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Preface

The aim of these notes is to cover the basic algebraic tools and results behind the
scenes in the foundations of Real and Complex Analytic Geometry. The author
has learned the subject through the works of many mathematicians, to all of whom
he is indebted. However, as the reader will immediately realize, he was specially
influenced by the writings of S.S. Abhyankar and J.-C. Tougeron. In any case, the
presentation of all topics is always as elementary as it can possibly be, even at the
cost of making some arguments longer. The background formally assumed consists
of:

1) Polynomials: roots, factorization, discriminant; real roots, Sturm’s Theorem,
formally real fields; finite field extensions, Primitive Element Theorem.

2) Ideals and modules: prime and maximal ideals; Nakayama’s Lemma; localiza-
tion.

3) Integral dependence: finite ring extensions and going-up.

4) Noetherian rings: primary decomposition, associated primes, Krull’s Theorem.

5) Krull dimension: chains of prime ideals, systems of parameters; regular systems
of parameters, regular rings.

These topics are covered in most texts on Algebra and/or Commutative Algebra.
Among them we choose here as general reference the following two:

• M. Atiyah, I.G. Macdonald: Introduction to Commutative Algebra, 1969,
Addison-Wesley: Massachusetts; quoted [A-McD].

• S. Lang: Algebra, 1965, Addison-Wesley: Massachusetts; quoted [L].

Even quotations to these two books are kept to a minimum, avoiding them when-
ever a reasonably self-contained explanation could be provided. In this way many
deep results can be obtained for rings of power series almost from scratch, giving
them a highly geometrical meaning. Two examples of this are that localizations
preserve regularity or that integral closures are finite. In fact, that is one of the
goals of this book: to review the commutative algebra of power series in geometrical
terms. The guidelines for this review are the Local Parametrization Theorem, the
Nullstellensatz, and Zariski’s Main Theorem. Furthermore, all the work is carried
out both in the complex and the real case, showing the additional difficulties and
the peculiarities of the latter.

All in all, the final hope is that this book will be of some help to those not
acquainted with either the geometry behind local commutative algebra or the algebra
behind local analytic geometry.



viii Preface

The notes are based on courses and seminars given by the author during many
years, organized by the Departments of Algebra, Geometry, and Topology, at the
Universidad Complutense de Madrid, with the support of the D.G.I.C.Y.T.. Several
people have made these activities possible and enthralling, and have contributed to
the actual writing of the book. First of all, Tomás Recio, who led the author into the
beauty of Analytic Geometry. Also, Carlos Andradas, MariEmi Alonso, and José
Manuel Gamboa, who provided enjoyable and fruitful discussions on the teaching
and learning of power series, and Capi Corrales, who read word by word the first
draft of the manuscript and suggested all kind of accurate corrections.

The final thanks are for MariPaz, to whom this book, and everything else, is
dedicated.

Majadahonda, October 1992

Note to the printed 2nd edition: Since publication, this book has been most often
used as text or reference in various courses and seminars by the author and col-
leagues. This experience has provided many minor and some major modifications
and additions to the 1993 version. Besides misprints, typos and others, there are
two main improvements worth to mention. First, the inclusion of a converse to
Rückert’s Parametrization Theorem, which was a central topic here; second, a full
proof of Shiota’s theorem that every power series can be made polynomial in at least
two variables.

Majadahonda, October 2006

Note to the online version: Starting in july 2023, the book is available in pdf format.
This 3rd edition is in progress, without explicit description of the changes made,
most often suggested by colleagues and students. The author thanks them all their
contributions.

Majadahonda, July 2023
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I Power Series

Summary. In this chapter we study in detail convergent and formal power series.
We start by recalling the notion of convergence and its main properties: absolute
convergence and reordering of convergent series. We then introduce formal and
convergent series and discuss the operations with them: sum, multiplication, sub-
stitution and derivation. In particular we get the Identity Principle for functions
associated to convergent power series. Finally we state and prove three essential re-
sults of the theory: Rückert’s Division Theorem, Weierstrass’s Preparation Theorem
and Hensel’s Lemma.

1 Series of Real and Complex Numbers

We will denote by
∑
ν aν or

∑
aν a series of elements of the field K = R or C.

Here the indices ν = (ν1, . . . , νn) are elements of Nn, and we will use the standard
notations |ν| = ν1 + · · ·+ νn and ν! = ν1! · · · νn!.

Definition 1.1 The series
∑
aν converges to the element c ∈ K if for every real

number ε > 0 there is a finite set Iε ⊂ Nn such that |
∑
ν∈I aν − c| < ε for every

finite set of indices I ⊃ Iε. In that case we say that c is the sum of the series and
we write c =

∑
aν .

Remarks 1.2 a) For series with indices in N the convergence in the sense of Defini-
tion 1.1 implies the classical one, but not conversely:

∑
(−1)k/k does not converge

according to 1.1, nevertheless the limit limp→∞
∑

1≤k≤p(−1)k/k does exist.
b) If

∑
aν converges to c ∈ K, then c = limp→∞

∑
|ν|≤p aν .

c) Let
∑
aν ,

∑
bν converge to c, d ∈ K respectively, and consider λ, µ ∈ K. Then∑

(λaν + µbν) converges to λc+ µd.
d) Let

∑
aν ,

∑
bν be two convergent series of real numbers such that

∑
ν∈I aν ≤∑

ν∈I bν for every finite set of indices I. Then
∑
aν ≤

∑
bν .

Proposition 1.3 A series
∑
aν of non-negative real numbers converges if and only

if there is M > 0 such that
∑
ν∈I aν < M for every finite set of indices I ⊂ Nn. In

this case the sum of the series is the supremum of all those finite sums.

Proof. If there is such an M , then the supremum c = sup{
∑
ν∈I aν | I finite} exists.

Let us see that the series converges to c. Indeed, for every ε > 0 there is a finite set
of indices Iε such that c−

∑
ν∈I aν < ε, and for every finite set I ⊃ Iε we have

c ≥
∑
ν∈I

aν ≥
∑
ν∈Iε

aν ,
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so that
0 ≤ c−

∑
ν∈I

aν ≤ c−
∑
ν∈Iε

aν < ε.

Conversely, supose that
∑
aν converges to c. Then c = limp→∞

∑
|ν|≤p aν (Remark

1.2 b)), and the aν ’s being non-negative, we can take M = c. �

Proposition 1.4 A series
∑
aν of real numbers converges if and only if the series∑

|aν | converges. In this case |
∑
aν | ≤

∑
|aν |.

Proof. For every ν we set pν = max{aν , 0}, qν = max{−aν , 0}.
If the series

∑
|aν | converges, so do

∑
pν and

∑
qν by Proposition 1.3. Hence

also the series
∑

(pν − qν) converges (Remark 1.2 c)), and since pν − qν = aν , the
series

∑
aν converges, too.

Now suppose that
∑
aν converges to c. Take ε = 1 and consider the set of indices

Iε provided by the definition of convergence. For every L ⊂ Nn write

L+ = {ν ∈ L | aν > 0}, L− = {ν ∈ L | aν ≤ 0}.

With these notations, for every finite set of indices I we put J = I+ ∪ Iε, and since
the pν ’s are all non-negative, J ⊃ Iε and J− = I−ε we have∑

ν∈I
pν =

∑
ν∈I+

pν ≤
∑
ν∈J

pν =
∑
ν∈J+

aν =
∑
ν∈J

aν −
∑
ν∈J−

aν ≤

≤ |
∑
ν∈J

aν − c|+ |
∑
ν∈J−

aν − c| < ε+ |
∑
ν∈I−ε

aν − c|.

Hence by Proposition 1.3 the series
∑
pν converges. Analogously,

∑
qν converges,

and by Remark 1.2 c) so does the series
∑

(pν + qν). As |aν | = pν + qν we are done.
The last inequality of the statement follows from Remark 1.2 b). �

We will denote by <(z) (resp. =(z)) the real (resp. imaginary) part of a complex
number z ∈ C. We clearly have

|z| ≤ |<(z)|+ |=(z)|, |<(z)| ≤ |z|, |=(z)| ≤ |z|.

From these inequalities and the preceding propositions one easily gets:

Proposition 1.5 Let
∑
aν be a series of complex numbers. Then:

a)
∑
aν converges if and only if the two series

∑
<(aν) and

∑
=(aν) converge.

b)
∑
|aν | converges if and only if the two series

∑
|<(aν)| and

∑
|=(aν)| con-

verge.
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c)
∑
aν converges if and only if

∑
|aν | converges. In this case, |

∑
aν | ≤

∑
|aν |.

Proposition 1.6 Let
∑
aν be a convergent series and consider a permutation τ of

{1, . . . , n}. Then the sum of the iterated series
∑
ντ(1)
· · ·
∑
ντ(n)

aν converges and

coincides with the sum of
∑
aν .

Proof. We will suppose for simplicity that τ is the identity, and argue by induction
on n. For n = 1 the assertion is trivial, so that we assume n > 1, and the result is
true for series with indices in Nn−1.

For every ν1 ∈ N the series
∑
ν′ aν1ν′ converges. Indeed, let us see that

∑
ν′ |aν1ν′ |

converges. Consider a finite set of indices I ′ ⊂ Nn−1 and note that∑
ν′∈I′

|aν1ν′ | =
∑

ν∈{ν1}×I′
|aν1ν′ |.

By Proposition 1.5 the series of non-negative real numbers
∑
|aν | converges, and

consequently it verifies the criterion of Proposition 1.3. By the above equality, the
series

∑
ν′ |aν1ν′ | also verifies that criterion, and hence converges. It follows that∑

ν′ aν1ν′ converges, too, and we write bν1 =
∑
ν′ aν1ν′ . Now, by the induction

hypothesis, bν1 is also the sum of the iterated series
∑
ν2
· · ·
∑
νn
aν .

To conclude the proof, we have to show that the series
∑
bν1 converges to c =∑

aν . Thus let ε > 0. We pick a finite set of indices Iε/2 ⊂ Nn such that |
∑
ν∈I aν−

c| < ε/2 for every finite set I ⊃ Iε/2 (convergence of
∑
aν), and we let I

(1)
ε be the set

of all the first components of the indices in Iε/2. Then for every finite set I(1) ⊃ I(1)
ε

with m elements we choose a finite set I ′ ⊂ Nn−1 such that Iε/2 ⊂ I(1) × I ′ and

|
∑
ν′∈I′

aν1ν′ − bν1 | <
1

2m
ε

for every ν1 ∈ I(1). We then have:

|
∑

ν1∈I(1)
bν1 − c | = |

∑
ν1∈I(1)

bν1 −
∑

ν1∈I(1)

∑
ν′∈I′

aν1ν′ +
∑

ν1∈I(1)

∑
ν′∈I′

aν1ν′ − c | ≤

≤
∑

ν1∈I(1)
|bν1 −

∑
ν′∈I′

aν1ν′ |+ |
∑

ν∈I(1)×I′
aν − c | < m(ε/2m) + ε/2 = ε.

This shows that the series
∑
bν1 converges to c, as wanted. �

From the preceding results we see that given two series
∑
aν and

∑
bν such that∑

aν converges, if |bν | ≤ |aν | for all ν, also
∑
bν converges.
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2 Power Series

The affine space Kn (where K = R or C) will always be endowed with the usual eu-
clidean topology. As is well known, each point x0 = (x01, . . . , x0n) ∈ Kn has a neigh-
borhood basis that consists of the polycylinders ∆ of polyradius ρ = (ρ1, . . . , ρn),
ρi > 0, centered at x0:

∆ = {x ∈ Kn | |xi − x0i| < ρi for 1 ≤ i ≤ n}.

Definitions and Notations 2.1 A formal power series in the indeterminates
x1, . . . , xn is an expression f =

∑
ν∈Nn aνx

ν1
1 · · · xνnn , in short

∑
ν aνx

ν or
∑
aνx

ν ,
where aν ∈ K for every ν; the aν ’s are the coefficients of

∑
aνx

ν , and the first of
them a(0,...,0) is denoted by f(0). The set of all these formal power series will be
denoted by Fn, K[[x1, . . . , xn]] or K[[x]].

The order of a formal power series
∑
aνx

ν , denoted by ω(f), is the smallest
integer p ≥ 0 such that aν 6= 0 for some ν with |ν| = p, provided that some aν is
6= 0. Otherwise, that is, if f = 0, we write ω(f) = +∞.

Let f =
∑
aνx

ν be a formal power series. If x ∈ Kn and the series
∑
aνx

ν

of elements of K converges to c ∈ K, we say that f converges at x to c, and write
f(x) = c. Now let D ⊂ Kn. We say that f converges uniformly on D if:

a) f converges at every point of D, and

b) for every ε > 0 there is a finite set Iε ⊂ Nn such that |
∑
ν∈Iε aνx

ν − f(x)| < ε
for every finite set of indices I ⊃ Iε and every point x ∈ D.

Let f be a formal power series. The domain of f , denoted by D(f), is the interior of
the set of points at which f converges. The series f is called convergent if D(f) 6= ∅.
The set of all convergent power series will be denoted by On, K{x1, . . . , xn} or K{x}.

For the time being we will use the following notation: Given a point x∗ =
(x∗1, . . . , x

∗
n) ∈ Kn whose coordinates are none zero, ∆(x∗) will stand for the poly-

cylinder of polyradius ρ = (|x∗1|, . . . , |x∗n|) centered at the origin.

Proposition 2.2 Let f =
∑
aνx

ν be a convergent power series and D∗(f) the set
of points at which f converges and whose coordinates are none zero. The set D(f)
is the union of the ∆(x∗), x∗ ∈ D∗(f). In particular D(f) is an open connected
neighborhood of the origin. Furthermore, f converges uniformly on every compact
subset of D(f).

Proof. It is enough to show that for 0 < r < 1 and x∗ ∈ D∗(f), the series f
converges uniformly on ∆(rx∗). To that end, note first that

∑
|aνx∗ν | coverges

because so does
∑
aνx

∗ν (Proposition 1.5 c)). Then there is M > 0 such that
|aνx∗ν | < M for all ν (Proposition 1.3). Now, if x ∈ ∆(rx∗) and I ⊂ Nn is finite we
have ∑

ν∈I
|aνxν | ≤

∑
ν∈I
|aνx∗ν |r|ν| < M

∑
ν∈I

r|ν|.
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But since ∑
ν∈I

r|ν| ≤

(∑
ν1∈I1

rν1

)
· · ·

( ∑
νn∈In

rνn

)
,

where I` ⊂ N is the set of the `-th components of all the indices of I, and the
series

∑
rν` , 1 ≤ ` ≤ n, converge for 0 < r < 1, so do the two series

∑
ν∈I r

|ν|

and
∑
|aνxν | (Proposition 1.3 again). We hence conclude that the series

∑
aνx

ν

converges.
It remains to see that this convergence is uniform on ∆(rx∗). Thus consider

ε > 0 and a finite set Iε ⊂ Nn such that
∑
ν /∈I r

|ν| < ε/M for every finite set of
indices I ⊃ Iε. From one of our preceding inequalities we get

|
∑
ν∈I

aνx
ν − f(x)| ≤

∑
ν /∈I

|aνxν | ≤M
∑
ν /∈I

r|ν| < ε,

which concludes the proof. �

We now consider new indeterminates y1, . . . , yn and for every µ ∈ Nn the formula

(x1 + y1)µ1 · · · (xn + yn)µn =
∑
ν

Pµν(x)yν ,

where Pµν(x) = µ!
ν!(µ−ν)!x

µ−ν and µ1 ≥ ν1, . . . , µn ≥ νn. Then:

Proposition y Definition 2.3 Let f =
∑
aνx

ν be a convergent power series. Then
the associated function

af : D(f)→ K : x 7→ f(x)

is continuous, and for every x0 ∈ D(f) it holds:

a) For every ν the series
∑
µ aµPµν(x0) converges, say bν =

∑
µ aµPµν(x0).

b) The power series g =
∑
bνx

ν is convergent, and g(x− x0) = f(x) for x close
enough to x0.

Proof. For every integer p ≥ 0 let fp stand for the polynomial
∑
|ν|≤p aνx

ν . Now fix

0 < r < 1 and x∗ ∈ D∗(f). By Proposition 2.2 the sequence of polynomials (fp)p≥0

converges uniformly to af |∆(rx∗) on ∆(rx∗). Hence af |∆(rx∗) is continuous and,
D(f) being the union of all the ∆(rx∗)’s, af is continuous.

To prove a) and b) note that if y ∈ Kn is close enough to the origin, the point
z = (|x01| + |y1|, . . . , |x0n| + |yn|) belongs to D(f) (Proposition 2.2 again), and it
follows then that the series

∑
(µ,ν) aµPµν(x0)yν converges. Indeed, if I, J are finite

sets we have∑
(µ,ν)∈I×J

|aµPµν(x0)yν | ≤
∑
µ∈I
|aµ|

∑
Pµν(|x01|, . . . , |x0n|)|yν | =

∑
µ∈I
|aµ|zµ,
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and our assertion follows from Proposition 1.3, and the fact that f converges at z.
Thus, the iterated series∑

ν

∑
µ

aµPµν(x0)yν ,
∑
µ

∑
ν

aµPµν(x0)yν ,

exist and their sums coincide (Proposition 1.6). Whence we have proved a) and that
the series g of b) is convergent. Finally, if x is close to x0, then y = x− x0 is close
to the origin, and by the remark above

g(x− x0) =
∑
ν

(∑
µ

aµPµν(x0)

)
yν =

=
∑
µ

(∑
ν

aµPµν(x0)yν

)
= f(x0 + y) = f(x).

�

(2.4) Operations with power series. Let f =
∑
aνx

ν and f =
∑
bνx

ν be two
formal power series. We define their sum by

f + g =
∑

(aν + bν)xν

and their product by

fg =
∑ ∑

λ+µ=ν

aλbµ

 xν .

One easily checks that

(1− x1) · · · (1− xn)
∑
|ν|≥0

xν = 1.

Clearly, it holds

ω(f + g) ≥ min{ω(f), ω(g)}, ω(fg) = ω(f)ω(g).

