ. Now, for ti small enough

‖ gradx gi‖ = ‖ gradx fi + ti gradx θ‖ ≥ ‖ gradx fi‖ − |ti|‖ gradx θ‖ > 0,

because on 1 ≤ ‖x‖ ≤ 2, grad fi does not vanish and grad θ is bounded. Thus for t
small enough, the critical points of g are the ai’s and

g(ai) = f(ai) +
∑
j

tjϕj(ai) = f(ai) + ti.
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Consequently, if g(ai) = g(aj), we have ti − tj = fj(aj) − fi(ai). If fj(aj) 6= fi(ai)
this fails for t close enough to 0, and if fj(aj) = fi(ai) we impose ti 6= tj. All in all
we get what we want for t small enough off some hyperplanes ti = tj.

The local structure of the critical points of a Morse function is perfectly under-
stood by the following famous lemma.

Lemma 1.5.5 (Morse Lemma) Let f : M → R be a Morse function and let
x0 ∈ M be a critical point of f of index d. There is a parametrization ϕ : U → M
such that

f ◦ ϕ(u) = f(x0) + u21 + · · ·+ u2m−d − u2m−d+1 − · · · − u2m.

Proof. Again, this is a local question, hence we can suppose M an open ball in Rm

centered at x0 = 0. We claim that f(x) = f(0) + xQ(x)xt for a smooth symmetric
matrix Q(x).

This is just a cheap Taylor expansion. First we have

f(x)− f(0) =

∫ 1

0

∂

∂s
f(sx)ds =

∑
i
xi

∫ 1

0

∂f

∂xi
(sx)ds,

which gives f(x) = f(0) +
∑

ixigi(x) for the obvious gi’s. Next we do the same for
each gi to get

gi(x) = gi(0) +
∑

j
xjgij(x),

and insert it in the previous formula:

f(x) = f(0) +
∑

i
xigi(0) +

∑
ij
xixjgij(x).

Now, since x0 = 0 is a critical point of f the linear part vanishes. As for the
quadratic remainder, we symmetrize via the matrix Q(x) = [1

2
(gij(x)+gji(x)] to

obtain the formula claimed.

Next we seek a local diffeomorfism x = h(y) such that h(y)Q(h(y))h(y)t =
yQ(0)yt.

Look at Rm×m as the space of m×m matrices. Consider the linear subspace Σ
of symmetric matrices and the smooth mapping

ζ : Rm×m → Σ : A 7→ AQ(0)At.

An easy computation gives the derivative at the identity matrix:

dIζ(A) = Q(0)At + AQ(0),
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which is surjective: any B ∈ Σ is dIζ(A) for A = 1
2
BQ(0)−1 (recallQ(0) is symmetric

as well as B). By the implicit function theorem, ζ has a smooth left inverse ξ : W →
Rm × Rm defined on an open neighborhood W ⊂ Σ of ζ(I) = Q(0), that is:{T = ζ ◦ ξ(T ) = ξ(T )Q(0)ξ(T )t for T ∈ W ,

ξ(Q(0)) = I.

Back to our situation we have T = Q(x) ∈ W for x close to 0, hence

xQ(x)xt = xξ(Q(x))Q(0)ξt(Q(x))xt = yQ(0)yt,

where y = xξ(Q(x)). This is a local diffeomorphism at y = 0:

d0y = Iξ(Q(0)) + 0 · d0(ξ ◦Q) = ξ(Q(0)) = I,

and its local inverse is the local diffeomorphism x = h(y) we sought.

Finally, by derivation of f(x) = f(0) + xQ(x)xt we find Q(0) = 1
2

Hess0(f),
hence Q(0) and Hess0(f) have the same index d. Consequently, a linear change
of coordinates transforms Q(0) to diagonal form D = 〈1, . . . , 1,−1, . . . ,−1〉 with d
signs −1. In the new coordinates (u1, . . . , um) we have

xQ(0)xt = uDut = u21 + · · ·+ u2m−d − u2m−d+1 − · · · − u2m,

and we are done.

1.6 Morse fields

We keep the setting of the preceding section: M is a compact m-manifold, embedded
in some Rp.

Let f : M → R be a Morse function, x0 ∈ M a critical point of f and ϕ a
parametrization at x0 as provided by the Morse Lemma:

f ◦ ϕ(u) = f(x0) + u21 + · · ·+ u2m−d − u2m−d+1 − · · · − u2m.

As remarked in Section 1.2, the expression of the field gradϕ(u) f in these local
coordinates need not be

gradu(f ◦ ϕ) = 2(u1, . . . , um−d,−u−m−d+1, . . . ,−um).

Thus, in order to make full use of the Morse Lemma for the study of gradients we
introduce the following notion.
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Definition 1.6.1 Let f : M → R be a Morse function and let F : M → Rp be a
tangent vector field on M . We say that F is a Morse field for f if:

1. For every point x ∈ M we have dxf(F (x)) ≤ 0, with equality if and only if x
is a critical point of f , and

2. For every critical point x ∈ M of f there is a parametrization ϕ : U → M
with ϕ(0) = x such that f ◦ϕ(u) = f(x) +u21 + · · ·+u2m−d−u2m−d+1−· · ·−u2m
and F ◦ ϕ(u) = −2(u1, . . . , um−d,−u−m−d+1, . . . ,−um).

It is clear from the definition that the stationary points of the flow are the
critical points of f , and the flow of the equation x′ = F (x) is gradientlike with strict
Lyapunov map f .

Proposition 1.6.2 Every Morse function f : M → R has a Morse field F .

Proof. We remark compactness is not used in the proof. For each critical point
x0 of f the Morse Lemma gives a parametrization ϕ : U → M with ϕ(0) = x0
and f ◦ ϕ(u) = f(x0) + u21 + · · · + u2m−d − u2m−d+1 − · · · − u2m. We can reduce the
U ’s for the images ϕ(U) to be disjoint. Next we cover all non-critical points with
parametrizations ϕ : U → M whose images ϕ(U) contain no critical point. These
U of two types cover M and we consider a partition of unity {θU} subordinated to
the cover {U}.

Next, por each U we transport the field − grad(f ◦ ϕ) from U to ϕ(U) by the
formula

FU(x) = duϕ(− gradu(f ◦ ϕ)) for x = ϕ(u) ∈ ϕ(U).

As is customary, we can extend θUFU by zero off U and then the finite sum F =∑
U θUFU defines a tangent field on M .

Let us check that F is a Morse field for f . Condition 2 of the definition is
guaranteed by construction. For Condition 1 we compute dxf(F (x)) at a given
x ∈M . The sum F (x) =

∑
θU(x)FU(x) is finite in a neighborhood of x = ϕ(u) and

we compute as follows:

dxf(F (x)) =
∑

θU(x)dxf(FU(x)) =
∑

θU(x)dxf(duϕ(− gradu(f ◦ ϕ)))

=
∑

θU(x)du(f ◦ ϕ)(− gradu(f ◦ ϕ)))

= −
∑

θU(x)‖ gradu(f ◦ ϕ)‖2 ≤ 0

since all θU are ≥ 0. Now suppose the sum vanishes. Then all summands do, and
since not all θU(x) can vanish (their sum is 1!)) we have some gradu(f ◦ϕ) = 0 and
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x = ϕ(u) is a critical point.

Next we recall that, in the usual setting of a flow with Lyapunov function f :
M → R, the unstable manifold W u(x0) of a stationary point x0 consists of the
points x whose α-limit is the point x0, and the stable manifold W s(x0) consists of
the points x whose ω-limit is the point x0. Note here that unstable becomes stable
and conversely if we substitute −f for f and reparametrize the flow by −t.

For Morse fields we have the following result:

Proposition 1.6.3 (Unstable Manifold Theorem for Morse fields) Consider
a Morse function f : M → R and a Morse field F for f . Suppose that x0 is a crit-
ical point of f . Then the unstable manifold W u(x0) for the flow of x′ = F (x) is
diffeomorphic to Rd, where d is the index of x0.

Proof. By definition, there is a parametrization ϕ : U → M with ϕ(0) = x0 such
that {

f ◦ ϕ(u) = f(x0) + u21 + · · ·+ u2m−d − u2m−d+1 − · · · − u2m,
F ◦ ϕ(u) = duϕ(− gradu(f ◦ ϕ)), u ∈ U.

Write v = (u1, . . . , um−d), w = (um−d+1, . . . , um). For later discussions of the in-
volved flows we can suppose U is an open ball in Rm and f(x0) = 0. Consequently,
in ϕ(U) the flow of x′ = F (x) is the image by ϕ of the flow of

− gradu(f ◦ ϕ) = 2(−u1, . . . ,−um−d, um−d+1, . . . , um),

that is ϕ(u)t = ϕ(ut) for u, ut ∈ U . Now we choose ε > 0 small enough for U to
contain the closed m-ball B[0, ε].

The flow ut is well known, and actually defined on the whole Rm:

ut = (ve−2t, we2t) for u = (v, w) ∈ Rm−d × Rd.

Its unstable manifold is {v = 0} = {0} × Rd ≡ Rd and the restriction

ϕ| : Rd ∩B[0, ε]→ W u(x0)

is well defined. It is smooth and injective, and we claim it extends to a diffeomor-
phism Rd → W u(x0). For this we find a different description of ϕ off the origin.

For each u = (0, w) 6= 0 there is a unique s such that ‖us‖ = ε. We compute it
explicitely: from

ε = ‖us‖ = ‖(0, we2s)‖ = ‖w‖e2s = ‖u‖e2s,
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it follows s = 1
2

log(ε/‖u‖). In case 0 < ‖u‖ ≤ ε we get

ϕ(u) = ϕ(us(−s)) = ϕ(us)(−s).

Now define

ψ : Rd \ {0} → W u(x0) \ {x0} : w ≡ (0, w) = u 7→ x = ϕ(us)(−s),

using the flow of x′ = F (x). Clearly this is well defined and smooth, and coincides
with ϕ on Rd ∩B[0, ε] \ {0}. Thus, we set ψ(0) = ϕ(0) = x0.

Now, ψ is bijective. We must see that the trajectory of any given x ∈ W u(x0),
x 6= x0, meets S ′ = ϕ(Rd ∩ S(0, ε)) at a unique point. Note that f ≡ −ε2 on S ′,
from which uniqueness follows readily because f is a Lyapunov map for the flow,
hence injective on the trajectory of x. Let us check that indeed the trajectory xt
hits S ′.

Since limt→−∞ xt = x0 there is t0 such that xt ∈ ϕ(B(0, ε)) for all t ≤ t0. In
particular xt0 = ϕ(u) for some u ∈ B(0, ε) and since ϕ−1(xt) is defined for t ≤ t0, it
is the negative trajectory of u: ϕ−1(xt) = u(t− t0). Hence

lim
t→−∞

u(t− t0) = lim
t→−∞

ϕ−1(xt) = ϕ−1
(

lim
t→−∞

xt
)

= ϕ−1(x0) = 0

and u belongs to the unstable manifold Rd. Thus xt0 = ϕ(u) ∈ ϕ(Rd ∩ B(0, ε)).
Then, for the s found above such that ε = ‖us‖, we have

x(t0 + s) = xt0s = ϕ(u)s = ϕ(us) ∈ ϕ(Rd ∩ S[0, ε]) = S ′.

It remains to show that ψ−1 : W u(x0) → Rd is differentiable. For x ∈ W u(x0),
x 6= x0, consider the implicit equation f(xt) = −ε2. Since F is a Morse field for f
we have

∂
∂t
f(xt) = dxtf(F (xt)) < 0,

and by the implicit functions theorem, there is a smooth solution tx such that
f(xtx) = −ε2. Then

ψ−1(x) = ϕ−1(xtx)(−tx),
is differentiable for x 6= x0.

Finally, we show ψ−1 is differentiable at the critical point x0. Since ψ and
ϕ coincide on Rd ∩ U , ψ−1 and ϕ−1 coincide on V = ψ(Rd ∩ B(0, ε)). As the
parametrization ϕ is a diffeomorphism, it is enough to see that V is a neighborhood of
x0 in W u(x0), or equivalently that x0 is not adherent to W u(x0)\V = ψ(Rd\B(0, ε)).

For suppose it is: there is a sequence un ∈ Rd \ B(0, ε) with xn = ψ(un) → x0.
If there is a limit unk

→ u0, then ψ(u0) = x0 and u0 = 0, so that unk
∈ B(0, ε) for
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k large, which is not the case. Consequently, we can suppose ‖un‖ → ∞, or merely
‖un‖ > ε. By definition xn = ϕ(unsn)(−sn) with ‖unsn‖ = ε. We know also that
sn = 1

2
log(ε/‖un‖) and, since ‖un‖ > ε, it is sn < 0. Thus

−ε2 = f(ϕ(unsn)) > f(ϕ(unsn)(−sn)) = f(xn)→ f(x0) = 0.

This contradiction ends the proof.

A similar result can be deduced for the stable manifold, replacing f by −f and
F by −F . In this case, the manifold W s(x0) is diffeomorphic to Rm−d, where m is
the dimension of M .

The unstable (stable) manifold theorem also holds for gradient fields of Morse
functions, although the proof is considerably more difficult.

Corollary 1.6.4 Consider a Morse function f : M → R and a Morse field F for
f . Then M is the disjoint union of the unstable manifolds W u(xi) of the critical
points xi of f , hence M is a disjoint union of open cells of dimension di, where di
is the index of xi. The same statement is valid for the stable manifolds.

Proof. As we know, for every point x ∈ M the α−limit of the trajectory γ(x) con-
sists of a critical point xi. Therefore x ∈ W u(xi). On the other hand, the unstable
manifolds of different critical points are disjoint. The result is then a consequence of
the preceding Unstable Manifold Theorem. The argument is the same for the stable
manifolds.

To illustrate the simplest case, consider a compact and connected manifold M
of dimension 1. The previous corollary provides (from any chosen Morse function
on M) a decomposition of M into a finite number of points and Jordan arcs. Using
the fact that M is locally homeomorphic to R, we obtain that every point must be
the endpoint of at most two arcs (not belonging to them) and using connectednes
we easily obtain that M is topologically the circle S1. This is a well known fact.
For a direct and elementary proof see [ORRz] or [SjRz].

1.7 Examples

We have proved that Morse functions abound, but it is interesting to exhibit explicit
examples. Here we present some, of the type described in Corollary 1.5.4. These
examples should give a good idea of the general purpose behind the scenes.

The first three of them formalise the intuition in the figure below.
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(1.7.1) Height functions on spheres. Let Sn ⊂ Rn+1 be the unit sphere
x20 + · · · + x2n = 1. The simplest Morse function f : Sn → R is the restriction of
the 0-th projection: x 7→ x0. For n = 2 we can think of x0 as the vertical axis; in
general, we take p+ = (1, 0, . . . , 0) for north pole and p− = (−1, 0, . . . , 0) for south
pole. Thus the name height for f is only natural. We analise the critical points of
f as follows.

The parametrizations defined by the stereographic projection from p− and p+
are ϕ−(x1, . . . , xn) =

(1−‖x‖2
1+‖x‖2 ,

2x1
1+‖x‖2 , . . . ,

2xn
1+‖x‖2

)
,

ϕ+(x1, . . . , xn) =
(−1+‖x‖2

1+‖x‖2 ,
2x1

1+‖x‖2 , . . . ,
2xn

1+‖x‖2
)
,

so that f ◦ ϕ−(x1, . . . , xn) = 1−‖x‖2
1+‖x‖2 = −1+ 2

1+‖x‖2 ,

f ◦ ϕ+(x1, . . . , xn) = −1+‖x‖2
1+‖x‖2 = 1− 2

1+‖x‖2 .

We get

∂f ◦ ϕ−
∂xi

(x1, . . . , xn) =
−4xi

(1 + ‖x‖2)2
,

∂f ◦ ϕ+

∂xi
(x1, . . . , xn) =

4xi
(1 + ‖x‖2)2

,

and the only critical point in both cases is the origin, so that f has two critical
points: the poles. We already knew they are the only local extremal points of f ,
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and both global, pN maximum and pS minimum (f(pN) = 1, f(pS) = −1). On the
other hand, a little more calculation and we see

Hess0(f ◦ ϕ−) = −4I, Hess0(f ◦ ϕ+) = 4I,

and conclude pN has index n and pS has index 0.

This is a quite particular situation, and in fact characterizes topological spheres.
Indeed, we will prove that a compact connected smooth manifold which has a Morse
function with exactly two critical points is homeomorphic to a sphere. Note that by
compactness f has two global extrema that must be the two critical points.

This is the Reeb lemma, with gives a homeomorphism, not a diffeomorphism.
Actually, a diffeomorphism need not exist, and here enter Milnor’s exotic spheres.
These are spheres with non-standard differential structures. And there are a lot,
although their distribution by dimension is quite chaotic. It is known that there are
exotic differentiable structures in spheres of any odd dimension n 6= 1, 3, 5, 13, 29, 61,
and in spheres of any even dimension n < 124, n 6= 2, 4, 6, 56. The case n = 4 re-
mains misterious, although the specialist consider there must be exotic 4-spheres.
However many proposed examples have been excluded (one by J.M. Montesinos
in 1983). On the other hand, the distribution of exotic structures by dimension
is rather amazing too. For instance, for dimension n = 7 their number is 8, for
n = 11, 992, for n = 15, 16256, for n = 16, 2, ...

(1.7.2) Height functions on the torus. We consider the parametrization of
the torus M ⊂ R3 given by

x = (2 + cosu) cos v

y = − sinu

z = (2 + cosu) sin v + 3,

which describes the torus in “vertical” position, resting over the plane z = 0.

The tangent plane at a point p ∈ M of local coordinates (u, v) is generated by
the ortogonal vectors{

ϕu = (− sinu cos v,− cosu,− sinu sin v),

ϕv = (−(2 + cosu) sin v, 0, (2 + cosu) cos v).

The map H : R3 → R : a = (x, y, z) 7→ z measures the height of a point over
the plane z = 0. We consider h = H|M : M → R. Obviously gradaH = (0, 0, 1) for
every point a ∈ R3. We calculate grada h = πa(gradaH), where πa is the ortogonal
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projection of R3 over the tangent plane of M at a. The vector gradh(a) can be
expressed as a linear combination αϕu + βϕv, where{

α = (grada h)ϕu/‖ϕu‖2 = (gradaH)ϕu/‖ϕu‖2 = − sinu sin v/‖ϕu‖2,
β = (2 + cosu) cos v/‖ϕv|2.

There are four critical points, with local coordinates (0, 3π/2), (π, 3π/2), (π, π/2)
and (0, π/2), and different critical values 0, 2, 4 and 6. Now, it is a routine matter
to compute the Hessian matrix:(

huu huv
hvu hvv

)
=

(
− cosu sin v − sinu cos v
− sinu cos v −(2 + cosu) sin v

)
.

For the critical points (0, 3π/2), (π, 3π/2), (π, π/2), (0, π/2) we obtain:(
1 0
0 3

)
,

(
−1 0
0 1

)
,

(
1 0
0 −1

)
,

(
−1 0
0 −3

)
,

of course nonsingular matrices. We find, respectively, an attractor, a saddle, another
saddle and a repeller for the gradient sistem − gradh in the torus.