In particular, if f 6= 0 and g 6= 0, then fg 6= 0. If f and g converge at the point
x ∈ Kn, then f + g and fg converge at that point, and

(f + g)(x) = f(x) + g(x), (fg)(x) = f(x)g(x).

In particular, if f and g are convergent power series,

D(f + g) ⊃ D(f) ∩D(g) 6= ∅, D(fg) ⊃ D(f) ∩D(g) 6= ∅,

which implies that the series f + g and fg are also convergent.
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In this way, Fn (resp. On) is a commutative ring with unit, which contains the
field of coefficients K, and hence it is a K-algebra. Furthermore, it is an integral
domain.

A family {fλ |λ ∈ Λ} of formal power series

fλ =
∑

aλνx
ν

is called summable if for every integer p ≥ 0 the subfamily of the series of order ≤ p
is finite. In that case, for every ν ∈ Nn set of λ’s with aλν 6= 0 is finite (if aλν 6= 0
then ω(fλ) ≤ |ν|), and the sum

∑
λ∈Λ aλν is finite. Consequently, the formal power

series
∑(∑

λ∈Λ aλν
)
xν is well defined: it is called the sum of the family {fλ |λ ∈ L}

and denoted by
∑
fλ.

If two families {fλ |λ ∈ Λ} and {gλ |λ ∈ Λ} are summable, and a, b are two
formal power series, the family {afλ + bgλ |λ ∈ Λ} is summable, and its sum is the
series a

∑
fλ + b

∑
gλ.

(2.5) Substitution. Let f =
∑
aνx

ν , g1, . . . , gn be formal power series with orders
ω(g1) ≥ 1, . . . , ω(gn) ≥ 1. Then for every ν,

ω(aνg
ν1
1 · · · gνnn ) ≥ ν1ω(g1) + · · ·+ νnω(gn) ≥ |ν|,

and so the family
{aνgν11 · · · gνnn | ν ∈ Nn}

is summable. The sum of this family is called the substitution of g1, . . . , gn in f and
denoted by f(g1, . . . , gn).

It is a straightforward computation to check that for any other formal power
series h it holds

a) (h+ f)(g1, . . . , gn) = h(g1, . . . , gn) + f(g1, . . . , gn), and

b) (hf)(g1, . . . , gn) = h(g1, . . . , gn)f(g1, . . . , gn).

As an application, consider the identity

(1− x1)
∑

xν1 = 1.

Then for every f ∈ Fn with f(0) = a 6= 0, we get

1 =

(
1−

(
1− 1

a
f

))∑(
1− 1

a
f

)ν1
,

and consequently there exists the formal power series

1

f
=

1

a

∑(
1− 1

a
f

)ν1
.
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It follows that Fn is a local ring whose maximal ideal m̂n consists of the formal
power series with order ≥ 1. Clearly this ideal is generated by the indeterminates:
m̂n = {x1, . . . , xn}Fn.

Concerning convergence we have

Proposition 2.6 If f, g1, . . . , gn are convergent, then f(g1, . . . , gn) is convergent.
More explicitely, if x ∈ Kn is close to the origin, then g1, . . . , gn, f(g1, . . . , gn) con-
verge at x, f converges at (g1(x), . . . , gn(x)) and

f(g1, . . . , gn)(x) = f(g1(x), . . . , gn(x)).

Proof. Let f =
∑
aνx

ν , gi =
∑
biνx

ν , 1 ≤ i ≤ n, and write g∗i =
∑
|biν |xν , 1 ≤

i ≤ n. By Proposition 2.3 and since g∗1(0) = · · · = g∗n(0) = 0, it follows that if x is
close to the origin, the series g∗1 , . . . , g

∗
n converge at (|x1|, . . . , |xn|), say to t1, . . . , tn

respectively, and t = (t1, . . . , tn) ∈ D(f). We thus suppose that x verifies those con-
ditions. Then g1, . . . , gn also converge at x, and we write g(x) = (g1(x), . . . , gn(x)).
As |gi(x)| ≤ ti (remember the definition of g∗i ) for 1 ≤ i ≤ n, we conclude that
g(x) ∈ D(f) (Proposition 2.2). It remains to show that f(g1, . . . , gn) converges at x
to f(g(x)).

To that end, for every integer p ≥ 0 we consider the series

fp =
∑
|ν|≤p

aνx
ν , hp = fp(g1, . . . , gn).

By 2.4 we have hp = fp(g(x)), and since f converges at g(x) this implies

lim
p→∞

fp(g(x)) = f(g(x)).

Thus we have to prove that f(g1, . . . , gn) converges at x to limp→∞ hp(x). By 2.5
a),b)

f(g1, . . . , gn)− hp = (f − fp)(g1, . . . , gn) =
∑
|ν|>p

aνg
ν1
1 · · · gνnn

for every p; we will denote this series by
∑
ν cpνx

ν . Also, let
∑
ν dpνx

ν be the series
obtained by substitution of g∗1 , . . . , g

∗
n in

∑
|ν|>p |aν |xν . We claim that

∑
ν dpνx

ν

converges at x and ∑
ν

dpν |x|ν ≤
∑
|ν|>p

|aνtν |.

Indeed, if I ⊂ Nn is finite and q = max{|ν| | ν ∈ I} it holds∑
ν∈I

dpν |x|ν ≤
∑

p<|ν|≤q

|aν |
(∑

|b1µxµ|
)ν1
· · ·
(∑

|bnµxµ|
)νn

=

=
∑

p<|ν|≤q

|aνtν | ≤
∑
p<|ν|

|aνtν |,
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where the first inequality follows from 2.5 a),b). Now our claim is a consequence of
Proposition 1.3, since the series

∑
|aνtν | converges.

On the other hand, it is clear that |cpν | ≤ dpν , and so

| (f(g1, . . . , gn)− hp) (x)| ≤
∑
ν

dpν |xν | ≤
∑
p<|ν|

|aνtν |.

All this means that f(g1, . . . , gn) converges at x and that, the last inequality being
valid for all p’s, f(g1, . . . , gn)(x) = limp→∞ hp(x), as wanted. �

A first consequence of the preceding result is the following: if f is a convergent power
series with f(0) = a 6= 0, then the formal power series

1

f
=

1

a

∑(
1− 1

a
f

)ν1
constructed above is convergent. Whence On is a local ring whose maximal ideal mn
consists of the convergent power series with order ≥ 1. Again, this ideal is generated
by the indeterminates: mn = {x1, . . . , xn}On.

(2.7) Derivatives. Let 1 ≤ i ≤ n. The derivative with respect to xi of a formal
power series f =

∑
aνx

ν is the formal power series

∂f/∂xi =
∂f

∂xi
=
∑
νi>0

νiaνx
ν1
1 · · · x

νi−1
i · · · xνnn .

If {fλ |λ ∈ Λ} is a summable family of formal power series, the family {∂fλ/∂xi |λ ∈
Λ} is also summable, and its sum is ∂(

∑
fλ)/∂xi. In the same way, the usual

properties of derivatives hold true in this formal setting. The Leibnitz Formula:

∂(fg)

∂xi
= f

∂g

∂xi
+ g

∂f

∂xi
;

the Chain Rule:

∂ (f(g1, . . . , gn))

∂xi
=

∑
1≤j≤n

∂f

∂xi
(g1, . . . , gn)

∂gj
∂xi

;

the Schwartz Rule:
∂

∂xi

(
∂f

∂xj

)
=

∂

∂xj

(
∂f

∂xi

)
.

This last formula gives way to the definition by induction of the derivatives of higher
order

∂|ν|f/∂xν =
∂|ν|f

∂xν
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where ∂xν stands for ∂xν11 · · · ∂xνnn . In particular we get the Taylor Expansion:

f =
∑ 1

ν!

∂|ν|f

∂xν
(0)xν .

More generally, for x = (x1, . . . , xn), y = (y1, . . . , yp) and f ∈ K[[x, y]] we have

f(x, y) =
∑ 1

ν!

∂|ν|f

∂xν
(0, y)xν .

Indeed, the family { 1
ν!
∂|ν|f
∂xν (0, y)xν | ν ∈ Nn} is summable, and if we denote by h its

sum, a straightforward computation shows that ω(f−h) ≥ m for any integer m ≥ 0,
that is, f = h.

For convergent power series we have:

Proposition 2.8 Let f be a convergent power series. Then the associated function
af : D(f)→ K is analytic, that is, af is smooth and for every x0 ∈ D(f):

a) The series ∂|ν|f
∂xν converges at x0 to ∂|ν|af

∂xν (x0), and

b) The power series

Tx0
f =

∑ 1

ν!

∂|ν|f

∂xν
(x0)xν

is convergent, and for x close enough to x0 it holds f(x) = Tx0
f(x− x0).

Proof. Let us see first that the partial derivative ∂af
∂xi

(x0) exists and that ∂f
∂xi

converges at x0 to that derivative. Without loss of generality assume i = 1. Using
the notations of Proposition 2.3, we put (1) = (1, 0, . . . , 0), and so

g = b(1)x1 + x1g1 + g2; g1(0) = 0, g2 =
∑
µ1=0

xµ1 .

Note that g1 and g2 are parts of the expansion of g, and consequently both are
convergent. Now for small t 6= 0 it is

ag(t, 0, . . . , 0)− ag(0)

t
= b(1) + ag1(t, 0, . . . , 0),

and since ag1 is continuous and g1(0) = 0, we deduce that the derivative ∂ag
∂x1

(0) exists
and

∂ag

∂x1
(0) = b(1) =

∑
aνPν,(1)(x0).

We also have
Pν,(1) = ν1x

ν1−1
1 xν22 · · · xνnn ,

whence ∑
aνPν,(1)(x) =

∂f

∂x1
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and we conclude that the latter series converges at x0 to b(1). Thus

∂f

∂x1
(x0) =

∂ag

∂x1
(0).

Finally by Proposition 2.3 b) we conclude that the derivative ∂af
∂x1

(x0) exists and

coincides with ∂ag
∂x1

(0), that is

∂af

∂x1
(x0) =

∂f

∂x1
(x0).

It follows easily by induction from this both that af is smooth and the assertion a)
in the statement. But then b) also follows, since the series Tx0

f is exactly the series
g above. �

Proposition 2.9 (Identity Principle) Let f be a convergent power series. The fol-
lowing assertions are equivalent:

a) f = 0.

b) af vanishes on a non-empty open subset of D(f).

c) f and all its derivatives of all orders vanish at some point of D(f).

Proof. Let A ⊂ D(f) be the set of all x ∈ D(f) such that ω(Txf) = +∞.
By Proposition 2.8 the set A is both open and closed, and since D(f) is connected
(Proposition 2.2), A is either empty or equal to D(f). Now if c) holds, A 6= ∅, and by
the preceding remark A = D(f), that is, f = 0. The other implications are trivial.

�

This generalizes the fact that the zeros of an analytic function (Proposition 2.8) in
one variable are all isolated, an easy exercise which is left to the reader.

Corollary 2.10 Let f ∈ K[x1, . . . , xn] be a non-zero polynomial. Then the open set
{x ∈ Kn | f(x) 6= 0} is a dense subset of Kn.

3 Rückert’s and Weierstrass’s Theorems

A formal power series f ∈ Fn = K[[x]], x = (x1, . . . , xn), is called regular of order
p with respect to xn if f(0, . . . , 0, xn) = xpng(xn) with g(0) 6= 0. A polynomial
xpn+a1x

p−1
n +· · ·+ap with coefficients a1, . . . , ap ∈ Fn−1 is called distinguished if it is

a regular series of order p with respect to z, or equivalently if a1(0) = · · · = ap(0) = 0.
The following lemma will be often useful:
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Lemma 3.1 Let f ∈ Fn, f 6= 0. After a linear change of coordinates, f becomes
regular of order ω(f) with respect to xn.

Proof. Set f =
∑
aνx

ν , p = ω(f). Then fp =
∑
|ν|=p aνx

ν 6= 0, and there

are c1, . . . , cn−1 ∈ K with c = fp(c1, . . . , cn−1, 1) 6= 0 (otherwise the homogeneous
polynomial fp would be divisible by xn−1). We now make the change of coordinates
xi = yi+ciyn, 1 ≤ i < n, xn = yn to get g(y) = f(y1 +c1yn, . . . , yn−1 +cn−1yn, yn).
Clearly g(0, . . . , 0, yn) = f(c1y1, . . . , cn−1yn−1, yn) consists of the monomial cypn plus
terms of higher degrees. �

Proposition 3.2 (Rückert’s Division Theorem) Let Φ ∈ On a convergent power
series, regular of order p with respect to xn. For every f ∈ On there exist Q ∈ On
and R ∈ On−1[xn] with degree of R < p such that f = QΦ + R. These conditions
determine Q and R uniquely. Furthermore, if Φ ∈ On−1[xn] is distinguished and
f ∈ On−1[xn], then Q ∈ On−1[xn].

The same result holds true when substituting On by Fn and On−1 by Fn−1.

Proof. We set x′ = (x1, . . . , xn−1). Since Φ is regular of order p with respect to xn
we can write

Φ =

p∑
i=1

ai(x
′)xp−in + a0(x′)xpn + b(x)xp+1

n =

p∑
i=1

ai(x
′)xp−in + (a0(x′) + b(x)xn)xpn

with ai(0) = 0 for 1 ≤ i ≤ p and a0(0) 6= 0. Then the series a0(x′) + b(x)xn is a unit
and we denote u(x) its inverse to write

Φu = ϕ+ xpn, where ϕ =

p∑
i=1

ai(x
′)xp−in u(x).

Clearly division by Ψ = Φu is equivalent to division by Φ, hence we focus on Ψ.
Let ρ = (ρ1, . . . , ρn), ρi > 0. For f =

∑
aνx

ν ∈ On we will denote by ‖f‖ the
sum of the series

∑
|aν |ρν when this sum exists and ‖f‖ = +∞ otherwise. Let X

be the algebra of all series f ∈ On with ‖f‖ < +∞. One readily checks that ‖ · ‖ is
a norm on X. Note this: since f is convergent, limρ→0 ‖f‖ = |f(0)|.

Clearly, if ρ is small enough, X contains any prescribed finite collection of con-
vergent power series; in particular ai, u, hence ϕ, and any fixed f which we want to
divide by Ψ.

We define a map T : X → X as follows: if Q ∈ X set

f − ϕQ = R+ xpnT (Q),

where R ∈ On−1[xn], and the degree of R is < p. This map T is contractive, that is,

dist(T (Q), T (Q′)) < c dist(Q,Q′)
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for any Q,Q′ ∈ X, where 0 < c < 1 (dist stands for the distance associated to the
norm ‖ · ‖). Indeed, let

f − ϕQ = R+ xpnT (Q), f − ϕQ′ = R′ + xpnT (Q′).

Then
ϕ(Q′ −Q) = R−R′ + xpn(T (Q)− T (Q′)).

Computing norms in this equality, and taking into account that R−R′ is a polyno-
mial in On−1[xn] of degree < p, we get

‖xpn(T (Q)− T (Q′))‖ ≤ ‖R−R′‖+ ‖xpn(T (Q)− T (Q′))‖ =

= ‖R−R′ + xpn(T (Q)− T (Q′))‖ = ‖ϕ(Q−Q′)‖ ≤ ‖ϕ‖‖Q−Q′‖.

But ‖xpn(T (Q)− T (Q′))‖ = ρpn‖T (Q)− T (Q′)‖, and we obtain

dist(T (Q), T (Q′)) ≤ ‖ϕ‖
ρpn

dist(Q,Q′).

We have
‖ϕ‖
ρpn
≤

p∑
i=1

‖ai‖
‖u‖
ρin

.

Now, since limρ→0 ‖u‖ = |u(0)|, ‖u‖ ≤ |u(0)|+1 for every ρ = (ρ′, ρn) small enough.
On the other hand, limρ′→0 ‖ai‖ = |ai(0)| = 0 and fixed ρn, we can take ρ′ so that

‖ai‖ |u(0)|+1
ρin

< 1
2p for 1 ≤ i ≤ p. All in all, we conclude

dist(T (Q), T (Q′)) < 1
2 dist(Q,Q′).

We claim that (X, ‖ · ‖) is a Banach algebra, to apply the classical

(Fixed Point Theorem) Let X be a complete metric space and T : X → X a
contractive map. Then T has a unique fixed point Q.

It follows from the very definition of T that

f = Q(ϕ+ xpn) +R = QΨ +R.

Thus we have shown the existence of the division. And actually also its uniqueness:
if f = Q′Ψ + R′ with Q 6= Q′ ∈ On, R′ ∈ On−1[xn] with degree of R′ < p, we can
always choose ρ so that Q′, R′ ∈ X and then Q′ would be a second fixed point of T ,
which is impossible.

This settles the first part of the theorem, except for our claim, whose proof we
postpone still a little. Suppose now that f,Φ ∈ On−1[xn] and Φ is distinguished.
Then we can divide f by the monic polynomial Φ in the ring of polynomialsOn−1[xn],
say f = Q′Φ +R′ with Q′, R′ ∈ On−1[xn] and degree of R′ < p. By the uniqueness
already proved Q = Q′, R = R′.
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We finally come to the
Proof of the claim: The key fact here is that (X, ‖ · ‖) is complete. To see this
we consider a Cauchy sequence (gs)s≥0 of X, where gs =

∑
asνx

ν for s ≥ 0. Then
every sequence (asν)s≥0 is a Cauchy sequence of K with a limit aν ∈ K. It follows
that g =

∑
aνx

ν belongs to X, and g = lims→∞ gs.
To prove this we need to show that for any given ε > 0 and large enough s∑

ν

|aν − asν |ρν = ‖g − gs‖ < ε

holds. Furthermore, since the series in this inequality is a series of non-negative real
numbers, it is enough to see that∑

ν∈I
|aν − asν |ρν ≤ ε/2

for any finite set of indices I. We notice that since (gs)s≥0 is a Cauchy sequence, we
have for r, s large ∑

ν

|arν − asν |ρν < ε/2.