(1.7.3) Height functions on tori. Let us think of tori Tg of any genus g ≥ 1.
We can use equations in R3 of the form

Tg : x2 + h(y, z)2 = a2,

where h = 0 defines a compact curve with g − 1 simple crossings, like g circles
centered at the z axis, each tangent to the next. Then for ε > 0 small, the
nonsingular perturbations h = ε and h = −ε are, respectively, 1 and g Jordan
curves, the latters inside the former. This explains why the equation above (for
suitable a > 0) represents a torus with g holes. We claim that the height function
f : Tg → R : (x, y, z) 7→ z is a Morse function with the predictable critical points.

First note that the critical points are the points of Tg whose tangent planes are
orthogonal to the z axis, i.e. the points (0, y, z) at which h = ±a and hy = 0 (and
then hz 6= 0). These are the points in the plane x = 0 where the curves h = ±a are
normal to the z axis: 2 points for +a and 2g for −a. Some reflection shows that at
those points hyy > 0. On the other hand, implicit derivation of z = z(x, y) in the
equation x2 + h(x, y)2 = a2 gives the Hessians at those critical points:(

zxx zxy
zyx zyy

)
= −1

hz

(
1
h

0
0 hyy

)
,
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which are non-degenerate.

In conclusion, f is a Morse function with 2+2g critical points at different heights
with indices 2, 0 (attractor and repeller, extrema of f) for h = +a, and 1 (saddles)
for h = −a.

(1.7.4) Morse functions on real projective spaces. The real projective space
Pn(R) is the quotient of Rn+1 \ {0} by the relation x ∼ x′ if and only if x′ = λx
for some λ ∈ R (hence λ 6= 0). We denote x = (x0, . . . , xn) points in Rn+1 and
z = (z0 : . . . : zn) points in Pn(R). The projective space is also the quotient
of the unit sphere Sn ⊂ Rn+1 by the same relation, which in the sphere reduces
to antipodal identification. We get a covering of two sheets Sn → Pn(R). The
differential structure on Pn(R) makes this covering a local diffeomorphism. It can
also be described by the affine parametrizations of the open sets Uk = {x ∈ Pn(R) :
xk 6= 0}:

ϕk : Rn → Uk : x 7→ (x0 : . . . : 1 : . . . : xn),

where 1 is inserted as k-th component that is missing in x.

We want to define a Morse function in Pn(R) by

f : Pn(R)→ R : x 7→ 1

‖x‖2
∑
k

akx
2
k.

Since the antipodal identification is a local diffeomorphism, we have to analise the
critical points of

g : Sn → R : x 7→
∑
k

akx
2
k.

We can parametrize each semisphere xk > 0 (note that xk < 0 is the same in Pn(R))
by

ψk : Bn → Sn : x 7→ (x0, . . . ,
√

1− ‖x‖2, . . . , xn),

where Bn is the unit open ball and x does not have the k-th component. Then:

g ◦ ψk(x) = ak +
∑
`6=k

(a` − ak)x2` .

This is a quadratic function, hence it is Morse if it is non degenerated. This requires
a` 6= ak. Then the only critical point is the origin, and its index is the number of
negative differences a` − ak. To simplify suppose a0 < · · · < an and the index is
k. Since ψk(0) = (0, . . . , 1, . . . , 0) ∈ Sn, down to Pn(R), we find the critical point
(0 : . . . : 1 : . . . : 0) with critical value ak, non degenerated of index k.
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Hence, with the assumption a0 < · · · < an, f is a Morse function on Pn(R) with
n+ 1 critical points of indices from 0 to n.

(1.7.5) Morse functions on complex projective spaces. As usual, we will
use the identification C ≡ R2 by real and imaginary parts: z = x + yi ≡ (x, y), so
that |z| =

√
x2 + y2 = ‖(x, y)‖. We have the conjugate z = x − yi and zz = |z|2.

This goes to Cn+1 ≡ R2n+2:

z = (z0, . . . , zn), zk ≡ (xk, yk), ‖z‖ =

√√√√ n∑
k=0

|zk|2 =

√√√√ n∑
k=0

(x2k + y2k).

We denote z(k) ∈ Cn the vector z above without the k-th component.

As is well known, Pn(C) is the quotient of Cn+1 \ {0} by the relation z ∼ z′ if
and only if z′ = λz for some λ ∈ C (hence λ 6= 0). We denote z = (z0, . . . , zn) a
point in Cn+1 and z = (z0 : . . . : zn) the corresponding point in Pn(C). The smooth
(in fact holomorphic) structure of Pn(C) is given by the affine open sets Uk : zk 6= 0
and the parametrizations

ϕk : Cn → Uk ⊂ Pn(C) : z 7→ ϕk(z) = (z0 : . . . : 1 : . . . : zn),

the k-th component missing in z, equal to 1 in ϕk(z).

All of this is standard. Now we claim that

f : Pn(C)→ R : z = (z0 : . . . : zn) 7→ 1

‖z‖2
n∑
`=0

`|z`|2,

is a well defined smooth function and that it is a Morse function. To prove it one
can use the affine parametrizations and much patience, or do something different.
Indeed, we can consider Pn(C) the quotient of S2n+1 by the same relation z′ = λz,
which restricted to that sphere imposes |λ| = 1. In particular, the inverse image of
z ∈ Pn(C) is a circle cut in S2n+2 by the complex line z, which is a real plane. This
is the so-called Hopf fibration S2n+1 → Pn(C) of projective space by circles, a very
important map. But let us come back to our Morse function.

As said we will use a different parametrization of the Uk. Note that any z ∈ S2n+1

with zk 6= 0 is proportional to another with k-component real and positive. In fact,
multiply by λ = zk/|zk| and for the new z it holds

zk =

√√√√1−
n∑
` 6=k

|z`|2 =
√

1− ‖z(k)‖2.
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Furthermore, note that 0 < zk ≤ 1, hence 0 ≤ ‖z(k)‖2 < 1 and we are in the unit
open ball B2n ⊂ Cn ≡ R2n. Thus we obtain the parametrization

ψk : B2n → Uk : z(k) 7→ (z0 : . . . :
√

1− ‖z(k)‖2 : . . . : zn).

With this we compute the localization of f :

f ◦ ψk(z(k)) = k +
∑
6̀=k

(`− k)|z`|2 = k +
∑
`6=k

(`− k)(x2` + y2` ).

This is a non degenerated quadratic function, hence a Morse function whose only
critical point is the origin and has index 2k. Thus the critical points of f are
ψk(0) = (0 : . . . : 1 : . . . : 0), 0 ≤ k ≤ n, with f(ψk(0)) = k, non degenerated of
indices 2k.

Thus indeed, f is a Morse function.

1.8 Morse and Poincaré polynomials

One of the aims of Morse theory is to study the relation between the dynamics of
the gradient system of a Morse function defined on a manifold and the topology of
the manifold. In order to develop this theory we introduce the following notions.
Let M be a compact m-manifold.

Definition 1.8.1 The Morse polynomial of the Morse function f : M → R is

Mf (t) =
∑
x∈K

tµ(x),

where K denotes the set of critical points of f and µ(x) is the Morse index of x.

By cj we denote the number of critical points whose index is equal to j ≥ 0.
Then

Mf (t) =
m∑
j=0

cjt
j.

Observe that Mf (1) =
∑m

j=0 cj is the total number of critical points.
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Example 1.8.2 The polynomials of the Morse function given in the previous sec-
tion are the following:

(1) For the height f : Sn → R of the sphere, Mf (t) = 1 + tn.

(2) For the height f : Tg → R on a torus of genus g, Mf (t) = 1 + 2gt+ t2.

(3) For the Morse function f : Pn(R) → R in a real projective space, Mf (t) =
1 + t+ · · ·+ tn.

(4) For the Morse function f : Pn(C) → R in a complex projective space,
Mf (t) = 1 + t2 + · · ·+ t2n.

This Morse polynomial involves the dynamic of a gradient field on M . Next we
will define a polynomial of purely topological nature. We denote by βj the j-th Betti
number of M .

Definition 1.8.3 The Poincaré polynomial of M is the polynomial

PM(t) =
m∑
j=0

βjt
t.

Observe that PM(−1) =
∑m

j=0(−1)jβj is the Euler characteristic χ(M) of M .

We are now in a position to state the following theorem, which is one of the
central results of the Morse theory.

Theorem 1.8.4 Let f : M → R be a Morse function. Then

Mf (t) = PM(t) + (1 + t)Q(t),

where Q(t) is a polynomial with non-negative integer coefficients.

We remark that the left-hand side contains information on the dynamical invari-
ants of the gradient flow near the critical points and the right-hand side contains
information on the topology of the manifold M . As a consequence, this result estab-
lishes a deep relation between dynamics and topology. For instance, we will compute
the Euler characteristic χ(M):

Mf (−1) = PM(−1) = χ(M).
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Example 1.8.5 In view of the Morse polynomials given above we get:

χ(Sn) = 1 + (−1)n =
{ 0 for n odd,

2 for n even,

χ(Tg) = 1− 2g + (−1)2 = 2− 2g,

χ(Pn(R)) = 1 + (−1) + · · ·+ (−1)n =
{ 0 for n odd,

1 for n even,

χ(Pn(C)) = 1 + (−1)2 + · · ·+ (−1)2n = n+ 1.

The proof of the theorem runs very geometrically studying the decomposition
of M defined by the Morse function f . For every regular value a of f , the level
set f−1(a) is a hypersurface of M and these level sets divide M into pieces whose
topology evolves when a increases from the minimum to the maximum of f . Let us
illustrate this.