Consequently ∑
ν∈I
|arν − asν |ρν < ε/2

and taking the limit in this finite sum as r →∞, we get∑
ν∈I
|aν − asν |ρν ≤ ε/2,

as wanted.
Thus we have finished the convergent case. The proof of the formal case is similar,

even simpler. We describe it succinctly. For f ∈ Fn we define ‖f‖ = e−v(f), where
v(f) stands for the greatest m ≥ 0 such that f ∈ {x1, . . . , xn−1}mFn (m = +∞ if
and only if f = 0). This is a norm on the algebra X = Fn except that ‖λf‖ = ‖f‖
for λ ∈ K. But still ‖− f‖ = ‖f‖ which is enough to define the distance dist(f, g) =
‖f − g‖ and go ahead.

Now, T is contractive. Indeed, we have

‖T (Q)− T (Q′)‖ ≤ ‖R−R′ + xpn(T (Q)− T (Q′))‖
= ‖ϕ(Q−Q′)‖ ≤ ‖ϕ‖‖Q−Q′‖,

the first inequality because v(T (Q)− T (Q′)) ≥ v
(
R −R′ + xpn(T (Q)− T (Q′))

)
(we

recall that R−R′ is a polynomial in xp of degree < p). Furthermore

‖ϕ‖ ≤
∥∥ p∑
i=1

ai(x
′)xp−in

∥∥‖u(x)‖ ≤ 1
e < 1,
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since ai(0) = 0 implies v(
∑
i ai(x

′)xp−in ) ≥ 1 and u(0) 6= 0 implies v(xp−in u) = 0.
Finally, X is complete with this distance. Let (fs) be a Cauchy sequence. Then

for every m ≥ 0 there is sm such that ‖fs − fsm‖ ≤ e−m for all s ≥ sm. Write
fs =

∑
i csi(x

′)xin. Then the inequality says that for all s ≥ sm the series csi(x
′)

coincide all till order m. This gives a formal power series which is the limit of the
sequence. �

Proposition 3.3 (Weierstrass’s Preparation Theorem) Let Φ ∈ On be regular of
order p with respect to xn. Then there exist a distinguished polynomial P ∈ On−1[xn]
of degree p and a unit Q of On such that P = QΦ. These conditions determine P
and Q uniquely.

The same result holds true when substituting On by Fn and On−1 by Fn−1.

Proof. By the Division Theorem (Proposition 3.2) there exist Q ∈ On, a1, . . . , ap ∈
On−1 such that

xpn = QΦ−
p∑
i=1

aix
p−i
n .

But Φ(0, xn) = xpng(xn) with g(0) 6= 0, and consequently

xpn = Q(0, xn)xpng(xn)−
p∑
i=1

ai(0)xp−in .

Thus we see that a1(0) = · · · = ap(0) = 0, Q(0, 0) 6= 0, and so

P = xpn + a1x
p−1
n + · · ·+ ap

is the distinguished polynomial we sought. The uniqueness of the division implies
the uniqueness of P .

The proof in the formal case is the same. �

Proposition 3.4 (Hensel’s Lemma) Let Φ ∈ On[z] be a monic polynomial and
a ∈ K a root of multiplicity p of Φ(0, z) ∈ K[z]. Then there exist monic polynomials
P,U ∈ On[z] such that Φ = PU and

a) P has degree p and P (0, z) = (z− a)p;

b) U(0, a) 6= 0.

These conditions determine P and U uniquely.
The same result holds true when substituting On by Fn and On−1 by Fn−1.



16 I. Power Series

Proof. Up to the change z′ = z− a we may assume a = 0, and then our hypothesis
implies that Φ is regular of order p with respect to z. We thus can apply Weierstrass’s
Preparation Theorem (Proposition 3.3) to get P and U = Q−1. We notice that a)
means precisely that P is distinguished. Moreover, as P is distinguished and Φ a
polynomial, U is a polynomial, too (last part of Rückert’s Division Theorem). Finally
the uniqueness follows from the uniqueness of Weierstrass’s Preparation Theorem.

The same proof works in the formal case. �
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II Analytic Rings and Formal Rings

Summary. We devote this chapter to the description of the categories of analytic
and formal rings over R and C. First, we develop Mather’s formalism of finite
and quasifinite homomorphisms. Then, we obtain Noether’s Projection Lemma and
further algebraic properties of these rings. Thus, we come to one fundamental con-
struction: Abhyankar’s and Rückert’s Parametrization. Afterwards, we introduce
the regularity ideals and prove Nagata’s Jacobian Criteria. Finally, we discuss com-
plexification, an essential tool to understand the differences between the real and
the complex categories.

1 Mather’s Preparation Theorem

Again we set K = R or C. Given a ring A and a prime ideal p of A, we will denote
by κ(p) the residue field of p, that is, the quotient field of the ring A/p; if A is local,
we will denote by mA its maximal ideal.

Definition 1.1 An analytic (resp. a formal) ring over K is a ring isomorphic to
K{x}/I (resp. K[[x]]/I) with x = (x1, . . . , xn); we will usually not specify “over
K”. If A,B are two analytic (resp. formal) rings, an analytic (resp. a formal)
homomorphism A→ B is a homomorphism of K-algebras. The field K is called the
coefficient field.

Proposition 1.2 Every analytic (resp. a formal) ring is a noetherian local ring.
The canonical homomorphism K→ A/mA is an isomorphism, and A = K + mA.

Proof. We will only give the proof in the analytic case, that of the formal case being
analogous with the obvious changes. This will be done systematically all through
this chapter.

First of all, since there is a certain surjective homomorphismOn → A, the general
case follows immediately from the case A = On. Hence we suppose A = On.

We argue by induction on n. If n = 0 the result is trivial, so we let n > 0
and I an ideal 6= 0 of On. Choose Φ ∈ I, Φ 6= 0. By Lemma I.3.1, we may
assume that Φ is regular of order, say, p with respect to xn. By Rückert’s Division
Theorem (Proposition I.3.2), the ring On/ΦOn is generated by 1, xn, . . . , x

p−1
n as an

On−1-module. Since On−1 is noetherian by induction hypothesis, we deduce that
On/ΦOn is a noetherian On−1-module ([A-McD 6.5, 6.2]). Thus I/ΦOn is finitely
generated as an On−1-module, say by the classes of f1, . . . , fs ∈ I. In this situation
f1, . . . , fs,Φ generate I.

Finally, the assertions concerning the coefficient field K are immediate. �
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Proposition 1.3 Every analytic (resp. formal) homomorphism ϕ : A→ B is local,
that is, ϕ(mA)B ⊂ mB.

Let A = On/I (resp. Fn/I), and consider the correspondence

Γ : ϕ 7→ (ϕ(x mod I), . . . , ϕ(xn mod I)) ∈ mB × · · · ×mB = m×nB .

from the set of all analytic (resp. formal) homomorphisms A → B into m×nB . We
have:

a) Γ is an injective map.

b) If I = (0), then Γ is a bijective map.

Proof. First of all, if ϕ(mA)B 6⊂ mB there would be some f ∈ mA such that
ϕ(f) = a + g with 0 6= a ∈ K, g ∈ mB . Then ϕ(f − a) = g would not be a unit,
while f − a is one.

a) We have to show that if φ, ϕ : A → B are two analytic homomorphism such
that φ(xi mod I) = ϕ(xi mod I) = bi, 1 ≤ i ≤ n, then φ = ϕ.

To see this, we note that any f ∈ On can be written in the form

f = g + h, g ∈ K[x1, . . . , xn], ω(h) ≥ s,

for every integer s ≥ 0. Consequently

φ(f mod I)− ϕ(f mod I) = φ(h mod I)− ϕ(h mod I) ∈ msB .

Indeed,

• φ and ϕ coincide on x1 mod I, . . . , xn mod I, and both are K-algebra homo-
morphisms; hence they coincide on K[x1 mod I, . . . , xn mod I].

• h mod I ∈ msA and our homomorphisms are local.

This being valid for every s ≥ 0, we may conclude

φ(f mod I)− ϕ(f mod I) ∈
⋂
s≥0

msB = (0)

(Krull’s Theorem [A-McD 10.19]).
b) Suppose now that I = (0). To show that Γ is surjective fix any b1, . . . , bn ∈ mB .

By the definition of an analytic ring, there is a surjective analytic homomorphism
π : Op → B, and we pick g1, . . . , gn ∈ Op such that π(gi) = bi, 1 ≤ i ≤ n. We define
ϕ : A→ B by substitution:

f 7→ f(g1, . . . , gn) 7→ ϕ(f) = π(f(g1, . . . , gn)),

and so Γ (ϕ) = (b, . . . , bn). �
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Definitions 1.4 Let ϕ : A→ B be a local homomorphism of local rings.

a) ϕ is called quasifinite if B/ϕ(mA)B has finite dimension as linear space over
K = A/mA (via ϕ).

b) ϕ is called finite if B is a finite A-module (via ϕ).

Obviously every finite homomorphism is quasifinite. In our setting the converse is
also true, as we see in the next result:

Proposition 1.5 (Mather’s Finiteness Theorem) Let ϕ : A → B be an analytic
(resp. a formal) homomorphism. If M is a finite B-module and M/ϕ(mA)M has
finite dimension as linear space over K = A/mA (via ϕ), then M is a finite A-module
(via ϕ).

In particular, if ϕ is quasifinite, it is finite.

Proof. Choose two surjective analytic homomorphisms π : On → A, π′ : Op → B,
where

On = K{x}, Op = K{y}, On+p = K{x, y}, x = (x1, . . . , xn), y = (y1, . . . , yp).

We consider the inclusion j : On → On+p and power series g1, . . . , gn ∈ Op such
that ϕπ(xi) = π′(gi) for 1 ≤ i ≤ n. We then have the analytic homomorphism
φ : On+p → Op defined by

φ(x1) = g1, . . . , φ(xn) = gn, φ(y1) = y1, . . . , φ(yp) = yp

(Proposition 1.3). We finally set π′′ = π′ ◦ φ : On+p → B, which is surjective.
Clearly ϕπ(xi) = π′′(xi) for 1 ≤ i ≤ n, and again by Proposition 1.3, we see that
ϕ ◦ π = π′′. Hence we obtain the commutative diagram

A B

On OpOn+p

π π′′ π′

j φ

ϕ? ?
-

- -

@
@
@R

From this diagram one easily deduces that it suffices to prove the proposition for
the homomorphism j, which by induction is reduced to the case p = 1.

Consequently we set z = y1 and consider generators m1, . . . ,ms of M , as On+1-
module, whose classes mod mnM generateM/mnM as linear space over K = On/mn.
Then

zmi =

s∑
j=1

(cij + hij)mj , 1 ≤ i ≤ s,

for suitable cij ∈ K, hij ∈ mnOn+1. We now have the power series

Φ = det(zδij − cij − hij) ∈ On+1
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(where as usual δij = 1 if i = j, δij = 0 otherwise). But then

Φ(0, z) = det(zδij − cij) = zs +

s∑
k=1

c∗kz
s−k ∈ K[z],

since hij(0, z) = 0. Hence Φ ∈ On+1 is regular of order ≤ s with respect to z. On
the other hand Φ is the determinant of the homogeneous system above, the mi’s
seen as unknowns, and so we get

Φm1 = · · · = Φms = 0.

We finally consider m ∈M . From Rückert’s Division Theorem we get

m =

s∑
i=1

fimi =

s∑
i=1

(QiΦ +

s∑
j=1

uijz
p−j)mi =

∑
1≤i,j≤s

uijz
p−jmi,

with fi, Qi ∈ On+1, uij ∈ On. Thus the products zp−jmi, 1 ≤ i, j ≤ s, generate M
as On-module, which ends the proof. �

Example 1.6 Every non-trivial analytic homomorphism ϕ : A → K{t} (resp. for-
mal homomorphism ϕ : A→ K[[t]]) is finite.
Proof. Indeed, I = ϕ(mA)K{t} is an ideal 6= 0. Then, if 0 6= f ∈ I with
ω(f) = d < +∞, we can write f = tdu(t), where u is a unit. Thus td ∈ I and
consequently I contains all power series of order ≥ d. Hence, the homomorphism

Kd → K{t}/I : (a0, . . . , ad−1) 7→ a0 + · · ·+ ad−1t
d−1 mod I

is surjective. Consequently
dimK(K{t}/I) ≤ d,

and by Mather’s Finiteness Theorem, ϕ is finite. �

This example is a very particular instance of a useful finiteness criterion that follows
from Mather’s:

Proposition 1.7 Let ϕ : A → B be an analytic (resp. a formal) homomorphism.
The following assertions are equivalent:

a) ϕ is finite.

b) mB =
√
ϕ(mA)B.

Proof. Set I = ϕ(mA)B and Ns = msB + I for s ≥ 0; clearly Ns ⊃ Ns+1. Then, by
means of any surjective analytic homomorphism φ : Op → B, we obtain a surjective
homomorphism

msp/m
s+1
p → Ns/Ns+1.



1. Mather’s Preparation Theorem 21

Now note that msp/m
s+1
p is the space of all homogeneous linear forms of degree

exactly s, which has finite dimension as vector space over K. Hence we also have

dimK(Ns/Ns+1) < +∞.

After this preparation, suppose ϕ finite. Then dimK(B/I) < +∞ and the chain

B = N0 ⊃ N1 ⊃ · · · ⊃ Ns ⊃ Ns+1 ⊃ · · · ⊃ I

must be finite, that is, Ns = Ns+1 for some s. It follows Ns = mBNs + I and
applying Nakayama’s Lemma ([A-McD 2.7]) to Ns as B-module we conclude

I = Ns = msB + I ⊃ msB .

As mB is the maximal ideal of B the above inclusion means that mB =
√
I, as

wanted.
Conversely, suppose b). Then, since the ring B is noetherian, I ⊃ msB for some

s. Hence

dimK(B/I) ≤
s∑
`=0

dimK(N`/N`+1) < +∞,

and ϕ is quasifinite. By Mather’s Finiteness Theorem, ϕ is finite. �

Another consequence of Proposition 1.5 is:

Proposition 1.8 Let A = On (resp Fn) and ϕ : A → B be an analytic (resp. a
formal) homomorphism with ϕ(xi) = bi ∈ mB for 1 ≤ i ≤ n. Then ϕ is surjective if
and only if the bi’s generate mB.

Proof. The only if part is clear, since ϕ−1(mB) ⊂ mA and

ϕ(mA)B = {ϕ(x1), . . . , ϕ(xn)}B = {b1, . . . , bn}B.

Conversely, if the bi’s generate mB , then ϕ(mA)B = mB . Hence ϕ is quasifinite and,
by Mather’s theorem, it is finite. Thus, we can apply Nakayama’s Lemma to B as a
finite A-module, and since

ϕ(A) + ϕ(mA)B ⊃ K + mB = B

we conclude ϕ(A) = B, and ϕ is onto. �

Finally, dimension theory can be applied to analytic and formal rings (for dimension
theory we refer to [A-McD §11]). The following fact will we often used:

Lemma 1.9 An analytic (resp. a formal) ring is regular of dimension n if and only
if it is isomorphic to On (resp. Fn).
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Proof. Firstly, On has dimension ≥ n, since we have the chain

(0) ⊂ (x1) ⊂ · · · ⊂ (x1, . . . , xn) = mn.

On the other hand, the ideal mn is generated by the n elements x1, . . . , xn, and this
implies that On is regular of dimension exactly n ([A-McD 11.14, 11.22]).

Now, let B be an analytic ring of dimension n. If B is regular, mB is generated
by n elements b1, . . . , bn, which define an analytic homomorphism ϕ : On → B. By
Proposition 1.8 this homomorphism is onto, and it remains to see that it is injective.
To that end, we put I = ker(ϕ) and consider the isomorphism On/I ' B induced
by ϕ. We get dim(On/I) = dim(B) = n, which clearly implies I = (0). Whence, we
are done. �

2 Noether’s Projection Lemma

We start this section by studying factorization in power series rings.

Proposition 2.1 The ring On (resp. Fn) is factorial and, consequently, integrally
closed in its quotient field.

Proof. Since the ring On is a noetherian integral domain, it is enough to see that
any irreducible element Φ ∈ On generates a prime ideal ΦOn. We will do this by
induction. For n = 0 the assertion is trivial, so we assume n > 0 and the result to be
known for less than n indeterminates. After a linear change of coordinates we may
suppose that Φ is regular of some order with respect to xn (Lemma I.3.1) and then,
by Weierstrass’s Preparation Theorem (Proposition I.3.3), that Φ is a distinguished
polynomial of On−1[xn]. By induction hypothesis the ring On−1 is factorial, and by
Gauss’s Lemma ([L V.6 Th.10]), the ring On−1[xn] is also factorial.

Let us see now that Φ is irreducible in On−1[xn]. Suppose Φ = Φ1Φ2 for some
Φ1,Φ2 ∈ On−1. Since Φ is irreducible in On, one of those factors, say Φ1 is a unit
in On, and Φ2 = (1/Φ1)Φ in On. Then by Rückert’s Division Theorem (Proposition
I.3.2), since Φ is a distinguished polynomial and Φ2 a polynomial, the quotient 1/Φ1

must be a polynomial, too. Thus Φ1 is a unit of On−1[xn], and we conclude that Φ
is irreducible in On−1[xn].

We finally show that ΦOn is a prime ideal. Let Φ divide the product of two
power series f, g ∈ On. By Rückert’s Division Theorem we can write

f = QΦ +R, g = Q′Φ +R′.

It follows RR′ = Q∗Φ for some Q∗ ∈ On. Arguing as above, we now also conclude
Q∗ ∈ On−1[xn], and Φ being irreducible in the factorial ring On−1, Φ divides either
R or R′. Hence Φ divides either f or g.
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Finally, the ring On is integrally closed in its quotient field. Actually, any facto-
rial domain has this property, and the proof is the elementary one given for the ring
of integers Z. �

Remark 2.2 The preceding proof further shows that any distinguished polynomial
Φ ∈ On−1[xn] has a unique factorization Φ = Pα1

1 · · ·Pαss , where the Pi’s are distin-
guished polynomials, irreducible both in On−1[xn] and On.

We recall that the height ht(p) of a prime ideal p of a ring A is the maximal length
of a chain of distinct prime ideals contained in p, that is, ht(p) = dim(Ap), and this
height is finite if A is noetherian. For an arbitrary ideal I the height ht(I) is defined
to be the minimal height of a prime ideal containing I. If A is noetherian, then

√
I

is a finite intersection of prime ideals:
√
I = p1 ∩ · · · ∩ pr, and we get

ht(I) = ht(
√
I) = min{ht(p1), . . . ,ht(pr)}.

Note also that if p ⊂ I and ht(p) = ht(I), then p = I. For instance, suppose
that A is factorial, I = fA and f1, . . . , fr are the irreducible factors of f . Then√
I = p1 ∩ · · · ∩ pr, where pi = fiA and ht(pi) = 1 (1 ≤ i ≤ r).

(2.3) Transversal changes of coordinates. We describe here a construction that
works the same for formal and convergent power series; as usual, we only discuss the
convergent case.

a) Let I be an ideal of On. After a linear change of coordinates there are distin-
guished polynomials Pi ∈ I ∩ On−i[xn−i+1], 1 ≤ i ≤ r, whose degrees coincide
with their orders as power series, and such that I ∩ On−r = (0).

We will construct the linear change by induction. First we pick P1 ∈ I \ (0),
and after a linear change as in Lemma I.3.1 and an application of Weierstrass’s
Preparation Theorem (Proposition I.3.3) this P1 is the first polynomial we seek in
I ∩ On−1[xn]. Then, having obtained Pi for 1 ≤ i < j, if I ∩ On−j+1 6= (0), we
choose Pj ∈ I ∩ On−j+1 \ (0). We again use Lemma I.3.1 to make Pj regular with
respect to xn−j+1, but note that the linear change used only involves the indetermi-
nates x1, . . . , xn−j+1, and consequently does not affect the property that the already
constructed polynomials are distinguished with respect to the other variables. We
then apply Weierstrass’s Preparation Theorem and may assume Pj is a distinguished
polynomial, too. In that way, after say r steps we are done. �

b) After the linear change above, On/I is a finite On−r-module.

Indeed, let pi denote the degree of Pi for 1 ≤ i ≤ r. Any f ∈ On can be succesively
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divided by P1, . . . , Pr as follows

f = QP1 +

p1∑
k=1

akx
p1−k
n =

= QP1 +

p1∑
k=1

(
QkP2 +

p2∑
`=1

bk`x
p2−`
n−1

)
xp1−kn =

= H1P1 +H2P2 +
∑
k,`

bk`x
p2−`
n−1 x

p1−k
n = . . .

and in the end f will be written as an element
∑r
i=1HiPi ∈ I plus something

generated by the monomials

x
νn−r+1

n−r+1 · · · xνnn , 0 ≤ νn−i+1 < pi.

This proves b). �

c) We have ht(I) = r.

First of all we deduce from b) that

dim(On/I) ≥ dim(On−r) = n− r,

and consequently
ht(I) ≤ dim(On)− dim(On/I) ≤ r.

Now, to get the opposite inequality, it is enough to show that

ht({P1, . . . , Pr}On) ≥ r,

and for this it suffices to see that

ht({Pj , . . . , Pr}On) > ht({Pj−1, . . . , Pr}On)

for 1 ≤ j < r (note that ht(PrOn) > 0 since Pr 6= 0). To make notations clearer we
will prove the case j = 1, that is, we will see that

ht({P1, . . . , Pr}On) > ht({P2, . . . , Pr}On).

Consider the the ideal
J =

√
{P2, . . . , Pr}On−1.

Since On−1 is noetherian, we have a decomposition

J = p1 ∩ · · · ∩ ps,
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where the pi’s are prime ideals of On−1. Now, every f ∈ On can be uniquely written
in the form

∑
k≥0 akx

k
n with ak ∈ On−1, and using Krull’s Theorem ([A-McD 10.18])

one sees that
qi = piOn = pi[[xn]];

that is, an element f as above is in qi if and only if all the ak’s are in pi. Using
this description one easily deduces that q1, . . . , qs are prime ideals and again using
Krull’s Theorem that

q1 ∩ · · · ∩ qs =
√
{P2, . . . , Pr}On.

We suppose now that

ht({P1, . . . , Pr}On) = ht({P2, . . . , Pr}On).

Then both ideals share some associated prime among the qi’s, say q1, and in par-
ticular P1 ∈ q1 = p1[[xn]]. This is however impossible: P1 being monic of degree p1,
the coefficient 1 of xp1n does not belong to p1. �

We have actually proved that ht(I) + dim(On/I) = dim(On) , a formula that is
valid in a more general situation:

Proposition 2.4 Let A be an analytic (resp. a formal) ring which is a domain,
and p a prime ideal of A. Then

ht(p) + dim(A/p) = dim(A).

Proof. We have (up to isomorphism) A = On/I, and by the preceding construction
we get a finite homomorphism Od ↪→ A, where d = dim(On/I). By the general
properties of integral dependence ([A-McD 5.9, 5.16]):

ht(p) = ht(p ∩ Od); dim(A/p) = dim(Od/p ∩ Od),

and since the formula of the statement holds for Od, it also holds for A. �

Corollary 2.5 Let p ⊃ p′ be two prime ideals of an analytic (resp. a formal) ring
A. Then all maximal chains of prime ideals in between p and p′ have the same
length.

Proof. Apply Proposition 2.3 to the ideal p/p′ of the domain A/p′. �

We thus come to the main result of the section.

Proposition 2.6 (Noether’s Projection Lemma) Let I 6= (0) be an ideal of heigth r
of On. Then:

a) After a linear change of coordinates the canonical homomorphism On−r =
A→ B = On/I is finite and injective.
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b) Setting θj = xj + I for n− r < j ≤ n, we have B = A[θn−r+1, . . . , θn].

c) Suppose that I is prime and let K (resp. L) denote the quotient field of A
(resp. B). After an additional linear change of coordinates involving only
the last r indeterminates xn−r+1, . . . , xn, the element θn−r+1 is a primitive
element of L over K, that is, L = K[θn−r+1].

All these linear changes can be done simultaneously for any given finite family of
ideals of the same height.

The same result holds true in the formal case, that is, when replacing On by Fn
and On−r by Fn−r.

Proof. The first two statements follow from the construction 5.2, which can be
applied to several ideals at a time. Now, if I is prime, we use the

(Primitive Element Theorem [L VII.6]) Let K be a field of characteristic zero
and C ⊂ K an infinite subset. If u, v are algebraic over K, there is c ∈ C such
that K(u, v) = K(u+ cv).

By induction we find cn−r+1 = 1, . . . , cn ∈ K such that

n∑
k=n−r+1

ckxk mod I

is a primitive element of L over K. We thus finish with the linear change

yi = xi, for i 6= n− r + 1; yn−r+1 =

n∑
k=n−r+1

cixk.

Finally, we claim also that this last change of coordinates can be done simultaneously
for several ideals. Indeed, by the formulation of the Primitive Element Theorem
chosen above, the set

C ′ = {c ∈ C |K(u, v) = K(u+ cv)}

is infinite. Consequently, in the application of the theorem to any other field K ′

containing C and two elements u′, v′ algebraic over K ′, there is c′ ∈ C ′ such that
K ′(u′, v′) = K ′(u′ + c′v′). From this remark and by induction, our claims follow
clearly. �

Remarks 2.7 a) A by-product of the preceding constructions is the following char-
acterization of the dimension d of an analytic ring On/I: d is the smallest number
of independent homogeneous linear forms h1, . . . , hd such that√

(h1, . . . , hd) + I = (x1, . . . , xn).
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For, suppose such linear forms are given. Then by Proposition 1.7 the homomor-
phism

Od → On/I : x1, . . . , xd 7→ h1, . . . , hd

is finite. Hence dim(On/I) ≤ d. Conversely, if d is the dimension of On/I, after
a transversal change of coordinates (2.3) the canonical homomorphism Od → On/I
is finite, and by Proposition 1.7 we would be done again. We can also argue di-
rectly as follows. By 2.3 a), there are distinguished polynomials Pi ∈ On−i[t],
1 ≤ i ≤ r = n − d, such that Pi(xn−i+1) ∈ I. Using these Pi’s, we will see that
xn−i+1 ∈

√
(x1, . . . , xd) + I. For i = r all coefficients of Pr belong to (x1, . . . , xd),

and consequently the highest degree monomial of Pr(xd+1) belongs to (x1, . . . , xd)+I.
This highest degree monomial is a power of xd+1, and so xd+1 ∈

√
(x1, . . . , xd) + I.

Repeating this, we end by descending induction on i. �
b) The linear changes in all this section are generic, in the sense that they can

be chosen arbitrarily close to the identity, and consequently to any other fixed linear
change.

Indeed, the linear changes coming from Lemma 3.1 have coefficients arbitrarily
small off the diagonal, and this consists of 1’s. If we are given a linear change other
than the identity, we make it first, and then another one close to the identity. �

c) The linear changes in the preceding results can be chosen with coefficients in
any fixed infinite subset C ⊂ K. For instance, we can choose integer coefficients, or
rational coefficients bounded by a given constant.

For, according to Lemma 3.1, the coefficients are subject to the condition that
several non-zero polynomials do not vanish at them (note that some coefficients are
1, but by scaling we can suppose 1 ∈ C). The conclusion is immediate. �

3 Abhyankar’s and Rückert’s Parametrization

Let B be an analytic (resp. a formal) domain of dimension d, A = K{x} (resp.
K[[x]]), x = (x1, . . . , xd), and A → B an analytic (resp. a formal) homomorphism.
Suppose that A → B is finite and injective, so that the quotient field L of B is an
extension of the quotient field K of A. Let θ ∈ mB . Then:

Lemma 3.1 The irreducible polynomial P of θ over K has coefficients in A and is
a distinguished polynomial P (x, t) ∈ A[t].

Proof. Set P = tp + a1t
p−1 + · · · + ap, ai ∈ K. Consider a field F ⊃ L where

P has its p roots θ = t1, . . . , tp (all different since the characteristic is zero). We
may also assume that there are K-automorphisms of F , σ1 = IdF , . . . , σp, such that
σi(θ) = ti for 1 ≤ i ≤ p ([L VII.2]). Since the homomorphism A → B is finite, θ
is integral over A, that is, θ satisfies a monic equation with coefficients in A ⊂ K.
Applying σi to such an equation we see that ti satisfies also the resulting equation,
and consequently ti is integral over A. Finally, the ti’s are the roots of P , and so
the coefficients aj of P are symmetric functions of the ti’s. Thus the ai’s are also
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integral over A. But a1, . . . , ap ∈ K and A is integrally closed in K (Proposition
2.1), so that a1, . . . , ap ∈ A. Whence P ∈ A[t].

Now note that P is clearly regular with respect to t of some order s ≤ p and
consequently by Weierstrass’s Preparation Theorem

P = P1U,

where P1 ∈ A[t] is a distinguished polynomial of degree s and U(0, 0) 6= 0. Moreover,
by Rückert’s Division Theorem, U is also a polynomial of A[t], and both P1 and U
are monic. It follows P1(x, θ)U(x, θ) = 0, and since B is a domain, either P1(x, θ) = 0
or U(x, θ) = 0. Hence, P being the irreducible polynomial of θ, we get either P = P1

or P = U . But θ ∈ mB and mB ∩A = mA, so that from

θp + a1θ
p−1 + · · ·+ ap = 0

it follows ap ∈ mA. If it were P = U , we would have

U(x, 0) = ap ∈ mA,

and so
U(0, 0) = ap(0) = 0,

against the definition of U . Thus P = P1 and P is distinguished. �

We next suppose that θ is a primitive element, L = K[θ], and we consider the
discriminant δ ∈ A of P , that is, the resultant of P and its derivative ∂P/∂t ([L
V.10]). Since P has no multiple roots, δ 6= 0. We will denote by B the integral
closure of B in L. In this situation:

Proposition 3.2 We have δB ⊂ A + Aθ + · · · + Aθp−1, where p is the dimension
[L : K] of L as a K-linear space.

Proof. We use the same notation as in the previous proof. Let y ∈ B. Since θ is a
primitive element we have

y = b0 + b1θ + · · ·+ bp−1θ
p−1,

where the bi’s are elements of K. Applying the K-automorphisms σj to the equation
above we obtain new equations

yjσj(y) = b0 + b1tj + · · ·+ bp−1t
p−1
j , 1 ≤ j ≤ p,

which we look at as a system on the bi’s. The determinant of this system is the
Vandermonde determinant of the elements t1, . . . , tp, which is well known to be

c =
∏

1≤i<j≤p

(tj − ti).
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In particular δ = c2, and from Cramer’s Rule we obtain

δbi = cDi(y1, . . . , yp, t1, . . . , tp),

where Di is a polynomial with coefficients in Z. We now recall that the tj ’s are
integral over A as θ is, and note that analogously the yj ’s are integral over B as y is.
But since A→ B is finite, B is integral over A ([A-McD 5.1]), and the conclusion is
that all those elements are integral over A. Whence every δbi ∈ K is integral over
A and, since A is integrally closed in K, δbi ∈ A. Thus we get

δy = δb0 + δb1θ + · · ·+ δbp−1θ
p−1 ∈ A+Aθ + · · ·+Aθp−1.

�

Corollary 3.3 The ring B is a finitely generated B-module.

Proof. In fact, δB is a sub A-module of M = A+Aθ+ · · ·+Aθp−1, which is finitely
generated over A. Since A is noetherian, M is noetherian, too, and δB is finitely
generated over A. Finally, if δg1, . . . , δgm ∈ δB generate δB over A, then g1, . . . , gm
generate B over A, and, consequently, over B. �

Now we come back to the situation of Noether’s Projection Lemma:

Proposition 3.4 (Rückert’s Parametrization) Let p a prime ideal of On of height
r, and put d = n − r. After a linear change of coordinates the following conditions
hold:

a) The canonical homomorphism Od = A→ B = On/p is injective and finite.

b) The class θd+1 = xd+1 mod p is a primitive element of the quotient field L of
B over the quotient field K of A.

c) The irreducible polynomial over K of θj = xj mod p ∈ mB is a distinguished
polynomial Pj ∈ Od[xj ] of degree pj (d < j ≤ n).

d) For every j = d + 2, . . . , n, there is a polynomial Qj ∈ Od[xd+1] of degree
< pd+1 such that

δxj −Qj ∈ p,

where δ ∈ Od \ (0) is the discriminant of Pd+1.

e) For every integer q ≥ max{pd+2, . . . , pn,
∑n
j=d+2(pj − 1)} we have

δqp ⊂ I = {Pd+1, δxd+2 −Qd+2, . . . , δxn −Qn}On ⊂ p.

As usual, there is an analogous statement in the formal case.
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Proof. After a linear change of coordinates, conditions a)-d) follow from Proposition
2.6, Lemma 3.1 and Proposition 3.2. We will now prove that δqp ⊂ I for a suitable
q. To do that, since p is a finitely generated ideal, it suffices to see that for every
f ∈ p there is q such that δqf ∈ I. Hence, we start by dividing f succesively by
Pd+2, . . . , Pn until we get

f =
∑

aνx
νd+2

d+2 · · · x
νn
n mod Pd+2, . . . , Pn,

where νj < pj for p + 2 ≤ j ≤ n and the aν ’s belong to Od+1 (see the proof of 2.3
b)). For q ≥

∑n
j=p+2(pj − 1) we can write

δqf =
∑

δqνaν(δxd+2)νd+2 · · · (δxn)νn mod δqPd+2, . . . , δ
qPn. (1)

On the other hand, put x′ = (x1, . . . , xd), and note that, for d+ 2 ≤ j ≤ n,

P ∗j (x′, xd+1) = δqPj

(
x′,

Qj(x
′, xd+1)

δ

)
∈ Od[xd+1]

for q ≥ pj . Next, since δxj −Qj ∈ p, it follows

P ∗j (x′, θd+1) = 0.

Now, as the irreducible polynomial of θd+1 is Pd+1,

P ∗j (x′, xd+1) = G(x′, xd+1)Pd+1(x′, xd+1)

where G ∈ Od[xd+1]. Summing up

δqPj

(
x′,

Qj(x
′, xd+1)

δ

)
= 0 mod I.

But we also have δxj = Qj mod I, and consequently

δqPj(x
′, xj) = δqPj

(
x′,

Qj(x
′, xd+1)

δ

)
mod I.

Hence, if we choose q ≥ max{pd+2, . . . , pn,
∑n
j=p+2(pj−1)} in the formula (1) above

we obtain
δqf = R(δxd+2, . . . , δxn) mod I,

where R ∈ Od+1[yd+2, . . . , yn]. Rewriting this latter polynomial in powers of

yd+2 = δxd+2 −Qd+2, . . . , yn = δxn −Qn,

since δxj −Qj ∈ I for d+ 2 ≤ j ≤ n, we get

δqf = R(δxd+2, . . . , δxn) =

= R(Qd+2, . . . , Qn) +
∑
|ν|≥1

cν(δxd+2 −Qd+2)νd+2 · · · (δxn −Qn)νn =

= R(Qd+2, . . . , Qn) mod I .
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Finally, dividing by Pd+1 ∈ I we obtain

δqf = R∗ mod I,

where R∗ ∈ Od[xd+1] is a polynomial of degree < pd+1. Since by hypothesis f ∈ p
we deduce that R∗ ∈ p or, taking classes mod p:

R∗(x′, θd+1) = 0.

This is only possible if R∗ is identically zero, since its degree is strictly smaller than
the degree pd+1 of the irreducible polynomial Pd+1 of θd+1. Whence

δqf = 0 mod I,

which is exactly what we wanted. �

As a consequence of Rückert’s Parametrization Theorem we obtain:

Proposition 3.5 (Abhyankar’s Parametrization) Let p be a prime ideal of On (resp.
Fn). Then the localization (On)p (resp. (Fn)p) is a regular local ring.

Proof. Indeed, using the notations of Proposition 3.4, the ideal I generates p(On)p,
since δ /∈ p, and consequently it is a unit in (On)p. This means that

Pd+1, δxd+2 −Qd+2, . . . , δxn −Qn

generate the maximal ideal of (On)p. Since

r = n− d = ht(p) = dim((On)p),

this latter localization is regular, and the elements above form a regular system of
parameters. �

We finally give an alternative formulation of Rückert’s Parametrization:

Proposition 3.6 In the situation of Proposition 3.4 and with its notations, there
is another ideal I ′ such that

a) I = I ′ ∩ p,

b) δ ∈
√
I ′ \ p, and

c) δp ⊂
√
I.