Let c0 < · · · < ck < · · · < cr be the critical values of f , and let us suppose f has
one critical point zk at each critical level f−1(ck) (1.5.4). Now choose regular values
ak−1 in between: c1 < a1 < c2 < · · · < ak−1 < ck < ak < · · · < ar−1 < cr. Note that
M being compact c1 must be its minimum and cr its maximum. Then we have the
decomposition

M = Ma1
−∞ ∪Ma2

a1
∪ · · · ∪r−1 Mar

ar−1
∪M+∞

ar ,

where Mak
ak−1

= f−1[ak−1, ak] is a compact manifold whose boundary consists of the

hypersurfaces f−1(ak−1) and f−1(ak), and the unions are made glueing through the
corresponding common critical level f−1(ak) (with a small abuse of notation for
a0 = −∞ and ar+1 = +∞).

The idea is to reconstruct the topology of M from the understanding of the
topology of the pieces.

With this in mind, we start at the minimum c1 = 0 at the unique point z1. By
the Morse lemma,

f(x) = c1 + x21 + · · ·+ x2m

in some local coordinates x in an open neighborhood U of z1. Since the minimum
is unique, f > 0 off U , and we can choose a1 > 0 close enough to 0 so that f > a1
on the compact set M \ U . Thus Ma1

−∞ = f−1(−∞, a1] ⊂ U and

Ma1
−∞ : x21 + · · ·+ x2m ≤ a1 − c1, f−1(a1) : x21 + · · ·+ x2m = a1 − c1.

Hence Ma1
−∞ is a closed ball with boundary the sphere f−1(a1).
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Thus we have described the first piece, but we need a1 → c1. What if a1 → c2?
Let a1 < b1 < c2 with b1 close enough to a1 to have M b1

a1
= f−1[b1, a1] ⊂ U . Then

M b1
a1

: a1 − c1 ≤ x21 + · · ·+ x2m ≤ b1 − c1

is a cylinder with boundary the two spheres f−1(a1) and f−1(b1). It is not difficult
to deduce that

Ma1
−∞ ≈Ma1

−∞ ∪M b1
a1

= M b1
−∞.

Now accept the topology does not change while b1 → c2, so that M b1
a1

is still a
cylinder and the above homeomorphism remains. In other words, we can suppose
a1 arbitrarily close to c2 and go for the piece Ma2

a1
. Accept that for a2 close enough

to c1 we can describe the topology of Ma2
a1

. Next turn to a b2 between a2 and c3 to
find a cylinder joining f−1(a2) and f−1(b2) which remains so when b2 → c3 ... And
go on.

In this way we reach the last piece with ar−1 close to cr, the maximum of f at
zr. We mimic the argument for the minimum. In some local coordinates f(x) =
cr − x21 − · · · − x2m, and

M+∞
ar−1

: x21 + · · ·+ x2m ≤ cr − ar−1, f−1(ar−1) : x21 + · · ·+ x2m = cr − ar−1.

Again we find a ball with boundary a sphere.

This procedure leads to a decomposition of M into pieces of known topology
glued through their boundaries. In the way we asked to accept that: (i) the topology
does not change between consecutive critical points, and (ii) the change through a
critical value can be described well. This is the concern of the following sections.

1.9 Level sets without stationary points

in between

Here we start the formalization of the ideas scketched at the end of the previous
section. We introduce some general notations for a given function f : M → R:

Ma = f−1[a,∞) = {x ∈M :a ≤ f(x)},
M b = f−1(−∞, b] = {x ∈M :f(x) ≤ b},
M b

a = f−1[a, b] = {x ∈M |a ≤ f(x) ≤ b},

where a < b.
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We will consider strict Lyapunov maps f of gradientlike flows, which is the
situation for a Morse function f .

As we asked to accept, nothing happens when stationary points do not occur:

Proposition 1.9.1 Let ϕ : M × R→ M be a gradientlike flow in the metric space
M with strict Lyapunov map f : M → R. Suppose that M b

a is compact and that
there is no stationary point in M b

a. Then Ma is a strong deformation retract of M b

relative to Ma. Furthermore, there is a homeomorphism h : f−1(b) × [0, 1] → M b
a

mapping f−1(b)× {0} onto f−1(b) and f−1(b)× {1} onto f−1(a).

Proof. The deformation is performed by means of the flow. For every point x ∈M b
a

we have an exit time tx ≥ 0 defined in the following way: tx is the unique nonnegative
number which satisfies f(xtx) = a. We prove that the exit map M b

a → R : x 7→ tx
is well defined and continuous. On the one hand, there is at least a t ≥ 0 such
that f(xt) = a. Otherwise x[0,∞) would be contained in M b

a and, since M b
a is

compact, ω(x) would be nonempty and consist of stationary points contained in
M b

a, in contradiction with the hypothesis. Moreover, the fact that f is strictly
decreasing along non stationary orbits implies that such a t is unique.

On the other hand, the exit map is continuous. Let us see that xn → x implies
txn → tx for xn, x ∈ M b

a. If not, taking a subsequence, there is ε > 0 such that
d(txn , tx) ≥ ε. We now show that the sequence txn is bounded. Otherwise we can
suppose txn →∞. Now xntxn ∈ f−1(a) for every n and, by compactness, we can also
assume xntxn → y0 ∈ f−1(a). We say that y0(−∞, 0] is contained in M b

a. Indeed,
for any fixed s < 0 we have xntxns→ y0s, hence there is a subsequence nk such that
d(xnk

txnk
s, y0s) < 1/k. As tnk

+ s > 0 for large k and s < 0, we have

b ≥ f(xnk
) > f(xnk

txnk
s) > f(xnk

txnk
) = a

and xnk
txnk

s ∈ M b
a. Since M b

a is closed, y0s ∈ M b
a. Thus y0(−∞, 0] ⊂ M b

a as said.

But then α(y0) ⊂ M b
a and consists of stationary points, in contradiction with the

hypothesis. We have showed that txn is bounded and can assume txn → t∗. Hence
xntxn → xt∗ and a = f(xntxn)→ f(xt∗). This implies a = f(xt∗) and tx = t∗, that
is, txn → tx against the condition d(txn , tx) ≥ ε.

Once we know tx is continuous, we define r(x) = xtx for x ∈ M b
a and r(x) = x

for x ∈ Ma. This map is continuous because tx = 0 for x ∈ f−1(a) = M b
a ∩Ma,

and is obviously a retraction. The deformation H : M b × I →M b is defined by the
formula H(x, s) = x(stx) for x ∈ M b

a and H(x, s) = x for x ∈ Ma (again this is
continuous because tx = 0 for x ∈ f−1(a)).

Finally, h = H|f−1(b) × I is a homeomorphism onto M b
a. Indeed, for y ∈ M b

a

we can define the entry time: the unique sy ≤ 0 with f(ysy) = b. Using α(y) for
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this entry time as ω(x) was used for the exit time, one sees sy is continuous. Then
we have y = x(stx) if and only if x = ysy, s = −sy/tx (tx 6= 0 because f(x) = b).
These formulae define the inverse of y = h(x, s), and h is a homeomorphism with
the required properties.

As deformation retracts are homotopy equivalences, we get:

Corollary 1.9.2 In the preceding situation, the inclusion i : Ma → M b induces
isomorphisms in cohomology relative to any closed set K0 ⊂ Ma. In particular we
have Hj(M b,Ma) = {0} for every j.

Remark 1.9.3 Suppose our flow is the gradient flow of a smooth Morse function
f : M → R on a compact manifold M . Then the flow is smooth, and the defor-
mation retract H is smooth too. Also, the restriction h = H|f−1(b) × [0, 1] is a
diffeomorphism.

For the exit map tx is smooth. Indeed, tx is the solution of the smooth implicit
function problem F (x, t) = f ◦ ϕ(x, t)) = a and, as computed in the first section to
show f is a strict Lyapunov map, ∂F/∂t < 0, hence 6= 0. Similarly, the entry map
sy is smooth too.

Remark 1.9.4 The homeomorphism h1 : f−1(b) → f−1(a) given by the further-
more of the proposition is h1(x) = xtx. Now suppose that there are no stationary
points in M b

a′ for some a′ < a (for instance, this happens for a′ close enough to a
when the set of stationary points is compact or when f is proper). Then h1 extends
to a homeomorphism M b →Ma.

Indeed, in that case the proposition can be applied to the couple b, a′ and the
couple a, a′ to get homeomorphisms

M b
a′ ≈ f−1(b)× I ≈ f−1(a)× I ≈Ma

a′ ,

where the one among cylinders comes from h1 above, hence extends h1 to M b
a′ . But

one immediately checks h1 is the identity on f−1(a′), hence it glues well with the
identity on Ma′ to obtain the homeomorphism we sought.

Whether there is a diffeomorphism M b → Ma for the gradient flow of a Morse
function is a crucial matter.

We conclude the section with this very important fact:
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Proposition 1.9.5 (Reeb’s Lemma) Let M be a compact manifold and suppose
there is a Morse function f : M → R with exactly two critical points. Then M is
homeomorphic to a sphere.

Proof. Since M is compact, f has a maximum b0 and a minimum a0 < b0. They
are critical points of f , hence there are no more. Consequently, there is a unique
point x0 with value a0 and a unique x1 with value b0. As explained at the end
of the previous section, for a > a0 close enough to a0, the set Ma is a closed ball
with boundary f−1(a), and arguing similarly with the maximum b0, for b < b0 close
enough to b0, the set Mb is a closed ball with boundary f−1(b). We have

M = Ma ∪aM b
a ∪bMb.

Here the first piece is a ball, the second a cylinder and the third another ball, and
the unions go through the spheres f−1(a) and f−1(b) pointed by the subindices.

Consider the unit sphere S = Sm : y21 + · · · + y2m+1 = 1 in Rm+1 and mimic the
decomposition of M using the last coordinate as Morse function:

Sa : ym+1 ≤ −1
2
, Sba : −1

2
≤ ym+1 ≤ 1

2
, Sb : ym+1 ≥ 1

2
.

This three pieces are of course a ball, a cylinder and a ball and we have homeomor-
phisms (in fact diffeomorphisms)

ha : Ma → Sa, h : M b
a → Sba hb : Mb → Sb,

but of course they need not glue to a global homeomorphism M → Sm. So let
us modify ha and hb to amend this. Since the middle pieces are cylinders, we can
suppose that h maps the upper boundary f−1(b) onto ∂Sb : ym+1 = 1

2
and the lower

one f−1(a) onto ∂Sa : ym+1 = −1
2

and so h restricts to homeomorphisms

ga : f−1(a)→ ∂Sa, gb : f−1(b)→ ∂Sb.

Then ga (resp. gb) extend to homeomorphisms h′a : Ma → Sa, h′b : Mb → Sb. Let
us do it for ga. Since Ma and Sa are balls, be can suppose ga : Sm−1 → Sm−1, and
define the extension to the ball Bm by

h′a : Bm → Bm : y 7→
{‖y‖ga(y/‖y‖) for x 6= 0,

0 for x 6= 0.

Finally, h′a, h, h
′
b glue well to give a homeomorphism from M onto Sm.

The key is that the above proof gives a homeomorphism, not a diffeomorphism:
h′a and h′b need not be differentiable. And this is definite: Milnor found his exotic
spheres by constructing Morse functions with exactly two critical points on compact
manifolds not diffeomorphic to spheres.
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1.10 Level sets with one stationary point

in between

Once settled the case when there is no stationary point between two levels, we turn
to the more delicate situation when there is one.

In Theorem 1.6.3 we discussed the unstable and stable manifolds of a stationary
point x0 of a flow with strict Lyapunov function f : M → R. Here we consider for
a < b the truncated unstable and stable manifolds:{

W u(x0) ∩M b
a = {x ∈ W u(x0) : a ≤ f(x) ≤ b},

W s(x0) ∩M b
a = {x ∈ W s(x0) : a ≤ f(x) ≤ b}.

We now introduce a notion that will play an important role in the next results.
The terminology is motivated by Shape Theory, a homotopy theory introduced and
developed by K. Borsuk which has proved to be very useful in Dynamics. For more
information see [B2], [DySe] and [MaSe].

Let X be a metric space and K0 ⊂ K closed subsets of X. We say that the
inclusion i : K → X is a strict shape equivalence relative to K0 if there exists a
sequence of maps hk : X → X such that:

(sh1) hk ' IdX ,

(sh2) hk(K) ⊂ K and hk|K ' IdK in K, and

(sh3) for every neighborhood U of K in X, hk(X) ⊂ U and hk ' hk+1 in U for k
large enough,

and all homotopies involved (hence all hk’s) fix every point in K0.

Now we can state and prove the main result in this section.

Proposition 1.10.1 Let ϕ : M ×R→M be a gradientlike flow in the metric space
M with strict Lyapunov map f : M → R. Suppose that M b

a is compact, that there
is a unique stationary point x0 in M b

a, and that f(x0) = c with a < c < b; set
W u
a (x0) = W u(x0) ∩M b

a. Then the inclusion i : Ma ∪ W u
a (x0) → M b is a strict

shape equivalence relative to Ma.

Proof. To prove that i is a strict shape equivalence we must define maps and
homotopies on M b and various subsets, all fixing Ma. Clearly, it is enough to define
them all on M b

a and check they fix f−1(a). We will do this sistematically.

Concerning W u
a (x0) we remark that

W u(x0) ∩M b
a = W u(x0) ∩Ma, Ma ∩W u

a (x0) = f−1(a).
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The first equality explains why b is missing in the notation W u
a (x0): if x ∈ W u(x0)

then always b > f(x0) ≥ f(x). The second one explains why we write Ma ∪W u
a (x0)

instead Ma ∪ W u(x0): both sets are equal but we prefer the two pieces to meet
exactly at the a-level f−1(a)

This said, set X=M b, K=Ma∪W u
a (x0), K0 =Ma and suitable maps hk. Clearly

K0 is closed, and K too, because W u
a (x0) is closed in M b

a (so compact). Indeed, let
xn ∈ W u

a (x0) be a sequence with xn → x ∈ M b
a. Since xn(−∞, 0] ⊂ M b

a for every
n, fixed t ≤ 0, the sequence xnt is in M b

a. As xnt → xt, we get xt ∈ M b
a. Thus

x(−∞, 0] ⊂M b
a, hence α(x) ⊂M b

a and α(x) = x0, That is, x ∈ W u
a (x0) and W u

a (x0)
is closed in M b

a.

We need maps hk : X = M b → X and homotopies as in the conditions (sh1,2,3)
of shape equivalence, All these maps and homotopies must be the identity on
K0 = Ma.

(1) The maps hk.

We define, for b ≥ f(x) ≥ a:

hk(x) =
{xk when f(xk) ≥ a,
xtx when f(xk) ≤ a,

where the exit time tx ≥ 0 is the (unique) time with f(xtx) = a, which does
exists when f(xk) ≤ a (recall the proof of Proposition 1.9.1). Clearly hk(x) ∈ M b.
Moreover, if f(xk) = a then tx = k, and both definitions coincide. Finally, hk fixes
all points in f−1(a): if f(x) = a then f(xk) ≤ f(x) = a and tx = 0. This guarantees
that hk extends by the identity to Ma.

We see that hk is continuous. Working on closed pieces, we are reduced to prove
continuity on the piece f(xk) ≤ a, and there to prove continuity of the exit time. To
do that we consider a sequence xn → x with f(xnk) ≤ a, f(xk) ≤ a and txn → tx.
Indeed, otherwise, up to a subsequence, we have |txn − tx| ≥ ε for some ε > 0. Now,
k bounds this sequence txn : if txn > k for some n, then f(xnk) > f(xntxn) = a,
which is not the case. Hence, we can suppose txn → t∗, so that xntxn → xt∗. As
f(xntxn) = a for all n, f(xt∗) = a and t∗ = tx. So txn → t∗ = tx, against the ε
inequality above.

(2) The homotopies hk ' Id.

These appear in (sh1,2). with various domains. The common definition for
b ≥ f(x) ≥ a and 0 ≤ s ≤ 1 is

Hk(x, s) =
{x(sk) when f(xk) ≥ a,
x(stx) when f(xk) ≤ a.
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We have b ≥ f(x) ≥ f(Hk(x, s)), and tx = k if f(xk) = a. On the other hand, if
f(x) = a, f(xk) ≤ a, tx = 0 and Hk(x, s) = x, which again enables extension by
the identity to Ma. Obviously Hk : IdX ' hk and we have (sh1). But also (sh2)
because Hk(K × I) ⊂ K. It suffices to see it for images of points x ∈ W u

a (x0).
For x = x0 is trivial, hence suppose x 6= x0. Then α(Hk(x, s)) = α(x) is x0 and
Hk(x, s) ∈ W u(x0) ⊂ K (we recall our initial remarks). Thus we have (sh2).

But we can prove an additional condition. SetXk = hk(X), so that hk(Xk) ⊂ Xk.
Note that Xk = hk(M

b
a) ∪Ma, hence it is closed. We have:

(sh4) K ⊂ Xk and hk|Xk ' IdXk
.

For the inclusion, we only must consider points x ∈ K with f(x) > a. Then
x ∈ W u

a (x0), hence x(−k) ∈ W u
a (x0) and x = hk(x(−k)) ∈ Xk. For the homotopy

we have to check that
Hk(Xk × I) ⊂ Xk.

Let z = Hk(xk, s), xk ∈ Xk. If f(z) ≤ a, z = hk(z) ∈ Xk. If f(z) > a, then
f(xk) > a too, hence xk = hk(x) = xk, x ∈ X. Now, z = Hk(xk, s) = xkt for some
t ≥ 0, so that z = (xk)t = x(k + t) and z(−k) = xt. Consequently

b ≥ f(x) ≥ f(z(−k)) ≥ f(z) > a

and z = hk(z(−k)) ∈ Xk.

(3) The homotopies hk ' hk+1.

These are in (sh3), and they are defined by

Hk(x, s) =
{x(k + s) when f(x(k + s)) ≥ a,
xtx when f(x(k + s)) ≤ a,

for b ≥ f(x) ≥ a, 0 ≤ s ≤ 1. If f(x) = a, then f(x(k + s)) ≤ a and tx = 0, hence
Hk(x, s) = x and Hk extends to Ma by the identity. Clearly, Hk : hk ' hk+1.

Next, fix any open neighborhood U of K = Ma ∪W u
a (x0) in M b. We must see

that Hk(X × I) ⊂ U for k large. If f(Hk(x, s)) ≤ a any k works, hence we have
to see that for k large and f(x(k + s)) > a it is x(k + s) ∈ U . If that is not the
case, there exist sequences xn ∈ X, tn = n + sn ≥ n with xntn /∈ U . In particular
tn → +∞ and f(xntn) > a, so that xn[0, tn] ⊂M b

a. By compactness we can suppose
xntn → x ∈ M b

a, and then x(−∞, 0] ⊂ M b
a. Indeed, we apply the usual trick: for

every s < 0, xntns → xs and for n large 0 ≤ tn + s ≤ tn so that xntns ∈ M b
a. As

M b
a is closed, xs ∈ M b

a. But x(−∞, 0] ⊂ M b
a implies α(x) ⊂ M b

a, hence it reduces
to x0, and x ∈ W u

a (x0) ⊂ U . However x is adherent to the closed set M b \ U , a
contradiction.