Proof. Consider the primary decomposition of I ([A-McD §§4,7])

I = q1 ∩ · · · ∩ qs.
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Then we put

I ′ =
⋂

δ∈√qi

qi, I ′′ =
⋂

δ/∈√qi

qi.

Now, since δqp ⊂ I, we have δqp ⊂ qi. But the qi’s are primary ideals, and conse-
quently either δ ∈ √qi or p ⊂ qi, Whence, p ⊂ I ′′. Thus I ⊃ I ′ ∩ p, and the other
inclusion is obvious. This shows a) and b), and c) follows at once:

δp ⊂
√
I ′ ∩ p =

√
I.

�

Remark 3.7 Under the same setting and notation as in Proposition 3.4, we have a
canonical isomorphism

Od[xd+1]/Pd+1 → Od+1/Pd+1 = H,

and the inclusion H ⊂ B induces another isomorphism

Hδ → Bδ,

where the index δ means “ring of fractions whose denominators are powers of δ”.
Indeed, both mappings are clearly injective. Moreover, the first one is onto by

division by Pd+1 in Od+1. Finally, the second mapping is also onto by Proposition
3.2. �

This fact is often quoted by saying that every analytic domain is birationally
equivalent to a hypersurface (note that H is defined by a single equation).

We end this section with a converse to Rückert’s Parametrization. Note first
that condition e) in Proposition 3.4 determines completely p in terms of the Pj ’s,
the Qj ’s and δ. This leads to the following statement:

Proposition 3.8 Let us be given the following data:

a) An irreducible distinguished polynomial Pd+1 ∈ Od[xd+1] of degree pd+1 with
discriminant δ ∈ Od.

b) Polynomials Qj ∈ Od[xd+1] of degree < pd+1 (d+ 1 < j ≤ n), and

c) Distinguished polynomials Pj ∈ Od[xj ] of degree pj (d+ 1 < j ≤ n),

such that
δqPj ∈ {Pd+1, δxd+2 −Qd+2, . . . , δxn −Qn}On

for

q ≥ max{pd+2, . . . , pn,

n∑
j=d+2

(pj − 1)}
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(d+ 1 < j ≤ n). Then the ideal

p = [{Pd+1, δxd+2 −Qd+2, . . . , δxn −Qn}On : δ2q]

is prime of height n− d.
As usual, there is an analogous statement in the formal case.

Proof. We only outline the argument, since all details are alike those of Proposition
3.4. Let fg ∈ p, that is,

δ2qfg = hd+1Pd+1 + hd+2(δxd+2 −Qd+2) + · · ·+ hn(δxn −Qn).

Dividing f and g succesively by Pn, . . . , Pd+2 we may assume that f, g are polyno-
mials in xd+2, . . . , xn of total degree ≤ q. Now, dividing the hj ’s by Pn, . . . , Pd+2 we
get

δ2qfg = h∗d+1Pd+1 +h∗d+2(δxd+2−Qd+2)+· · ·+h∗n(δxn−Qn)+td+2Pd+2 +· · ·+tnPn,

where the h∗j ’s are polynomials in xd+2, . . . , xn. But then, by the uniqueness of
division, also td+2, . . . , tn ∈ Od+1[xd+2, . . . , xn]. Finally, after the substitution

xd+2 = Qd+2/δ, . . . , xn = Qn/δ,

we see that Pd+1 divides δsfg for s big enough. Since Pd+1 is irreducible, it divides
either f or g, and we are done. �

4 Nagata’s Jacobian Criteria

In this section we will denote A = On (resp. Fn).

(4.1) Jacobians and regularity ideals. For any power series f1, . . . , fs ∈ A and
indices 1 ≤ i1 < · · · < is ≤ n we have the Jacobian of order s

D(f1, . . . , fs)

D(xi1 , . . . , xis)
= det

(
∂fj
∂xi`

)
1≤j,`≤s

.

If I is an ideal of A, we will denote by Js(I) the ideal generated by I and all the
above Jacobians of order s for f1, . . . , fs ∈ I. If h1, . . . , ht generate I, then the
elements

h1, . . . , ht;
D(hj1 , . . . , hjs)

D(xi1 , . . . , xis)
, 1 ≤ j1 < · · · < js ≤ t, 1 ≤ i1 < · · · < is ≤ n,

clearly generate Js(I). This ideal is called the Jacobian ideal of order s of I. It is
easy to check that Js(I) is invariant by linear changes of coordinates.
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On the other hand, we will denote by Gs(I) the ideal generated by all the series
h ∈ A such that hI is contained in some ideal generated by s elements of I.

Finally, the ideal
Rs(I) =

√
Gs(I) ∩ Js(I)

is called the regularity ideal of order s of I.

Lemma 4.2 Let p a prime ideal of height r > 0 of A. There are then h1, . . . , hr ∈ p
and a Jacobian

D(h1, . . . , hr)

D(xi1 , . . . , xir )
/∈ p.

Proof. After a linear change of coordinates we have Pd+1, . . . , Pn verifying the
conditions of Proposition 3.3. From condition c) we get

D(Pn−r+1, . . . , Pn)

D(xn−r+1, . . . , xn)
=
∂Pn−r+1

∂xn−r+1
· · · ∂Pn

∂xn
/∈ p.

Indeed, since Pj is the irreducible polynomial of xj mod p, and the degree of ∂Pj/∂xj
is stricty smaller, we deduce that

∂Pj
∂xj

(xj mod p) 6= 0,

that is, ∂Pj/∂xj /∈ p. �

The following criterion is of utmost importance:

Proposition 4.3 (Regularity) Let p a prime ideal of A and I ⊂ p another ideal.
The following assertions are equivalent:

a) The local ring Ap/IAp is regular of dimension ht(p)− s.

b) p 6⊃ Rs(I).

c) p 6⊃ Js(I) and ht(IAp) ≤ s.

Proof. We introduce some further notation:

B = Ap, n = pAp, a = IAp,

κ = B/n = quotient field of A/p,

r = ht(p) = dim(B), t = r − s.

a)⇒ b) First we will find elements f1, . . . , fs ∈ I and fs+1, . . . , fr ∈ p such that

{f1, . . . , fs}B = a, {f1, . . . , fr}B = n.
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In fact, since B is regular of dimension r (Proposition 3.4) and B/a is regular of
dimension r − s (hypothesis a)), we have

r = dimκ(n/n2) = dimκ(n/(n2 + a)) + dimκ((n2 + a)/n2),

r − s = dimκ(n/(n2 + a))

([A-McD 11.22]). Consequently, there are f1, . . . , fs ∈ I and fs+1, . . . , fr ∈ p such
that f1, . . . , fr generate n mod n2. By Nakayama’s Lemma, {f1, . . . , fr}B = n, and
we set b = {f1, . . . , fs}B ⊂ a. We have a surjective homomorphism B/b → B/a,
and

r − s = dim(B/a) ≤ dim(B/b) ≤ r − s,

the last inequality because fs+1, . . . , fs generate the maximal ideal n mod b. We
conclude that B/b is regular of dimension r − s. In particular b is prime ([A-McD
11.23]). Now, if b 6= a, the dimension of B/b would be > r− s, which is impossible.
Thus

{f1, . . . , fs}B = b = a

that is,
{f1, . . . , fs}Ap = IAp.

It follows that there is some g /∈ p with

gI ⊂ {f1, . . . , fs}A ⊂ I,

and consequently
Gs(I) 6⊂ p.

On the other hand, let h ∈ p. There are u ∈ A \ p and g1, . . . , gr ∈ A such that

uh =

r∑
j=1

gjfj .

Derivating this equality we get

u
∂h

∂xi
+
∂u

∂xi
h =

r∑
j=1

gj
∂fj
∂xi

mod f1, . . . , fr,

and multiplying by u

u2 ∂h

∂xi
=

r∑
j=1

ugj
∂fj
∂xi

mod f1, . . . , fr,

for 1 ≤ i ≤ n (note that uh = 0 mod f1, . . . , fr).
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On the other hand, by Lemma 4.2 there are h1, . . . , hr ∈ p and some Jacobian,
say

δ =
D(h1, . . . , hr)

D(x1, . . . , xr)
/∈ p,

which means that δ is a unit in Ap. But the previous formulas for h = hk, 1 ≤ k ≤ r,
show that δ belongs to the ideal generated in Ap by f1, . . . , fr and their Jacobians of
order r. Hence some of these latter must be a unit in Ap, or in other words, must not
belong to p. Computing that particular Jacobian through the rows corresponding
to f1, . . . , fs we will find a new Jacobian of order s

D(f1, . . . , fs)

D(xi1 , . . . , xis)
/∈ p,

and consequently, p 6⊃ Js(I).
Finally, since p is a prime ideal, and it contains neither Gs(I) nor Js(I), it cannot

contain Rs(I) =
√
Gs(I) ∩ Js(I). This is condition b), and the first implication of

the statement is proved.
b)⇒ c) Since

√
Js(I) ⊃ Rs(I) and p is prime, the first half of c) clearly follows

from b).
Let us now estimate ht(a). The same argument as above shows that p 6⊃ Gs(I),

and thus there are h /∈ p and g1, . . . , gs ∈ I such that

hI ⊂ {g1, . . . , gs}A.

As h is a unit of Ap we deduce

a = {g1, . . . , gs}B,

and consequently ht(a) ≤ s ([A-McD 11.16]).
c)⇒ a) Since Js(I) 6⊂ p, there are f1, . . . , fs ∈ I and some Jacobian, say

δ =
D(f1, . . . , fs)

D(x1, . . . , xs)
,

which is a unit in B. We are to see that f1, . . . , fs ∈ n are linearly independent mod
n2, that is, their classes in the κ-linear space n/n2 are linearly independent.

Indeed, suppose
a1f1 + · · ·+ asfs = 0 mod n2,

for some a1, . . . , as ∈ B. Derivating with respect to the xi’s we get

a1
∂f1

∂xi
+ · · ·+ as

∂fs
∂xi

= 0 mod n, 1 ≤ i ≤ s,

(note that by the Leibnitz Formula any derivative of an element of n2 belongs to n,
and that the fi’s are in I ⊂ p ⊂ n). We thus have a system of linear equations in
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the unknowns aj , 1 ≤ j ≤ s, with determinant δ 6= 0 mod n. Hence this system has
only the trivial solution over the field κ = B/n, that is, the aj ’s are 0 mod n as
wanted.

Now, since B is a local regular ring (Proposition 3.5), we have

r = dim(B) = dimκ(n/n2)

([A-McD 11.22]). Therefore, we can extend f1, . . . , fs to a base f1, . . . , fr of n/n2,
with certain fs+1, . . . , fr ∈ n. In other words, {f1, . . . , fr}B + n2 = n, and by
Nakayama’s Lemma

{f1, . . . , fr}B = n.

We now set
b` = {f1, . . . , f`}B, 1 ≤ ` ≤ r,

and we have
dim(B/b`) = t ≥ r − `.

Indeed, if g1, . . . , gt ∈ B give a regular system of parameters in the class ring B/b`,
then g1, . . . , gt,f1, . . . , f` are a regular system of parameters of B; consequently,
r = dim(B) ≤ t + `. As f`+1, . . . , fr generate n mod b`, we conclude that B/b` is
local regular of dimension r − `. In particular we have the chain of prime ideals

(0) ⊂ b1 ⊂ · · · ⊂ bs,

and so ht(bs) ≥ s. But bs ⊂ a and ht(a) ≤ s, so that it must be bs = a, and the
local ring

Ap/IAp = B/bs

is regular of dimension r − s = ht(p)− s. �

Next we apply the preceding criterion to the situation of Rückert’s Parametrization
Theorem to obtain the final formulation of parametrization in our setting:

Proposition 4.4 (Local Parametrization Theorem) Let p be a prime ideal of height
r of On. After a linear change of coordinates the following conditions hold true:

a) The canonical homomorphism On−r → B = On/p is injective and finite.

b) The class θ = xn−r+1 mod p is a primitive element of the quotient field L of
On/p over the one K of On−r.

c) The irreducible polynomial over K of the primitive element θ is a distinguished
polynomial P ∈ On−r[xn−r+1], whose discriminant is denoted by δ.

d) The canonical homomorphism (On−r+1/P )δ → Bδ is an isomorphism.

e) The localization Bδ is a regular ring: if q is a prime ideal of B and δ /∈ q, the
local ring Bq is regular.
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Proof. The first four conditions in the statement have been already proved (Propo-
sition 3.4 and Remark 3.7). The last one will follow from the Regularity Jacobian
Criterion once we see that δ ∈ Rs(p).

First, by Proposition 3.4 e) there is q such that

δqp ⊂ {P, δxn−r+2 −Qn−r+2, . . . , δxn −Qn}On ⊂ p,

and this means that δq ∈ Gr(p). On the other hand

D(P, δxn−r+2 −Qn−r+2, . . . , δxn −Qn)

D(xn−r+1, xn−r+2, . . . , xn)
=

∂P

∂xn−r+1
δr−1 ∈ Jr(p).

Now, since δ is the resultant of P and ∂P/∂xn−r+1, there are f, g ∈ On−r[xn−r+1]
such that

δ = fP + g
∂P

∂xn−r+1

([L V.10]). Thus

δr = δr−1

(
fP + g

∂P

∂xn−r+1

)
∈
{
P,

∂P

∂xn−r+1
δr−1

}
On ⊂ Jr(p).

Hence
δq+r ∈ Gr(p) ∩ Jr(p)

and so
δ ∈

√
Gr(p) ∩ Jr(p) = Rr(p).

�

Applying the preceding result to the maximal ideal we obtain:

Corollary 4.5 The series f1, . . . , fn ∈ mA generate the maximal ideal mA if and
only if

D(f1, . . . , fn)

D(x1, . . . , xn)
(0) 6= 0.

Proof. In fact, set I = {f1, . . . , fn}A. Then I = mA if and only if Ap/IAp is a field,
if and only if Ap/IAp is regular of dimension 0. By Proposition 4.3 with p = mA and
s = ht(mA) = n, the latter assertion is equivalent to mA 6⊃ Jn(I) and ht(IAp) ≤ n.
As this inequality always holds we are done. �

The preceding corollary is nothing but the well-known Inverse Function Theorem.
Of course it can be formulated in the standard way:
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Proposition 4.6 Set x = (x1, . . . , xn), y = (y1, . . . , yp).

a) (Inverse Function Theorem) Let f = (f1, . . . , fn) ∈ K{x}n (resp. K[[x]]n),
with f(0) = 0. Suppose that

D(f1, . . . , fn)

D(x1, . . . , xn)
(0) 6= 0.

Then there is g = (g1, . . . , gn) with g(0) = 0 such that

f(g1(x), . . . , gn(x)) = x.

Furthermore such a g is unique.

b) (Implicit Functions Theorem) Let f = (f1, . . . , fp) ∈ K{x, y}p (resp. K[[x, y]]p),
with f(0, 0) = 0. Suppose that

D(f1, . . . , fp)

D(y1, . . . , yp)
(0, 0) 6= 0.

Then there is g = (g1, . . . , gp) with g(0) = 0 such that

f(x, g1(x), . . . , gp(x)) = 0.

Furthermore such a g is unique.

Proof. a) The homomorphism

ϕ : K{x} → K{x} : xi 7→ fi

is onto by Corollaries 4.5 and 1.8. Counting dimensions, we see that the kernel of ϕ
is a prime ideal of height 0, that is, the kernel is (0). Hence ϕ is an isomorphism,
and the gi’s we are looking for are

gi = ϕ−1(xi), 1 ≤ i ≤ n.

b) Set
A = K{x}, A′ = K{x, y}, I = {f1, . . . , fp}A′

and consider the homomorphism

ϕ : A→ A′/I : xi 7→ xi mod I.

Since
D(x1, . . . , xn, f1, . . . , fp)

D(x1, . . . , xn, y1, . . . , yp)
(0, 0) 6= 0

the homomorphism ϕ is an isomorphism (same argument as in a)) and the solution
now is

gi = ϕ−1(yi mod I), 1 ≤ i ≤ p.
�
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(4.7) Application: roots of a unit. Consider a unit u ∈ C{x} where x =
(x1, . . . , xn), that is, u(0) = a 6= 0. Fix an integer p ≥ 0. For any p-th root c of a
we can apply the Implicit Functions Theorem to the equation (y + c)p = u and get
v = y(x) + c ∈ C{x} such that

vp = u, v(0) = c.

A similar result holds in the real case, whenever c exists, that is, when a > 0 or p is
odd.

We also deduce:

Let f ∈ C{t} (resp. R{t}) a power series of order p. Then there is an
isomorphism of C{t} (resp R{t}) that transforms f in tp (resp. ±tp).

Indeed, consider the complex case. By the preceding remark we can write

f = tpu = (tv)p

with v(0) 6= 0. We then define an analytic homomorphism by

ϕ : t 7→ tv.

This homomorphism is surjective because ϕ(t) generates the maximal ideal and
injective because it is finite. Hence ϕ is an isomorphism, and its inverse transforms
f in tp, as wanted.

In the real case the argument is similar, writing f = ±tpu with u(0) > 0 so that
there is v ∈ R{t} with f = ±(tv)p. �

Of course all of this works the same for formal power series.

We end this section with another important Jacobian Criterion:

Proposition 4.8 (Equidimensionality) Let I 6= (0) be an ideal of A. The following
assertions are equivalent:

a) The ideal I is radical and every associated prime of I has height s.

b) There is an element δ ∈ Rs(I) which is not a zero divisor mod I.

Proof. a)⇒ b) Let

I = p1 ∩ · · · ∩ pr, ht(pi) = s, 1 ≤ i ≤ r.

We then have
IApi = piApi

and by the Regulartity Jacobian Criterion (Proposition 4.3)

Rs(I) 6⊂ pi, 1 ≤ i ≤ r.
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Since the pi’s are prime ideals, it follows

Rs(I) 6⊂ p1 ∪ · · · ∪ pr

([A-McD 1.11.i)]). Now the union of the pi’s is exactly the set of the zero divisors
mod I ([A-McD 4.7]). We have thus proved b).

b)⇒ a) Let us see first that

δ ∈
√

Ann(
√
I/I).

Recall here that the annihilator Ann(M) of an A-module M is the ideal of A con-
sisting of the elements a ∈ A such that am = 0 for all m ∈ M . Now consider any
prime ideal p that contains Ann(

√
I/I); in particular I ⊂ p. Suppose then δ /∈ p. It

would follow from Proposition 4.3 that the local ring Ap/IAp is regular and so IAp

is a prime ideal ([A-McD 11.23]). Hence

IAp =
√
IAp,

and there is some u /∈ p with u
√
I ⊂ I, that is, u ∈ Ann(

√
I/I)\p. This contradiction

shows that δ belongs to all prime ideals containing Ann(
√
I/I), or in other words,

δ ∈
√

Ann(
√
I/I).

Consequently δp
√
I ⊂ I for some p ≥ 1, and since δ is not a zero divisor mod I we

conclude
√
I ⊂ I. Hence

√
I = I and I is radical.

We can thus write I = p1∩· · ·∩pr, where the pi’s are prime. As δ is not a zero di-
visor, we already remarked that δ /∈ p1∪· · ·∪pr. Then, and again by Proposition 4.3,
the local ring Api/IApi is regular of dimension ht(pi)− s. But since IApi = piApi ,
the ring Api/IApi has dimension 0. We conclude that 0 = ht(pi) − s, as wanted.

�

5 Complexification

We consider in this section the extension of the ground field −⊗R C. In the case of
analytic and formal rings this extension is specially well behaved and very useful to
compare the complex and the real cases.

(5.1) Complexification. The tensor product −⊗R C induces a covariant functor
from the category of analytic (resp. formal) rings and homomorphisms over R onto
that of analytic (resp. formal) rings and homomorphisms over C. This functor will
be called complexification, and we will use the notations

Ã = A⊗R C, and ϕ̃ = ϕ⊗R C
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for the complexification of a ring A and a homomorphism ϕ, respectively.
The explicit description of complexification is very natural. In order to present

it we introduce a useful notion:

(5.2) Conjugation. The complexification of A = R{x} (resp. R[[x]]) is Ã = C{x}
(resp. C[[x]]), and it is canonically isomorphic to A[

√
−1]: every element f =∑

aνx
ν ∈ Ã can be uniquely written in the form

f = <(f) +
√
−1=(f)

where
<(f) =

∑
<(aν)xν ∈ A, =(f) =

∑
=(aν)xν ∈ A.

Consequently A ⊂ Ã, and Ã is a rank 2 free A-module with basis {1,
√
−1}. In

particular Ã is an integral extension of A.
Then we define an A-algebra homomorphism by

Ã→ Ã : f 7→ f = <(f)−
√
−1=(f).

This is an idempotent automorphism of Ã whose fixed part is exactly A, and which
will be called quite obviously conjugation. (This is nothing but the automorphism
deduced from the standard conjugation of C by applying the extension A⊗R −.)

For every ideal I ⊂ Ã we have the conjugated ideal

I = {f | f ∈ I}.

One checks immediately that I is prime if and only if so is I, and it follows that
ht(I) = ht(I) for arbitrary I.

(5.3) The extension A ⊂ Ã for A = R{x} (resp. R[[x]]). For every ideal I of

A we put Ĩ = IÃ. We collect in this paragraph the elementary properties of these
extended ideals.

a) Every extended ideal Ĩ is invariant under conjugation. Conversely, for every

ideal J ⊂ Ã which is invariant under conjugation there is I ⊂ A such that
J = Ĩ: namely, I = J ∩A.

Note that if J is invariant under conjugation and h = <(h) +
√
−1=(h) ∈ J , then

also <(h) −
√
−1=(h) ∈ J . Consequently <(h),=(h) ∈ J . Hence J is generated by

the <(h)’s and =(h)’s for h ∈ J , and those elements are in A. As a matter of fact,
since =(h) = −<(

√
−1h), we could even take only the <(h)’s as generators. �

b) For every ideal I ⊂ A, we have Ĩ ∩A = I.

If I is generated by f1, . . . , fs and h ∈ Ĩ, then there are h1, . . . , hs ∈ Ã such that

h = h1f1 + · · ·+ hsfs.
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It follows
<(h) = <(h1)f1 + · · ·+ <(hs)fs ∈ I,

and if h ∈ A, then h = <(h) ∈ I. �

c) For any two ideals I, I ′ of A, we have Ĩ ∩ I ′ = Ĩ ∩ Ĩ ′. In particular, I ⊂ I ′ if

and only if Ĩ ⊂ Ĩ ′.

Arguing as above we see that if h ∈ Ĩ ∩ Ĩ ′ then <(h) ∈ I ∩ I ′, and similarly,
=(h) ∈ I ∩ I ′. Thus

h ∈ {<(h),=(h)}Ã ⊂ Ĩ ∩ I ′.

The other inclusion is evident. �

d) For every ideal I ⊂ A, we have
√̃
I =

√
Ĩ. In particular, I is radical if and

only if Ĩ is radical.

Indeed,
√
Ĩ is invariant under conjugation, Ĩ being so, and consequently we are

reduced to see that
√
Ĩ ∩ A =

√
I. But if h ∈ A and hm ∈ Ĩ, then hm ∈ Ĩ ∩ A = I.

This gives one inclusion, and the other is obvious. �

e) For every ideal I ⊂ A and every s ≥ 1, we have J̃s(I) = Js(Ĩ).

This follows immediately from the description of Js by generators given in 4.1.
Concerning prime ideals the situation is a little more involved, but still well

understood.

Proposition 5.4 Set as above A = R{x} (resp. R[[x]]), where x = (x1, . . . , xn),

and let p be a prime ideal of A. There is then a prime ideal q of Ã that lies over p.
This q is unique up to conjugation, and

p̃ = q ∩ q.

Proof. In fact, by 5.3 d) the ideal p̃ is radical, and consequently an intersection of
prime ideals, say

p̃ = q1 ∩ · · · ∩ qr.

Note now that this intersection must include the conjugates qi, because p̃ is invariant
under conjugation. Hence we can rewrite the equality above in the form

p̃ = (q1 ∩ q1) ∩ · · · ∩ (qs ∩ qs).

Pick now for every i = 1, . . . , s an element

ai ∈ qi \
⋃
j 6=i

qj ∪ qj
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(after dropping the unnecessary primes). Then we get

(a1a1) · · · (asas) ∈ p̃ ∩A = p

and since p is prime, some factor aiai, say a1a1, belongs to p. It follows that
a1a1 ∈ qj for all j, and consequently a1 ∈ qj or a1 ∈ qj . In any case we conclude
j = 1, which proves the result. �

Now we come back to the general situation. Suppose that we are given an analytic
ring A = R{x}/I, where x = (x1, . . . , xn); then Ã = C{x}/IC{x}. From this
it is clear that conjugation and extension of ideals as formulated in 5.2, 5.3 and
Proposition 5.4 for A = R{x} works the same for an arbitrary A. Of course, the
analogous construction is valid in the formal case.

We thus deduce:

Proposition 5.5 Let A be an analytic (resp. a formal) ring over R. Then:

a) dim(A) = dim(Ã).

b) Ã is reduced if and only if A reduced.

c) Ã is regular if and only if A regular.

Proof. Part a) is equivalent to the assertion that ht(I) = ht(Ĩ) for the ideal
I ⊂ R{x}, and this follows from Proposition 5.4. Since a reduced ring is a ring such
that

√
(0) = (0), part b) is a consequence of 5.3 d). Finally, part c) a consequence

of Corollary 4.5 and part a). �

We now want to discuss when the complexification of a domain is also a domain. As
should be clear from Proposition 5.4, some additional condition must be considered.
To do that, we introduce a new notion:

Proposition y Definition 5.6 Let A be a domain, K its quotient field and t an
indeterminate. Consider the ring A[t]/(t2+1) = A[ι], where ι stands for t mod t2+
1. The following assertions are equivalent:

a) If a2 + b2 = 0 with a, b ∈ A, then a = b = 0.

b) The field K does not contain
√
−1.

c) The ring A[ι] is a domain.

In case these conditions hold the ring A is called 2-real.

Proof. The two first conditions are clearly equivalent. Suppose now a) holds, and
let us prove that A[ι] is a domain.
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Let α = at + b, β = ct + d ∈ A[t] be such that

β 6= 0 mod t2 + 1, αβ = 0 mod t2 + 1.

The second congruence means that t2 + 1 divides the product αβ in A[t]. Since

αβ = (at + b)(ct + d) = (ac)t2 + (ad+ bc)t + (bd),

we deduce (ac)(t2 + 1) = αβ, and consequently

ad+ bc = 0, ac− bd = 0.

This is a homogeneous system in the unknowns c, d with a non-trivial solution (it is
β 6= 0). Hence

det

∣∣∣∣ a −b
b a

∣∣∣∣ = a2 + b2 = 0.

By a), a = b = 0 and α = 0. Thus A[ι] is a domain.
Conversely, suppose that A[ι] is a domain, and let a, b ∈ A verify a2 + b2 = 0.

We can then write (a+ ιb)(a− ιb) = 0 in A[ι], and since A[ι] is a domain one of the
factors is 0, say a+ ιb = 0. This means that a+tb ∈ (t2 +1)A[t], so that a = b = 0.
We have hence proved a). �

The ring A[ι] gives another way of looking at complexifications:

Proposition 5.7 Let A be an analytic (resp. a formal) ring over R. There is then

a canonical isomorphism Ã ' A[ι].

Proof. We define the homomorphism

R{x}[t]→ C{x} : H(x, t) 7→ H(x,
√
−1),

and we need to check that

H(x, t) ∈ I[t] + (t2 + 1) if and only if H(x,
√
−1) ∈ Ĩ

for any ideal I ⊂ R{x}. To that end, we first divide by t2 + 1 to get

H(x, t) = Q(x, t)(t2 + 1) + a(x)t + b(x), a, b ∈ R{x},

and we see that we can suppose

H(x, t) = a(x)t + b(x), a, b ∈ R{x}.

In particular, by the properties of extended ideals (5.3), H(x,
√
−1) = a(x)

√
−1 +

b(x) ∈ Ĩ if and only if a, b ∈ I. We have thus to prove

at + b ∈ I[t] + (t2 + 1) if and only if a, b ∈ I
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for any a, b ∈ R{x}. The “if” part is trivial, so let

at + b = (α0t
p + · · ·+ αp) + (β0t

q + · · ·+ βq)(t
2 + 1)

with αi ∈ I. Equating coefficients we get q = p− 2 and

β0 = −α0

β1 = −α1

β2 = −α2 − β0

...

βp−2 = −αp−2 − βp−4

a = αp−1 + βp−3

b = αp + βp−2

Looking at this system we succesively see that β1, · · · , βp−2 belong to the ideal I,
and finally that also a, b ∈ I, as wanted. �

From the last two propositions we deduce:

Corollary 5.8 Let A be an analytic (resp. a formal) ring over R. Then the follow-
ing assertions are equivalent:

a) The complexification Ã is a domain.

b) A is a 2-real domain.

After this description of complexifications for rings we consider homomorphisms.
Let ϕ : A → B be an analytic (resp. a formal) homomorphism. Suppose A =
R{x}/I, B = R{y}/J , where x = (x1, . . . , xn), y = (y1, . . . , yp), and let ϕ be
determined by

ϕ(xi mod I) = gi(y) mod J

for some gi ∈ R{y}, 1 ≤ i ≤ n (Proposition 1.3). The complexification ϕ̃ is deter-
mined then by

ϕ̃(xi mod Ĩ) = gi(y) mod J̃

The same construction gives, of course, the complexification of a formal homomor-
phism.

Finally we leave to the reader the proof of the next result, which is an easy
exercise involving the properties of extended ideals.

Proposition 5.9 Let ϕ : A → B be an analytic (resp. a formal) homomorphism.
Then:

a) ϕ̃ is injective (resp. surjective) if and only if ϕ is injective (resp. surjective).

b) ϕ̃ is finite if and only if ϕ is finite.
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III Normalization

Summary. This chapter is devoted to the study of integral closures in the categories
of analytic and formal rings. The main goal is the description of normalizations.
We then give two applications: uniformization of 1-dimensional rings, introducting
quadratic transforms, and Newton-Puiseux’s Theorem.

1 Integral Closures

We will denote by K′ ⊃ K either of the extensions: C = C, C ⊃ R, R = R. First of
all we prove:

Lemma 1.1 Let A be an analytic (resp. a formal) ring over K and B ⊃ A an
integral domain, which is a finite A-module. Then B is an analytic (resp. a formal)
ring over K′ ⊃ K.

Proof. By Noether’s Projection Lemma (Proposition II.2.6) we may assume A =
K{x}, x = (x1, . . . , xd); since B is a finite A-module, it is an integral extension of
A. Let now n be any maximal ideal of B. By the properties of integral extensions
([A-McD 5.8]) the ideal n ∩A is the maximal ideal mA of A.

Consider an element z ∈ B. There is a monic polynomial H ∈ A[z] such that
H(z) = 0. By the Preparation and Division Theorems we have H = H ′ ·H ′′, where
H ′ is a distinguished polynomial and H ′′ a polynomial which is a unit in the ring of
power series. This means

H ′(x, z) = ap + · · ·+ a1z
p−1 + zp ∈ A[z], a1, . . . , ap ∈ mA

and
H ′′(x, z) = bq + · · ·+ b1z

q−1 + zq ∈ A[z], bq /∈ mA.

Since B is a domain, there are two possibilities:

• H ′(z) = 0. Then zp = −(ap + · · ·+ a1z
p−1) ∈ mAB ⊂ n.

• H ′′(z) = 0. Then z(b2 + · · · + zq−1) = −bq is a unit in A, which implies that
z is a unit in B.

This shows that B is a local ring, and n is its maximal ideal. On the other hand the
residue field K′ = B/n is a finite extension of A/m = K, and K′ ⊃ K is either C = C
or C ⊃ R or R = R. We now
Claim. B contains K′{x} and is a finite K′{x}-module.
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Indeed, if K′ = K, then K′{x} = A, and the assertion is trivial. We suppose,
hence, K′ = C and K = R. We then consider the ring extension B[ι] ⊃ B described
in Proposition and Definition II.5.6:

B[ι] = B[t]/(t2 + 1), ι = t mod t2 + 1,

where t is a new indeterminate.
The ring B[ι] is clearly a finite B-module and consequently a finite A-module,

too. Hence, by the part already proved, B[ι] is a local ring whose maximal ideal n′

verifies n′ ∩B = n. Hence the residue field of B[ι] is a finite extension of that of B,
and so both are C. Thus, there is some element ι′ ∈ B whose residue class is

√
−1,

which is also the residue class of ι. This can be expressed by ι − ι′ ∈ n′, and we
deduce

B[ι] = B + n′.

On the other hand we have the following commutative triangle

B/n = C C[t]

B[ι]/nB[ι]

ϕ φ

-

A
A
AU

�
�
��

where ϕ is the homomorphism induced by the inclusionB ⊂ B[ι], and φ the extension
of ϕ given by t 7→ ι. Clearly φ is surjective, and we get an isomorphism

C[t]/I ' B[ι]/nB[ι],

where I is the kernel of φ. As t2 + 1 ∈ I and I ⊂ C[t] is a principal ideal, the
generator of I must be one of the following three polynomials:

t2 + 1, t−
√
−1, t +

√
−1.

But if I were generated by the first one, we would have C[t]/I = C ⊕ C, which is
not a local ring, while B[ι]/nB[ι] is. Thus I = (t ±

√
−1). In any case C[t]/I = C

and the ring B[ι]/nB[ι] is a field. Hence nB[ι] is a maximal ideal and must coincide
with n′. We deduce

B[ι] = B + n′ = B + nB[ι]

and by Nakayama’s Lemma, B = B[ι]. This means that ι ∈ B, or in other words,
that

√
−1 ∈ B.

Finally,
K′{x} = C{x} = R{x}[

√
−1] = A[

√
−1] ⊂ B

and the claim is proved.
We are now ready to show that B is an analytic ring over K ′. First of all, by the

claim there are finitely many elements y1, . . . , ys ∈ n such that

B = K′{x}[y1, . . . , ys].
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Furthermore, we know that every yi is a root of some distinguished polynomial
Pi(x, yi) ∈ K′{x}[yi]. Using these yi’s we will define a surjective homomorphism of
K′-algebras

π : K′{x, y} → B, y = (y1, . . . , ys).

To that end, after division by the Pi’s, we can write any f ∈ K′{x, y} in the form:

f =
∑
|ν|≤p

aνy
ν1
1 · · · yνss + λ1P1 + · · ·+ λsPs,

where p is any integer bigger than the sum of the degrees of the Pi’s, and λi ∈
K′{x, y}, aν ∈ K′{x}. Quite obviously we set

π(f) =
∑
|ν|≤p

aνy
ν1
1 · · · yνss ∈ K′{x}[y1, . . . , ys] = B.

With such a definition the conclusion would be immediate. Hence we need to show
the validity of the above definition. That is, we need to check that for any element

f ∈ K′{x}[y] ∩ {P1, . . . , Ps}K′{x, y},

it holds
f(x, y1, . . . , ys) = 0

(note that this substitution is always possible because f is a polynomial in the yi’s).
But, if

f = λ1P1 + · · ·+ λsPs, λi ∈ K′{x, y},

we can write
f = λ

(r)
1 P1 + · · ·+ λ(r)

s Ps + g(r),

with
λ

(r)
i ∈ K′{x}[y] and g(r) ∈ {yν | |ν| = r}K′{x, y}.

Thus
g(r) = f − (λ

(r)
1 P1 + · · ·+ λ(r)

s Ps) ∈ K′{x}[y],

and, since the Taylor expansion of g(r) as a series in y1, . . . , ys starts with monomials
yν with |ν| ≥ r, we get

g(r) ∈ {yν | |ν| = r}K′{x}[y].