All in all, we have (sh3), but also
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(sh5) Xk+1 ⊂ Xk and hk ' hk+1 in Xk.

This is because Hk(X × I) ⊂ Xk = hk(X). Indeed: (i) if f(x(k + s)) ≥ a, then
f(xs) ≥ a and Hk(x, s) = hk(xs), (ii) if f(x(k + s)) ≤ a, then Hk(x, s) = xtx =
hk(xtx), and (iii) if f(x) ≤ a, then Hk(x) = x = hk(x).

Thus we have proved that Ma ∪ W u
a (x0) → M b is a strict shape equivalence,

with some refinements needed in the next proposition.

A shape equivalence is not in general a homotopy equivalence, however it works
fine on cohomology.

Proposition 1.10.2 In the preceding situation, the inclusion i : Ma ∪W u
a (x0) →

M b induces isomorphisms in cohomology relative to any closed set K0 ⊂ Ma (in
particular K0 = ∅).

Proof. As in the preceding proof, set X=M b, K=Ma∪W u
a (x0), but here K0 ⊂Ma

(not equal as there). We have shown that i : K →M b
a is a shape equivalence relative

to K0 via maps hk : X → X that verify (sh1,2,3) plus some additional properties
(sh4,5) involving the closed sets Xk = hk(X).

Consider the sequence of homomorphisms induced in cohomology by the hk’s:

h∗k : H∗(Xk, K0)→ H∗(X,K0).

Let jk+1 : Xk+1 → Xk be the inclusion. Observe that hk = jk+1 ◦ hk+1 only up to
homotopy (sh5) (for k large), but this guarantees that the corresponding equality
h∗k = h∗k+1 ◦ j∗k+1 holds in cohomology (for k large). Consequently we have a limit
homomorphism

h∗ = lim
k
h∗k : lim

k
H∗(Xk, K0)→ H∗(X,K0).

These Xk form a nested system, because by (sh3) the neighborhoods V of all Xk’s
are the neighborhoods V of K. Then, since in metric spaces the cohomology of a
closed subset is the limit of the cohomology of its neighborhoods [Br, G], we have

lim
k
H∗(Xk, K0) = lim

k
lim
V⊃Xk

H∗(V,K0) = lim
V⊃K

H∗(V,K0) = H∗(K,K0).

Hence we have a homomorphism h∗ : H∗(K,K0) → H∗(X,K0). Consider now the
inclusions ik : Xk → X and the following diagrams
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H∗(X,K0) H∗(X,K0)

H∗(Xk, K0)H∗(Xk, K0)

Id

h∗ki∗k

Id

i∗k

H∗(X,K0) H∗(X,K0)

H∗(K,K0)H∗(K,K0)

Id

h∗i∗

Id

i∗

The first one is commutative because hk ◦ ik ' IdXk
(sh4) and hk ' IdX (sh1), the

second one by the previous remark on limkH
∗(Xk, K0). But the second one says

that the diagonal arrow is an isomorphism with inverse the vertical one.

In the situation of Proposition 1.10.1 consider k with a ≤ k < c. The trajectory
of every x ∈ W u(x0) \ {x0} hits f−1(k). We repeat the argument used before. As
α(x) = x0, f(xs) > a for some s (maybe s < 0), and x[s,+∞) escapes de compact
M b

k. For otherwise ω(x) ⊂M b
k and ω(x) = x0, impossible. After this, there is a time

tx with f(xtx) = k. This time is unique because f is injective on trajectories, and
the map x 7→ tx is continuous.

The proof is very alike others done before, so we explain only the variation.
Let xn → x. The variation is on why txn is bounded. Consider t0 > tx and
r = f(xt0) < k. By continuity f(xnt0) → f(xt0) = r and, thus, f(xnt0) < k for
almost every n. Hence txn < t0 for almost every n and txn is bounded.

The set S = W u(x0) ∩ f−1(k) is called a section of the unstable manifold. We
have seen that W u

a (x0) is compact, hence so is S. The set S × [0,∞)/S × {0} is
called the cone over the section S. All sections are homeomorphic. If S ′ is another
section, say for k′, then x 7→ xtx is a homeomorphism from S ′ to S.

Sections provide some insight on the structure of the unstable manifold of a
stationary point for flows more general than those associated to Morse fields. The
remark that all are topologically the same fits in the following result:

Proposition 1.10.3 Let ϕ : M × R → M be a gradientlike flow in the metric
space M with strict Lyapunov map f : M → R. Suppose that M b

a is compact, that
there is a unique stationary point x0 in M b

a and that f(x0) = c with a < c < b.
Consider a section S = W u(x0) ∩ f−1(k) of the unstable manifold. Then W u(x0) is
homeomorphic to the cone over S.

Proof. We define the map h : S×R→ W u(x0)\{x0} by h(x, t) = xt. It is easily seen
that h is a homeomorphism with inverse x 7→ xtx given by the tx just described.
Denote by θ : (0,∞)→ R the map t 7→ log t. Now define ĥ : S × [0,∞)→ W u(x0)
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by ĥ|S × {0} ≡ x0 and ĥ(x, t) = h(x, θ(t)). This ĥ induces in the cone the homeo-
morphism we are looking for.

Sections of W u(x0) can be topologically identified in some important cases, in
particular in the case of flows associated to Morse fields. We are to see that in this
case, the sections are topologically spheres of dimensión d− 1, where d is the index
of x0. Thus the cones are, by the last proposition, open d cells, what corroborates
the Unstable Manifold Theorem.

Corollary 1.10.4 Let f : M → R be a Morse function on the compact m-manifold
M . Suppose that f has a unique critical point x0 in M b

a with a < f(x0) < b; let d
be the index of x0. Then:

1. If F : M → Rp is a Morse field for f , the truncated manifold W u
a (x0) of the

flow of x′ = F (x) is a d-cell attached to Ma.

2. Hj(M b,Ma) is trivial for j 6= d, and Z for j = d.

Proof. As we know, f is a strict Lyapunov map for the flow of x′ = F (x), whose
stationary points are the critical points of f . Suppose, without loss of generality,
that f(x0) = 0. Since F is a Morse field for f , there are local coordinates x in an
open neighborhood U ⊂M b

a of x0 such that

f(x) = x21 + · · ·+ x2m−d − x2m−d+1 − · · · − x2m.

In these coordinates x0 is the origin, and we can reduce U so that x(U) = B is an
open ball B = B(0, δ). Let 0 < ε < δ. We claim that

W u
−ε(x0) = W u

−ε(x0)∩U = {x ∈ U : x1 = · · · = xm−d = 0,−x2m−d+1−· · ·−x2m ≥ −ε},

which is a d-cell with boundary

W u
−ε(x0) ∩ f−1(−ε) = {x ∈ U : x2m−d+1 + · · ·+ x2m = ε}.

Indeed, the expression of f in our coordinates gives everything but the inclusion
W u
−ε(x0) ⊂ U . Let x ∈ W u

−ε(x0). Then x0 ∈ α(x) and there is some point y ∈
x(−∞, 0] ∩ U . Then x(−∞, 0] contains the whole trajectory from y to x. If that
trajectory reaches x in U we are done. If not, it reaches a point y∗ with f(y∗) = −ε,
which implies f(x) < f(y∗) = −ε, a contradiction. This proved, M−ε ∩W u

−ε(x0) is
the boundary of that cell and W u

−ε(x0) is a d-cell attached to M−ε.

In particular we see that de section W u(x0)∩ f−1(−ε) is a (d−1)-sphere. Hence
all sections are (d− 1)-spheres, as was announced.
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Now, the flow defines a homeomorphism h : W u
−ε(x0)→ W u

a (x0) as follows.

As explained before, every x ∈ W u
−ε(x0), x 6= x0, has an exit time tx with

f(xtx) = −ε and another t′x with f(xt′x) = a, and these exit times are continuous
functions. We use them to define

h : W u
−ε(x0)→ W u

a (x0) : x 7→ h(x) = x(t′x − tx).

This brings back the fact that the unstable manifold is the cone over every section
and the homeomorphisms between sections. In each trajectory h is the translation
that takes the point in f−1(−ε) to the point in f−1(a), hence h is a bijection. We
have seen this is continuous for x 6= x0, and now we see it extends continuously by
h(x0) = x0.

Indeed, note first that t′x− tx is the exit time t′y of the point y = xtx ∈ f−1(−ε):

f(y(t′x − tx)) = f(xtx(t
′
x − tx)) = f(xt′x) = a,

and since the exit time t′ is continuous on the compact level set f−1(−ε), it is
bounded there. Now consider xn → x0. By the above remark we may assume
t′xn − txn → t∗, and then

h(xn) = xn(t′xn − txn)→ x0t
∗ = x0,

because x0 is stationary. In the end, we have a continuous bijection h : W u
−ε(x0)→

W u
a (x0) between compact sets, hence a homeomorphism.

Now, since there are no stationary points in M−ε
a , the flow defines a homeomor-

phism M−ε → Ma which coincides with h where needed to glue well (1.9.4). Thus
we have a homeomorphism h : M−ε ∪W u

−ε(x0)→Ma ∪W u
a (x0) that shows W u

a (x0)
is a d-cell attached to Ma as says the first part of the statement.

On the other hand, since i : Ma ∪W u
a (x0) → M b is a strict shape equivalence

relative to Ma we have that

Hj(M b,Ma) ∼= Hj(Ma ∪W u
a (x0),M

a) ∼= Hj(Sd, ∗),

where Sd is the d-sphere obtained by collapsing the boundary of the d-cell into a
point ∗. Hence the second part of the statement follows.