We now consider the ideals

I = {P1, . . . , Ps}K′{x}[y] ⊂ {x1, . . . , xd, y1, . . . , ys}K′{x}[y] = p

and by the preceding remarks we have

f ∈
⋂
r≥0

(I + pr).
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Consequently, by Krull’s Theorem applied to the ring

K′{x}[y]p/I K′{x}[y]p,

there are elements h ∈ K′{x}[y] \ p, α1, . . . , αs ∈ K′{x}[y] such that

hf = α1P1 + · · ·+ αsPs.

As this expression only involves polynomials in the yi’s, the substitution yi = yi is
allowed, and so we get

h(x, y1, . . . , ys)f(x, y1, . . . , ys) = 0.

Finally, h(x, y1, . . . , ys) 6= 0. Indeed, otherwise we would deduce

h(x, 0) ∈ ({y1, . . . , ys}B) ∩K′{x} ⊂ p ∩K′{x} = {x1, . . . , xd}K′{x}

and so h(0, 0) = 0, which is impossible, because

h(x, y) /∈ p = {x1, . . . , xd, y1, . . . , ys}K′{x}[y].

The proof is now complete. �

Remarks 1.2 The coefficient field K′ can be determined in some cases, but not in
general.

a) A domain which is a finite module over an analytic (resp. a formal) ring over
C is again an analytic (resp. a formal) ring over C.

Indeed, in this case K = C, and consequently K′ = C, too. �
b) A 2-real domain which is a finite module over an analytic (resp. a formal)

ring over R is again an analytic (resp. a formal) ring over R.
Note that a 2-real domain cannot contain

√
−1, and so the coefficient field K′

must be R. �
c) Consider the analytic domain A = R{x1, x2}/(x2

1 + x2
2). It is not 2-real, but

its coefficient field is R.
d) With A as in c) denote by K the quotient field of A; put x1 = x1 mod x2

1 +
x2

2, x2 = x2 mod x2
1 + x2

2. The element x/y ∈ K is then integral over A, (x/y)2 =
x2/y2 = −1, and the domain B = A[x/y] is a finite A-module and it is not 2-real.
Thus B is an analytic ring, but now its coefficient field is C instead of R.

From Proposition 1.1 we deduce the key result concerning integral closures:

Proposition 1.3 (Nagata) Let A be an analytic (resp. a formal) ring over K, and
suppose that A is a domain with quotient field K. Let L be a finite field extension
of K and B the integral closure of A in L. Then B is a finite A-module and an
analytic (resp. a formal) ring over K′ ⊃ K.
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Proof. Choose any primitive element θ of L over K. If

a0θ
p + a1θ

p−1 + · · ·+ ap = 0

with ai ∈ A, a0 6= 0, the element a0θ is also a primitive element and it is integral
over A:

(a0θ)
p + a1a0(a0θ)

p−1 + · · ·+ apa
p
0 = 0.

We thus may merely assume that θ is integral over A, so that A[θ] ⊂ B. Further-
more, A[θ] is a finite A-module ([A-McD 5.1]) and by Proposition 1.1 A[θ] is an
analytic ring. We note now that B is the integral closure of A[θ] in its quotient field
L = K[θ], and by Corollary II.3.3, B is a finite A[θ]-module. By Proposition 1.1
again, B is an analytic ring. �

2 Normalization

This section is devoted to the following notion:

Definition 2.1 Let A be a reduced analytic (resp. formal) ring over K and K its
total ring of fractions.

a) The integral closure of A in K is called the normalization of A and denoted by
Aν .

b) A is called normal if it is integrally closed in K.

In order to understand this better we need a precise description of the normalization.

Proposition 2.2 Let A be a reduced analytic (resp. formal) ring over K. Consider
the associated primes p1, . . . , ps of (0) and put Ai = A/pi. There is then a canonical
isomorphism

Aν ' Aν1 × · · · ×Aνs .

In particular, Aν has finitely many maximal ideals mνi , and

a) Aνi is the localization of Aν at mνi .

b) pi is the kernel of the canonical homomorphism A→ Aνmνi .

Proof. The total ring of fractionsK ofA consists of all fractions whose denominators
are not zero divisors, and so the canonical homomorphism A → K is an inclusion.
Furthermore, the zero divisors of A are exactly the elements of the associated primes
pi ([A-McD 4.7]). Thus K is the semilocalization Ap1,...,ps and p1K, . . . , psK are the
maximal ideals of K. Setting Ki = K/piK for 1 ≤ i ≤ s, we obtain a canonical
homomorphism

K → K1 × · · · ×Ks.
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This homomorphism is actually an isomorphism, by the famous Chinese Remainder
Theorem ([A-McD 1.10]). Indeed, we have

K = piK +
⋂
j 6=i

pjK, and
⋂
i

piK = (0)

for all i’s.
On the other hand,

Ki = K/piK = quotient field of A/pi

and we have a commutative square

A/p1 × · · · ×A/ps K1 × · · · ×Ks

A K

-

-

? ?
τ

Here the two horizontal arrows are inclusions, and the right vertical one is an iso-
morphism, as remarked above.

After this preparation we prove the formula of the statement. It is clear from
the construction that τ maps Aν into Aν1 ×· · ·×Aνs and we claim that this inclusion
is actually the isomorphism

Aν ' Aν1 × · · · ×Aνs

we sought. Indeed, by Proposition 1.3 every Aνi is a finite Ai-module, and conse-
quently a finite A-module (the homomorphism A→ Ai is onto). Hence Aν1×· · ·×Aνs
is a finite A-module, too. Let a be an element of that product. Since A is noetherian,
the submodule

A[a] ⊂ Aν1 × · · · ×Aνs
is also a finite A-module, and a is integral over A. This shows that τ is surjective,
and the proof is complete. �

On the way we have shown:

Proposition 2.3 The normalization Aν of a reduced analytic (resp. formal) ring
A over K is a finite A-module.

We also get:

Proposition 2.4 A normal analytic ring over K is an integral domain.
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Proof. With the notations of Proposition 2.4, if A is normal then

A = Aν = Aν1 × · · · ×Aνs .

But since A is a local ring, this product cannot have more than one factor, and
consequently (0) is a prime ideal, and A is a domain. �

We now want to control the behaviour of the coefficient field under normalization.
As usual the complex case is simpler:

Proposition 2.5 Let A be a reduced analytic (resp. formal) ring over C. The
normalization Aν of A is a finite product of normal analytic rings over C and the
correspondence

p 7→ (A/p)ν

gives a bijection between the associated primes of (0) ⊂ A and the factors of that
product.

Proof. With the notations of Proposition 2.2 again, we have Aν = Aν1 × · · · × Aνs ,
and the Aνi ’s are analytic rings over C by Remark 1.2 a). �

The corresponding result in the real case is the following:

Proposition 2.6 Let A be a reduced analytic (resp. formal) ring over R. The
normalization Aν of A is a finite product of normal analytic rings over R and/or
over C, and the correspondence

p 7→ (A/p)ν

gives a bijection between the associated primes of (0) ⊂ A and the factors of that
product.

Under this bijection the 2-real domains A/p correspond to the analytic rings over
R.

Proof. Suppose first that the domain A/p is 2-real. Since this notion only depends
on the quotient field of the given domain (Proposition and Definition II.5.6) we see
that (A/p)ν is also 2-real. Thus by Remark 1.2 b) the coefficient field of the latter
is R.

Let now p an associated prime such that A/p is not 2-real. Then the quotient
field of that domain contains

√
−1 (Proposition and Definition II.5.6 again), and

consequently
√
−1 ∈ (A/p)ν . Hence the coefficient field of that ring is C. �

Finally concerning complexification we have:

Proposition 2.7 Let A be a reduced analytic (resp. formal) ring over R. Con-
sider the associated primes p1, . . . , pr, q1, . . . , qs of (0), so ordered that the domains



54 III. Normalization

Ai/pi, 1 ≤ i ≤ r, are 2-real, and the domains Bj = A/qj , 1 ≤ j ≤ s, are not. Then
the canonical isomorphism

Aν ' Aν1 × · · · ×Aνr ×Bν1 × · · · ×Bνs

extends to the complexification in the form(
Ã
)ν ' Ãν1 × · · · × Ãνr × (Bν1 ×Bν1 )× · · · × (Bνs ×Bνs ).

Proof. Let Ã be the complexification of A. By Propositions II.5.4 and II.5.8 the
associated primes of Ã are

p1Ã, . . . , prÃ

and
n1, n1, . . . , ns, ns,

where every nj is a prime ideal of Ã such that nj ∩ A = qj , and also nj ∩ A = qj .

Hence, by Proposition 2.5 the ring (Ã)ν is canonically isomorphic to the product

(Ã/p1Ã)ν × · · · × (Ã/prÃ)ν × · · · × (Ã/n1)ν × (Ã/n1)ν × · · · × (Ã/ns)
ν × (Ã/ns)

ν .

Thus, the assertion of the statement splits into the following:

a) Ãνi ' (Ã/piÃ)ν for i = 1, . . . , r.

b) Bj ' (Ã/nj)
ν ' (Ã/nj)

ν for j = 1, . . . , s.

We start by proving a). First of all we note that Ã/piÃ is the complexification of
Ai. This domain is 2-real, and consequently its quotient field Ki does not contain√
−1. Thus by Propositions II.5.6 and II.5.7 we have

Ã/piÃ = Ai[
√
−1], Ãνi = Aνi [

√
−1],

and the quotient fields of the two rings Ã/piÃ and Ãνi coincide both with the field
Ki[
√
−1]. We have to see, hence, that Aνi [

√
−1] is the integral closure of Ai[

√
−1]

in Ki[
√
−1]. To do so, note that Aνi [

√
−1] is an integral extension of Aνi , and

consequently of Ai ⊂ Ai[
√
−1]. Thus it remains to see that Aνi [

√
−1] is integrally

closed in Ki[
√
−1].

Let f, g ∈ Ki be such that h = f +
√
−1g is integral over Aνi [

√
−1]. Since the

latter domain is integral over Ai, the element h is a root of some monic polynomial
P ∈ Ai[t]:

P (f +
√
−1) = 0.

As P is invariant by conjugation in Ãi = Ai[
√
−1]

P (f −
√
−1) = 0,
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and consequently also h = f −
√
−1g is integral over Ai. Thus the elements

f =
1

2
(h+ h), g =

1

2
(h− h)

are integral over Ai, and so they belong to Aνi . We conclude that h ∈ Aνi [
√
−1], as

wanted.
We now show b). Set

Lj = quotient field of Bj , Fj = quotient field of Ã/nj .

Since nj ∩ A = qj , we have an inclusion Bj ⊂ Ã/nj , which extends to another

Lj ⊂ Fj . We claim that in fact Lj = Fj . Every element h ∈ Ã/nj can be written
in the form h = f +

√
−1g with f, g ∈ Bj , and

√
−1 ∈ Lj . We thus have Bj ⊂

Ã/nj ⊂ Fj = Lj , and since the first inclusion here is an integral extension, we get

Bνj ' (Ã/nj)
ν as wanted. As this argument also works for nj , the proof of b) is

finished.
Whence, as remarked before, also the proof of the proposition is finished.

�

We end the section with an easy corollary of the last result:

Corollary 2.8 An analytic (resp. a formal) ring A over R is normal if and only if
its complexification is normal.

Proof. After the preceding proposition we only have to show that if Ã is normal,
then there is no Bj . But if Ã is normal, then Ã is a domain (Proposition 2.4), and
consequently A is a 2-real domain by Proposition II.5.8. �

3 Multiplicity in Dimension 1

In this section we consider some special properties of 1-dimensional rings. As usual,
we only describe the analytic case, the formal one being analogous.

From now on, A stands for a reduced analytic ring of dimension 1 over K = R
or C. We denote by K the total ring of fractions of A, and by m its maximal ideal.
Furthermore, since A is reduced, we have the decomposition (0) = p1 ∩ · · · ∩ ps,
where p1, . . . , ps are the minimal primes of A. We put Ai = A/pi, 1 ≤ i ≤ s and call
these Ai’s the branches of A; we denote by Ki the quotient field of Ai, and by mi its
maximal ideal. We also know that K is canonically isomorphic to K1 × · · · ×Ks.

Finally we will denote by K({t}) the quotient field of K{t}.
By Proposition II.2.3, any non-zero element x ∈ mi gives a unique non-trivial

analytic homomorphism ϕ : K{t} → Ai such that t 7→ x and conversely. Since Ai
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is a domain, such a homomorphism is injective, and by Example II.1.6 it is finite.
We thus obtain a finite field extension K({t}) ⊂ Ki whose degree will be denoted
by deg(x) or deg(ϕ).

Definition 3.1 For every i = 1, . . . , s, let µi(A) denote the smallest degree deg(ϕ)
of a non-trivial analytic homomorphism ϕ : K{t} → Ai. Then, the integer

µ(A) = µ1(A) + · · ·+ µs(A)

is called the multiplicity of A.

Our purpose now is to find a different computation for the multiplicity through the
normalization B of A. We recall from Section 2 that B is the integral closure of A
in K and that it is canonically isomorphic to the product B1× · · ·×Bs where every
Bi is the integral closure of Ai in Ki. We have:

Proposition 3.2 Every Bi is an analytic ring over K′i ⊃ K, isomorphic to K′i{t}.

Proof. By Propositions 2.6 and 2.7, Bi is an analytic ring over K′i ⊃ Ki. Moreover,
by Proposition 2.3, Bi is a finite Ai-module, and consequently the dimensions of
Bi and Ai coincide. Thus Bi is a normal local ring of dimension 1, and so regular
([A-McD 9.2]). Whence Bi is isomorphic to K′i{t} by Lemma II.1.9. �

In what follows, we denote by ni the maximal ideal of Bi, and set

fi = [K′i : K].

Now, after fixing any isomorphism φi : Bi ' K′i{t}, we set

ωi(x) = ω(φi(x))

for every non-zero element x ∈ Ai, and this definition does not depend on the choice
of φi. Indeed, we can reformulate it in the more intrinsic way

ωi(x) = m if and only if x ∈ nmi \ nm+1
i .

In particular, ωi(x) > 0 if x ∈ mi, and we have the positive integer

ei = min{ωi(x) |x ∈ mi}.

Using these notations we will express multiplicities in a different way.

Proposition 3.3 It holds:

a) deg(ϕ) = ωi(x)fi ≥ eifi for any non-trivial analytic homomorphism ϕ :
K{t} → Ai with ϕ(t) = x.

b) µi(A) = eifi.
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c) µ(A) =
∑s
i=1 eifi.

Proof. a) The homomorphism ϕ induces another one ψ : K{t} → Ai ⊂ Bi ' K′i{t}
and we have to show that the degree d of ψ is

d = ωi(x)[K′i : K].

Indeed, set p = ωi(x) = ω(ψ(t)). After an isomorphism of the target we can assume
ψ(t) = ±tp (II.4.7 a)). We thus get the factorization

K{t} → K{t} → K′i{t},

where the first arrow is t 7→ ±tp and the second one the canonical inclusion.
The first homomorphism gives a field extension of degree p. Indeed, any power

series f ∈ K{t} can be written as follows

f = (a0 + a1t + · · ·+ ap−1t
p−1) + (apt

p + ap+1t
p+1 + · · ·+ a2p−1t

2p−1) + · · · =
= (a0 + apt

p + · · · ) + (a1 + ap+1t
p + · · · )t + · · ·+ (ap−1 + a2p−1t

p + · · · )tp−1 =

= f0(tp) + f1(tp)t + · · ·+ fp−1(tp)tp−1,

which shows that 1, t, . . . , tp−1 are a basis of that first field extension.
As the degree of the second extension is clearly [K′i : K], we have proved that the

degree of the extension corresponding to ψ is exactly p [K′i : K], as claimed.
On the other hand since x ∈ mi, by the definition of ei, it is ω(x) ≥ ei, and so

the proof of a) is complete.
b) From a) we deduce one inequality, namely µi(A) ≥ eifi. To prove the converse

one we have to find some ϕ such that

ωi(ϕ(t)) = ei.

In order to do so we apply the construction II.2.3: choose any generators x1, . . . , xn
of mi and consider the surjective analytic homomorphism On → Ai which maps xj
to xj , 1 ≤ j ≤ n. Then

a) ϕ(t) = x1.

b) There are n− 1 polynomials P` ∈ On−`[xn−`+1], 1 ≤ ` ≤ n− 1, such that

P`(x1, . . . , xn−`, xn−`+1) = 0.

c) Every P`, 1 ≤ ` ≤ n− 1, is a monic polynomial whose degree equals its order
as a power series.

We claim that this is the homomorphism we seek.
We first show that

ωi(ϕ(t)) = ωi(x1) ≤ ωi(xj)
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for all j. We do this by induction, the assertion being trivial for j = 1. To check it
for j > 1 consider the polynomial Pn−j+1. By the properties above, we get a monic
equation

xqj + a1x
q−1
j + · · ·+ aq = 0,

where the coefficients verify

ak ∈ (x1, . . . , xj−1)k, 1 ≤ k ≤ q.

Thus, by the properties of ωi and the induction hypothesis, we get

ωi(ak) ≥ min
|ν|=k

ωi(x
ν1
1 · · ·x

νj−1

j−1 ) ≥ kωi(x1)

for 1 ≤ k ≤ q. Hence, if ωi(xj) < ωi(x1) we would get

ωi(akx
q−k
j ) ≥ kωi(x1) + (q − k)ωi(xj) > qωi(xj) = ωi(x

q
j),

and so
ωi(x

q
j) < ω(a1x

q−1
j + · · ·+ aq),

which is impossible, since a1x
q−1
j + · · ·+ aq = −xqj .

Next, the maximal ideal mi of Ai is generated by x1, . . . , xn of m. Hence any
x ∈ mi can we written as

x = a1x1 + · · ·+ anxn, a1, . . . , an ∈ Ai,

and by the properties of ω we get

ωi(x) ≥ min{ωi(x1), . . . , ωi(xn)} = ωi(x1).

Thus ωi(x1) = ei, and we have finished the proof of b).
Finally, c) is an immediate consequence of b) and the definition of multiplicity.