Remark 1.10.5 The preceding results hold true for finitely many stationary/critical
points xi at the same level f−1(c). The proof works the same dealing simulta-
neously with all the unstable manifolds W u

a (xi), which are disjoint. Indeed, if
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x ∈ W u
a (xi) ∩ W u

a (xj), then x(−∞, 0] ⊂ M b
a, which is a compact set where sta-

tionary points are isolated, hence α(x) is a singleton and xi = xj. Let us give a few
hints more and the generalized statement.

(1) For Propositions 1.10.1 and 1.10.2 the formulation is that the inclusion i :
Ma ∪

⋃
iW

u
a (xi) → M b is a strict shape equivalence relative to Ma and induces

isomorphisms in cohomology relative to any K0 ⊂Ma.

The only additional care here comes at the discussion of the homotopies hk ' Id,
to see that the exit time exists if x ∈ W u

a (xi) is not xi. But if tx does not exist, then
ω(x) ⊂M b

a, hence ω(x) = xj. We get c = f(xi) > f(x) > f(xj) = c, contradiction.

(2) For Corollary 1.10.4 let di be the index of the critical point xi. Then each
W u
a (xi) is a di-cell attached to Ma, and Hj(M b,Ma) = Zcj , where cj is the number

of critical points xi with index di = j.

Here we choose disjoint neighborhhoods Ui of the critical points xi with the same
δ and ε for all of them. The computation of the cohomology groups is

Hj(M b,Ma) ∼= Hj
(
Ma ∪

⋃
i
W u
a (xi),M

a
) ∼= Hj

(∨
i
Sdi , ∗

) ∼= Zcj ,

where the di-sphere Sdi comes from collapsing the boundary of the di-cell W u
a (xi)

to the wedge point ∗.

1.11 Morse polynomial and Morse inequalities

To start with we prove the formula relating Morse and Poincaré polynomials:

Proof of Theorem 1.8.4. Let f : M → R be a Morse function on a compact manifold
M , with critical values c1 < · · · < ck < · · · < cr. Choose regular values di in
between: d0 < c1 < d1 < · · · < dk−1 < ck < dk < · · · < dr−1 < cr < dr. Note that
M being compact c1 must be its minimum and cr its maximum. Then we have the
filtration

∅ = Md0 ⊂Md1 ⊂ · · · ⊂Mdr = M,

where each Mdk is a compact manifold with boundary f−1(dk). The theorem is a
standard consequence of the properties of cohomology applied to this filtration. We
provide the argument now.

Consider for each k = 1, . . . , r the long exact sequence of the pair (Mdk ,Mdk−1):

· · · → Hj−1(Mdk−1)
δkj−1−→ Hj(Mdk ,Mdk−1)

λkj−→ Hj(Mdk)
%kj−→ Hj(Mdk−1)

δkj−→ · · ·
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where the ends are H−1(Mdk−1) = 0 and Hm+1(Mdk ,Mdk−1) = 0, hence δk−1 = 0 and
δkm = 0. We can compute the ranks of these groups from exactness as follows:

Hj(Mdk,Mdk−1)
/

im δkj−1
∼= imλkj hence rkHj(Mdk,Mdk−1) = rk im δkj−1+ rk imλkj ,

Hj(Mdk)
/

imλkj
∼= im %kj hence rkHj(Mdk) = rk imλkj + rk im %kj ,

Hj(Mdk−1)
/

im %kj
∼= im δkj hence rkHj(Mdk−1) = rk im %kj + rk im δkj .

Now from the three equalities we obtain

rkHj(Mdk ,Mdk−1) = rkHj(Mdk)− rkHj(Mdk−1) + (qkj + qkj−1),

where qk` = rk im δk` ≥ 0, and in particular qk−1 = qkm = 0.

Now we add everything:∑
k

rkHj(Mdk ,Mdk−1) =
∑

k
(rkHj(Mdk)− rkHj(Mdk−1)) +

∑
k
(qkj + qkj−1)

= rkHj(Mdr)− rkHj(Md0) +
∑

k
(qkj + qkj−1)

= rkHj(M) +
∑

k
(qkj + qkj−1).

By 1.10.5(2) in the previous section, the first sum is the number cj of critical points
of f of index j, and βj = rkHj(M) is the j-th Betti number of M . Consequently

Mf (t)− PM(t) =
∑

j
(cj − βj)tj =

∑
j

∑
k
(qkj + qkj−1)t

j

=
∑

k

(∑
j
qkj t

j +
∑

j
qkj−1t

j
)

= (1 + t)Q(t),

where Q(t) =
∑

k

∑
j q

k
j t
j has coefficients ≥ 0.

The following are some consequences of the theorem just proved. This is the
main result in Morse’s original presentation to the theory.

Corollary 1.11.1 (Morse inequalities) Let f : M → R be a Morse function on
a compact m-manifold M . As usual, let cj the number of critical points of index
j of f (hence c(f) =

∑
j cj is the number of critical points), and βj the j-th Betti

number of M . Then

1. βj ≤ cj, hence
∑

j βj ≤ c(f).

2. The Euler characteristic of M is χ(M) =
∑

j(−1)jcj.

3.
∑r

j=0(−1)r−jβj ≤
∑r

j=0(−1)r−jcj for every r ≤ m.
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Proof. The first assertion follows from the fact that the coefficients of Q(t) are all
≥ 0. The second assertion was already mentioned: χ(M) = PM(−1) = Mf (−1). For
the third formula set Q(t) =

∑
qjt

j. Then

r∑
j=0

cjt
j =

r∑
j=0

βjt
j + qrt

r + (1 + t)
r−1∑
j=0

qjt
j.

Multiplying by t−r both members of the equality we get

r∑
j=0

cjt
j−r =

j∑
j=0

βjt
j−r + qr + (1 + t)

r−1∑
j=0

qjt
j−r.

Evaluating at t = −1, since qk ≥ 0, we obtain the required inequality.

A first immediate corollary:

Corollary 1.11.2 The Euler characteristic of a compact manifold of odd dimension
is zero.

Proof. LetM be a compact manifold of odd dimension m. Consider a Morse function
f : M → R. Then −f is also a Morse function and cj(−f) = cm−j(f). From this
we get Mf (t) = tmM−f (1/t), hence

χ(M) = Mf (−1) = (−1)mM−f (−1) = −χ(M).

Thus χ(M) = 0.

A second:

Corollary 1.11.3 Any Morse function f : Sn → R always has an even number of
critical points.

The notion of index of a critical point can be seen from different points of view.
For instance, if x0 is a critical point of the Morse function f then it is a singular
point of the gradient field and also a singular point of every Morse field for f . If d is
the index of this critical point and F is one of those vector fields then, traditionally,
the number (−1)d is called the index of F at x0 and denoted indx0(F ). Furthermore,
the sum

∑
indxi(F ), extended to all singularities xi of F , is called the total index of

F and denoted Ind(F ). Another interpretation of the index d, as we have pointed
out before, is dynamic in terms of the dimension of the unstable manifold of the flow
of each Morse field for f or the flow of the field − grad f . To illustrate the power of
the Morse inequalities, we note that the equality 2 of Corollary 9.1 is nothing other
than the Poincaré-Hopf theorem for the field F .
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Theorem 1.11.4 (Poincaré-Hopf for gradient fields) Let F be the gradient field
of the Morse function f : M → R. Then Ind(F ) = χ(M).

Another direct consequence of the Morse inequalities is the following:

Corollary 1.11.5 Every Morse function on an orientable compact surface of genus
g has at least 2g + 2 critical points.

There are smooth functions on surfaces with less than 2g+2 critical points. The
following is an example. If we represent the torus as T 2 = R2/Z2, it is easy to
see that the function f(x, y) = sin(πx) sin(πy) sinπ(x+ y) has exactly three critical
points, the maximum, the minimum and a third degenerate critical point. Note
that this is the minimum possible. Since the category of the torus T 2 is 3, according
to the Lusternik-Schnirelmann Theorem every smooth function on T 2 must have at
least three critical points.

Also from the inequalities:

Corollary 1.11.6 (Lacunary principle) If the Morse polynomial Mf (t) has no
consecutive powers of t, then cj = βj for every j.

Proof. Suppose not, and let r be the first index with cr 6= βr, that is cr > βr
(by the third Morse inequality). Since the alternate sum of the cj’s is the Euler
characteristic (the second Morse inequality, which is an equality), necessarily r < m.
Then cr+1 = 0 and applying the third Morse inequality we get:

−cr + βr − βr+1 =
r+1∑
j=0

(−1)r+1−j(cj − βj) ≥ 0,

so that cr ≤ βr − βr+1 ≤ βr, a contradiction.

For instance, the Morse polynomial of the complex projective space given in
Example 1.8.2 has no consecutive powers, hence the non-zero Betti numbers of
Pn(C) are β2i = 1 for i = 1, . . . , n.

Corollary 1.11.6 could be seen as a consequence of the following related result
whose proof we leave as an exercice.

Corollary 1.11.7 If cj−1 = cj+1 = 0 then cj = βj.
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1.12 Homotopy type associated

to Morse functions

Now we would like to know a little more about the relation between the topological
structure of a manifold M and the Morse function f : M → R. We present an
important result stating that M has, in fact, the homotopy type of a CW-complex
with a particular structure determined by the Morse function. To prove it, we need
three lemmas. The first of them improves Proposition 1.10.1 and Remark 1.10.5 in
the case that M is a compact manifold.

Lemma 1.12.1 Let f be a Morse function on the manifold M and consider the flow
of a Morse field of f . Suppose that a < b and that there is a unique critical value
c with a < c < b. Let x1, . . . , xl be all the critical points contained in f−1(c). Then
the inclusion i : Ma ∪W u

a (x1) ∪ · · · ∪W u
a (xl)→M b is a homotopy equivalence.

Proof. Set W u
a = W u

a (x1)∪· · ·∪W u
a (xl). There exists a retraction r : U →Ma∪W u

a ,
where U is a neighborhood of Ma ∪W u

a in M b, such that i ◦ r is homotopic to the
inclusion j : U →M b. This is a consequence of the fact that Ma ∪W u

a and M b are
Euclidean Neighborhood Retracts.

Since i : Ma∪W u
a →M b is a strict shape equivalence relative to Ma by Proposi-

tion 1.10.1 and Remark 1.10.5(1), there is a map hk : M b → U such that: (i) hk|Ma

is the identity IdMa , (ii) hk restricts to a map Ma ∪W u
a →Ma ∪W u

a homotopic to
the identity IdMa∪Wu

a
relative to Ma, and (iii) j ◦ hk is homotopic to the identity

IdMb .

Then the composition r ◦ hk is a homotopy equivalence with inverse i.

The following two technical but classical lemmas refer to the attachment of cells
to a topological space.

Lemma 1.12.2 (Whitehead) Let X be a topological space and suppose that h0
and h1 are homotopic maps from the sphere ėk to X. Then the identity map of X
extends to a homotopy equivalence f : X ∪h0 ek → X ∪h1 ek.

Proof. We denote by ht a homotopy between h0 and h1 and by ĥ0 : ek → X∪h0ek and
ĥ1 : ek → X ∪h1 ek the characteristic maps corresponding to h0 and h1 respectively.
Now define a mapping f : X ∪h0 ek → X ∪h1 ek by

f(x) = x for x ∈ X,

f(ĥ0(su)) = ĥ1(2su) for 0 ≤ s ≤ 1
2
, u ∈ ėk,

f(ĥ0(su)) = h2−2s(u) for 1
2
≤ s ≤ 1, u ∈ ėk,
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and another g : X ∪h1 ek → X ∪h0 ek by
g(x) = x if x ∈ X,

g(ĥ1(su)) = ĥ0(2su) for 0 ≤ s ≤ 1
2
, u ∈ ėk,

g(ĥ1(su)) = h2s−1(u) for 1
2
≤ s ≤ 1, u ∈ ėk.

It is easy to see that f and g are well defined and continuous, and that

(g ◦ f)(ĥ0(su)) =


ĥ0(4su) for 0 ≤ s ≤ 1

4
, u ∈ ėk,

g(ĥ1(2su) = h4s−1(u) for 1
4
≤ s ≤ 1

2
, u ∈ ėk,

g(h2−2s(u)) = h2−2s(u) for 1
2
≤ s ≤ 1, u ∈ ėk.

Now we define a homotopy θt : X ∪h0 ek → X ∪h0 ek by
θt(x) = x for x ∈ X,

θt(ĥ0(su)) = ĥ0((4− 3t)su) for 0 ≤ s ≤ 1
4−3t , u ∈ ė

k,

θt(ĥ0(su)) = h(4−3t)s−1(u) for 1
4−3t ≤ s ≤ 2−t

4−3t , u ∈ ė
k,

θt(ĥ0(su)) = h 1
2
(4−3t)(1−s)(u) for 2−t

4−3t ≤ s ≤ 1, u ∈ ėk.

It is easy to verify that θt is a well defined homotopy connecting g◦f and the identity
on X ∪h0 ek. A similar homopy can be defined connecting f ◦ g and the identity on
X ∪h1 ek. Hence both f and g are mutually inverse homotopy equivalences.

Lemma 1.12.3 (Hilton) Let X and Y be topological spaces and let h : ėk → X
be an attaching map. Then any homotopy equivalence f : X → Y extends to a
homotopy equivalence F : X ∪h ek → Y ∪fh ek.

Proof. The map F is defined in a natural way: F |X = f and F |ek is the identity
(we use a less detailed notation here than in the previous lemma). We consider
a homotopy inverse g : Y → X of the map f and define, in a similar way, G :
Y ∪fh ek → X ∪gfh ek by G|Y = g and G|ek = identity.

Consider a homotopy φt between gf and the identity, and then φt ◦ h is a ho-
motopy between gfh and h. By using the same specific construction as in the
Whitehead Lemma we obtain a homotopy equivalence H : X ∪gfh ek → X ∪h ek
which extends the identity of X. We show that HGF : X ∪h ek → X ∪h ek is
homotopic to the identity. We remark first that

HGF (x) = gf(x) for x ∈ X,

HGF (su) = 2su for 0 ≤ s ≤ 1
2
, u ∈ ėk,

HGF (su) = (φ2−2s ◦ h)(u) for 1
2
≤ s ≤ 1, u ∈ ėk.
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Then the sought homotopy ψt : X ∪h ek → X ∪h ek is
ψt(x) = φt(x) for x ∈ X,

ψt(su) = 2
1+t
su for 0 ≤ s ≤ 1+t

2
, u ∈ ėk,

ψt(su) = (φ2−2s+t ◦ h)(u) for 1+t
2
≤ s ≤ 1, u ∈ ėk.

As a consequence, F has a left homotopy inverse F−1 and a similar proof shows
that G has a left homotopy inverse G−1. Also, we know that H has a homotopy
inverse H−1. Now we use carefully these inverses to have the following sequence of
homotopies starting at ψt:

HGF ' 1
H−1◦−→ GF ' H−1

◦H−→ GFH ' 1
G−1◦−→ FH ' G−1

◦G−→ FHG ' 1.

Thus F has also a right homotopy inverse. It is a standard fact in homotopy theory
that a mapping with homotopy inverses on both sides is a homotopy equivalence.
This completes the proof.

Proposition 1.12.4 Let f : M → R be a Morse function on a compact manifold
M . Then M has the homotopy type of a CW-complex with one cell of dimension d
for each critical point of index d.

Proof. Let c1 < · · · < cr be the critical values of f . Then c1 is the minimum of f ,
and M c1 = f−1(c1) are finitely many critical points with index 0. Let c1 < b ≤ c2.
By Remark 1.10.5 and Lemma 1.12.1, M b has the homotopy type of finitely points
(the critical points in f−1(c1)). Suppose now, for the purpose of induction, that
ci−1 < b < ci and that M b has the homotopy type of a CW-complex K. Then,
by the same Remark and Lemma, for every b′ with ci < b′ < ci+1 the set M b′ has
the homotopy type of M b ∪φ1 ed1 ∪ · · · ∪φj edj , where the edk ’s are cells of dimen-
sion dk corresponding to the indexes of the critical points in f−1(ci) and the φk’s
are attaching maps. Consider now a homotopy equivalence ψ : M b → K. By the
cellular approximation theorem, the map ψ ◦ φk : ėdk → K is homotopic to a map
hk : ėdk → (dk − 1)-skeleton of K. Thus K ∪h1 ed1 ∪ · · · ∪hj edj is a CW-complex

and has the same homotopy type as M b′ by the Hilton Lemma. By induction it fol-
lows that M has the homotopy type of a CW-complex with the required properties.

Notes

Morse published in 1925 his first paper [M1] on the subject of critical points of
a function. The paper contains, among other things, the Morse inequalities and
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was inspired by the minimax principle of Birkhoff. According to Raoul Bott [Bt1],
“through his teacher, G.D. Birkhoff, Morse had inherited the dynamical tradition
—in no uncertain terms— and it was in this framework that he understood Analysis
Situs.” In fact, Morse considered himself a mathematical descendant of Poincaré. He
published more than 50 papers on this subject and found fundamental applications
to the calculus of variations [M1, M2, M3]. For example, he showed that for any
Riemann structure on Sn there must be an infinite number of geodesics joining any
two fixed points. Smale [Sm1, Sm2, Sm3] used Morse theory in a substantial way
in his proofs of the Poincaré conjecture in dimensions greater than 4 and of the h-
cobordim theorem and he wrote on the occasion of Morse’s death in 1977, “I believe
that Morse theory is the single greatest contribution of American mathematics.”
Other important contributions of Smale regarding the applications of Morse theory
to Dynamics can be found in [Sm5]. See also [Flo], [IzSt], [KaRo], [Sa], [Sj2], [SaZe]
for related subjects.

The Lusternik-Schnirelmann theorem was proved with a view to its applications
in the calculus of variations in the large. The original results are contained in [Lu],
[LuSch1, LuSch2] and [Sch], see also [B1], [F] and [J] for useful information. As
mentioned in [CLOT], “the basic idea in the Lusternik-Schnirelmann approach to
critical point theory is that critical points are obstructions to collapsing a manifold
down to a point via the flow associated to the the gradient.” According to these
authors, “critical points are the places in the manifold where topological complex-
ity arises and this particular complexity is well measured by category.” Obviously,
this is also the general philosophy of Morse Theory. For some other relationships
between the Lusternik-Schnirelmann category and Morse theory and other subjects
see [CoMa], [GGM], [LiWa], [Sj1] and [T].

Gradient (or more generally gradientlike) flows have been an important source
of inspiration in the theory of dynamical systems (see, for instance, [Sm4, Sm5]).
Perhaps the definitive result in this regard has been found by C. Conley. He proved
that (we use his words) “each flow dominates a unique gradient flow which in turn
dominates any other gradient flow dominated by the original flow.” This result is a
consequence of the fact that every flow ϕ on a compact metric space has a gradient
part and a recurrent part. If every component of the recurrent part is identified to
a point then we obtain the maximal gradient flow dominated by ϕ. This result,
often referred to as the Fundamental Theorem of the theory of Dynamical Systems,
is proved in Conley’s paper [C], The gradient structure of a flow.

Finally, we recommend the books and papers [AuDa], [BaHu], [B2], [Bt2], [Jo],
[Lau], [Mat], [Maz], [Mi], [N], [Schw] as excellent sources of information for the
material presented in this chapter.
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