�

Remarks 3.4 a) We have actually shown that in order to compute multiplicities
the changes of coordinates described in II.2.3 are the good ones. This has the
further consequence that a generic choice of coordinates (see Remark II.2.6) gives
the multiplicity of A.

b) Suppose that A is planar, that is, A = K{x, y}/(h). Then µ(A) = ω(h).
Indeed, after a linear change of coordinates we may assume h is regular of order

p = ω(h) (Lemma I.3.1), and then h = uP where u is a unit and P ∈ K{x}[y]
a distinguished polynomial of degree p (Weierstrass’s Preparation Theorem). We
then have a factorization P = P1 · · ·Ps, into distinguished polynomials, which are
irreducible both as polynomials and as power series (Remark II.2.2). Note that
this factorization has no multiple factor because A is reduced, and consequently the



3. Multiplicity in Dimension 1 59

branches of A are Ai = K{x, y}/(Pi), 1 ≤ i ≤ s. Let pi denote the degree of Pi.
Clearly ω(Pi) ≤ pi and

p =
∑
i

pi ≥
∑
i

ω(Pi) = ω(P ) = p.

Hence ω(Pi) = pi, and by a) the coordinates are good to compute multiplicities:
µi(A) is the degree of the field extension corresponding to K{x} → K{x, y}/(Pi).
But the canonical homomorphism

K{x}[y]/(Pi)→ K{x, y}/(Pi)

is a bijection by Rückert’s Division Theorem, and consequently that field extension
is K({x}) ⊂ K({x})[y]/(Pi). As the degree of this extension is the degree pi of Pi,
we have

µ(A) =
∑
i

µi(A) =
∑
i

pi = p = ω(h).

�
c) An easy consequence of Propositions 2.7 and 3.3 is that the multiplicities of

an analytic ring over R and its complexification coincide. We leave the proof as an
exercise (note that fi 6= 1 if and only if the branch Ai is not 2-real).

We end this section with a classical construction.

(3.5) Quadratic transforms. We keep all the notations and data already intro-
duced. Let x ∈ mi have value ωi(x) = ei. Then

a) A
(1)
i = Ai[x

−1mi] ⊂ Bi.

Indeed, if y ∈ mi, then ωi(y) ≥ ei = ω(x), or equivalently ω(φi(y)) ≥ ω(φi(x)). Thus
φi(y)/φi(x) is a well defined power series in K′i{t}, and since φi is an isomorphism,
y/x ∈ Bi. �

b) A
(1)
i is an analytic ring of dimension 1 whose maximal ideal is m

(1)
i = ni∩A(1)

i .

In fact, as Bi is a finite Ai-module, A
(1)
i ⊂ Bi is a finite Ai-module, too, and the first

assertion follows from Lemma 1.1. Now ni ∩A(1)
i is a prime ideal of A

(1)
i , obviously

6= (0), and consequently it is the maximal ideal. �

c) A
(1)
i does not depend on the choice of x.

To see this, let y ∈ A have also value ωi(y) = ei. Then ωi(y/x) = 0 and arguing as

above it follows that y/x is a unit of Bi. As y/x ∈ A(1)
i , and m

(1)
i = ni ∩ A(1)

i , we

conclude that y/x is a unit in A
(1)
i . Hence, x/y ∈ A(1)

i , and so

y−1mi = (x/y)(x−1mi) ⊂ A(1)
i .

Whence A[y−1mi] ⊂ A[x−1mi]. The other inclusion follows by symmetry, and we
conclude A[y−1mi] = A[x−1mi]. �
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d) Ai = A
(1)
i if and only if Ai = Bi.

Let x1, . . . , xn ∈ Ai generate mi. Then

x−1x1, . . . , x
−1xn ∈ A(1)

i = Ai

implies mi = xAi. Thus mi is principal, and it follows that Ai is a normal domain,
so that Ai = Bi. �

Clearly, if Ai 6= A
(1)
i , we can repeat the construction to get a sequence of analytic

rings of dimension 1

A = A
(0)
i ⊂ A

(1)
i ⊂ · · · ⊂ A

(`)
i ⊂ · · · ⊂ Bi.

By d), if A
(r)
i = A

(r+1)
i , then A

(r)
i = Bi, and the sequence stops. But this actually

happens, because Bi is a finite Ai-module, and consequently a noetherian Ai-module.
Thus we come to the

Definition 3.6 In the situation above, the ring A
(`)
i is called the `-th quadratic

transform of Ai, and the sequence of analytic rings

Ai = A
(0)
i ⊂ A

(1)
i ⊂ · · · ⊂ A

(r)
i = Bi

is called the sequence of quadratic transforms of Ai.

Again we leave as an exercise to check that the complexification of a sequence of
quadratic transforms is a sequence of quadratic transforms of the complexification.

4 Newton-Puiseux’s Theorem

We start by defining power series with rational exponents over K = R or C.

Definitions and Notations 4.1 A formal Puiseux series in the indeterminate t is
an expression f =

∑
m≥0 amt

m/p, in short
∑
m amt

m/p or
∑
amt

m/p, where am ∈ K
for every m and p is an integer ≥ 1. The am’s are the coefficients of f , and the first
of them a0 is denoted by f(0).

Consider now two formal Puiseux series f =
∑
amt

m/p and g =
∑
bmt

m/q. If
p = q we define f + g and fg as we did for ordinary formal power series (I.2.4).
Otherwise, if p 6= q, we first write

f =
∑

amt
m/p =

∑
amt

mq/pq; g =
∑

bmt
m/q =

∑
bmt

mp/qp,

and then sum and multiply as said before. Thus the set K[[t∗]] of all formal Puiseux
series becomes a ring.

For every p ≥ 1 let K[[t1/p]] be the subring of K[[t∗]] consisting of all Puiseux
series of the form

∑
amt

m/p. We have:

K[[t∗]] =
⋃
p≥1

K[[t1/p]].
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Note that for p = 1 in this union we just obtain the ring K[[t]] of ordinary formal
power series.

It is also easy to check that K[[t∗]] is a domain, and its quotient field K((t∗))
can be described as

K((t∗)) =
⋃
p≥1

K((t1/p)),

where of course K((t1/p)) stands for the quotient field of K[[t1/p]].
Let now x be another indeterminate. For every p ≥ 1 we have a canonical

isomorphism of K-algebras

τp : K[[x]]→ K[[t1/p]] : h 7→ h(t1/p),

defined quite obviously by substitution by t1/p. Using these τp’s and the formulas
above any problem concerning finitely many Puiseux series can be reduced to a
problem concerning ordinary power series.

The τp’s also give an easy way to introduce convergence. A formal Puiseux series
f =

∑
amt

m/p is called convergent if the ordinary power series τ−1
p (f) =

∑
amx

m

is convergent. All the convergent Puiseux series form a subring K{t∗} of the ring
K[[t∗]], whose quotient field will be denoted by K({t∗}). We have formulas similar
to the ones above:

K{t∗} =
⋃
p≥1

K{t1/p}, K({t∗}) =
⋃
p≥1

K({t1/p}).

Again, for p = 1 we obtain ordinary convergent power series.

Proposition 4.2 We have:

a) Every f ∈ K{t∗} can be uniquely written as f = tm/pu, for some rational
number m/p ≥ 0 and some unit u of K{t∗}.

b) The set of all f ∈ K{t∗} with f(0) = 0 is the unique prime ideal m∗ 6= (0) of
K{t∗}.

c) K{t∗} is integrally closed in its quotient field.

d) K{t∗} is integral over K{t}.

The same result holds true replacing K{t∗} by K[[t∗]] and K{t} by K[[t]].

Proof. a) There is some p such that f ∈ K{t1/p}. Since the assertion is true in
K{x}, we can apply τp to get a unit u such that f = tm/pu. Given then a second
expression f = tn/qv, we have both in K{t1/pq}, and using τpq we can work in K{x}.
But uniqueness holds in K{x}, and we are done.

b) Clearly the condition of the statement defines an ideal m∗. Furthermore, if
f(0) 6= 0, in the expression f = tm/pu of a) we must have m = 0. Thus f = u is a
unit. This shows that m∗ is the unique maximal ideal of K{t∗}.
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Now let p 6= (0) be a prime ideal of K{t∗}. We can choose f ∈ p, f 6= 0, and
from a) write f = tm/pu for some unit u. Then

tm = (u−1f)p ∈ p,

and since p is prime we conclude t ∈ p. On the other hand any g ∈ m∗ can be
written as g = tn/qv with n > 0, and so

gq = tnvq = (tn−1vq)t ∈ p.

As p is prime, g ∈ p. Thus m∗ ⊂ p and the equality follows because m∗ is maximal.
c) Let h ∈ K({t∗}) be integral over K{t∗}, that is

hs + a1h
s−1 + · · ·+ as = 0, a1, . . . , as ∈ K{t∗}.

For a suitable p ≥ 1, h ∈ K({t1/p}) and ak ∈ K{t1/p} for all k. We can thus apply
the isomorphism τp to translate the above equation to K{x}, which is integrally
closed in its quotient field. We conclude that τ−1

p (h) ∈ K{x}, and h ∈ K{t1/p}.
d) We have to see that every element of K{t∗} verifies a monic equation with

coefficients in K{t}. Consider, thus, p > 0, f ∈ K{x} and f(t1/p) ∈ K{t∗}. We
first look for a monic polynomial P (z, y) ∈ K{z}[y] such that P (xp, f(x)) = 0. To
find it, we take the analytic homomorphism K{z, y} → K{x} defined by

z 7→ xp, y 7→ f(x).

This homomorphism is finite (Example II.1.6), and consequently cannot be injec-
tive, (an injective finite homomorphism K{z, y} → K{x} would give dim(K{x}) =
dim(K{z, y}) = 2). Hence there is some series H ∈ K{z, y} such that H(xp, f(x)) =
0. We write H = znQ with Q(0, y) 6= 0 and by Weierstrass’s Preparation Theorem
(Proposition I.3.3), there are a distinguished polynomial P ∈ K{z}[y] and a unit
u ∈ K{z, y} with Q = uP . Hence

0 = H(xp, f(x)) = xpnu(xp, f(x))Q(xp, f(x)).

As u(0, 0) 6= 0, u(xp, f(x)) 6= 0, and P (xp, f(x)) = 0. We thus have found the poly-
nomial we sought, and after the substitution x 7→ t1/p it gives us an equation of
integral dependence of f(t1/p) over K{t}. �

We are now ready to state Newton-Puiseux’s Theorem, but first we consider com-
plexification in this new context:

Lemma 4.3 The ring R{t∗} is 2-real, and R{t∗}[
√
−1] = C{t∗}. The same holds

in the formal case.

Proof. Suppose that f2 +g2 = 0 with f, g ∈ R{t∗} and f 6= 0. Then f, g ∈ R{t1/p}
for a suitable p. and via the isomorphism τp we would conclude that R{x} is not
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2-real, which is false. Consider now a series h(t1/p) ∈ C{t∗} with h ∈ C{x}. We
write h = f +

√
−1g with f, g ∈ R{x} and get h(t1/p) = f(t1/p) +

√
−1g(t1/p).

�

Proposition 4.4 (Newton-Puiseux’s Theorem) We have:

a) The field C({t∗}) (resp. C((t∗))) is algebraically closed.

b) The field R({t∗}) (resp. R((t∗))) is real closed.

Proof. By Lemma 4.4
√
−1 /∈ R({t∗}), and C({t∗}) = R({t∗})[

√
−1]. These two

conditions imply that the two assertions in the statement are equivalent (general
theory of formally real fields [L XI.2]) Hence we will only prove a).

We have to see that every polynomial P ∈ C({t∗})[y] of degree p ≥ 1 has some
root. Multiplying by a common denominator of the coefficients we may assume that
P ∈ C{t∗}[y]. Then, by considering the polynomial

ap−1P (y/a),

where a is the coefficient of the monomial of maximal degree p, we can suppose that
P is monic. We have hence

P = yp + a1(t1/q)yp−1 + · · ·+ ap(t
1/q),

with a1, . . . , ap ∈ C{x}. We set now

P ∗ = yp + a1(x)yp−1 + · · ·+ ap(x) ∈ C{x, y}.

Let c ∈ C be a root of multiplicity, say, q ≥ 1 of the polynomial P ∗(0, y) ∈ C[y].
After the change y = y + c we are reduced to the case c = 0, and from Hensel’s
Lemma (Proposition I.3.4) we get a factorization P ∗ = QQ′, where Q,Q′ are monic
polynomials of C{x}[y], Q has degree q and Q(0, y) = yq. In particular, Q is a
distinguished polynomial. By Remark II.2.2 we can factorize Q into irreducible dis-
tinguished polynomials Q1, . . . , Qs which are irreducible as series in C{x, y}. Pick
Q1 for instance, and put A = C{x, y}/Q1. This analytic ring is a domain of di-
mension 1, because Q1 is irreducible, and its normalization is isomorphic to C{z}
(Proposition 3.2). Thus we get an injective analytic homomorphism A→ C{z}, and
from this another

ϕ : C{x, y} → C{z}

whose kernel is Q1C{x, y}. Then ϕ(x) 6= 0, since otherwise x would belong to
Q1C{x, y} and Q1 would divide x. Thus ϕ(x) ∈ C{z} is a series of order m > 0, and
by II.4.7 we can compose ϕ with an automorphism of C{z} to get

ϕ(x) = zm.
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Finally, let ϕ(y) = f(z), and so

Q1(zm, f(z)) = ϕ(Q1) = 0.

Since Q1 is a factor of P ∗ in C{x}[y], we also get

P ∗(zm, f(z)) = 0.

This means that f(t1/m) ∈ C{t∗} is a root of P and the proof is finished. �

The preceding proof can be examined more carefully to get further interesting in-
formation:

Proposition 4.5 Let P ∈ C{t}[y] be an irreducible distinguished polynomial. Then:

a) The degree of P is the smallest integer p such that P has a root of the form
h = f(t1/p) for some f ∈ C{x}.

b) Any other root of P is then of the form f(ξt1/p) for some p-th root of unity
ξ ∈ C.

Proof. a) Set A = C{t, y}/(P ). This is an analytic ring of dimension 1 over C and,
since P is irreducible, it is a domain. The normalization B of A is then isomorphic
to C{x}, and after an automorphism of C{x} we may assume t = xp. If y = f(x),
we get P (xp, f(x)) = 0 and h = f(t1/p) is a root of P . Once we have found this
root, we will prove that p is the smallest integer considered in a), and that it verifies
b).

The root h comes from the homomorphism

ϕ : C{t, y}/(P ) = A→ B ' C{x} : t 7→ xp, y 7→ f(x),

and conversely, any root g(t1/q) of P defines

φ : C{t, y}/(P ) = A→ C{z} : t 7→ zq, y 7→ g(z).

We claim that there is a third homomorphism ψ : B ' C{x} → C{z} such that
ψ ◦ ϕ = φ.

Indeed, since φ is injective, it extends to the quotient field of A, and since B is
contained in that quotient field we get ψ : B ' C{x} → C({z}). But B is integral
over A, and so ψ(B) is integral over ψ(A) = φ(A) ⊂ C{z}. As C{z} is normal, we
conclude ψ(B) ⊂ C{z}.

Once ψ is available, we can write

ψ(x)p = ψ(xp) = ψϕ(t) = φ(t) = zq.

It follows that p | q, and that ψ(x) is a p-th root of zq:

ψ(x) = ξzq/p



4. Newton-Puiseux’s Theorem 65

for some p-th root of unity ξ ∈ C. Thus we get

g(z) = φ(y) = ψϕ(y) = ψ(f(x)) = f(ψ(x)) = f(ξzq/p)

and so g(t1/q) = f(ξt1/p).
After all of this, it only remains to show that p is the degree of P . For that, note

that since P is irreducible, it has no multiple root, and, since C({t∗}) is algebraically
closed (Newton-Puiseux’s Theorem, Proposition 4.4), we conclude that the degree
of P is the number of its roots. Hence we need to see that when ξ runs among the
p-th roots of unity, the Puiseux series

g(t1/q) = f(ξt1/p)

are all different. But suppose

f(ξt1/p) = f(ξ′t1/p).

Then f(ξx) = f(ξ′x), and after the substitution x = x/ξ we get f(x) = f(ζx), where
ζ = ξ′/ξ is another p-th root of unity. This means that if f =

∑
k akx

k, it holds
ak = ζkak for all k, or in other words,

ζk = 1 if ak 6= 0.

Now, let r be the smallest positive integer such that ζr = 1; as is well known, r | p,
say rs = p. We then write k = mr + ρ(k) with 0 ≤ ρ(k) < r, and the last condition
reads

ζρ(k) = 1 if ak 6= 0.

By the choice of r, ζρ(k) = 1 if and only if ρ(k) = 0, if and only if r | k. Hence ak = 0
if r does not divide k, that is, f = g(xr) for a series g ∈ C{x}. We conclude

f(t1/p) = g(tr/p) = g(t1/s),

and s = p by the minimality of p. Whence ζ = 1 and ξ = ξ′, which finishes the proof.
�

Remarks 4.6 a) The proof of Proposition 4.4 tells also how to treat an arbitrary
monic polynomial P ∈ C{t}[y]. Namely, if P is irreducible it follows from Hensel’s
Lemma (Proposition I.3.4) that P (0, y) = (y − c)p for some c ∈ C. Consequently
after the substitution y = y+ c we obtain a distinguished polynomial and can apply
Proposition 4.5; if P is not irreducible, we first split it into irreducible factors. In
any case, if p is the degree of P , all roots of P are in C{t1/p!}.

b) The explicit computation of the roots h = f(t1/p) of a polynomial P ∈
C{t}[y] is made by the so-called Newton Algorithm, which recursively determines
the coefficients of the series f(x) = a1x + · · ·+ akx

k + · · · . We will not give details
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here, but it is interesting to remark that this is an Implicit Functions problem for k
big enough.

Indeed, write fk(x) = a1x + · · · + akx
k for k ≥ 1. We suppose that P is irre-

ducible, so that h is not a root of its derivative ∂P/∂y and the order n of the series
∂P (xp, f(x))/∂y is finite. Although we do not know n in advance, we can check
at every step the order nk of the substitution ∂P (xp, fk(x))/∂y, to eventually get
nk = n. In fact, we know this is the case as soon as nk ≤ k, because clearly

∂P

∂y
(xp, f(x)) ≡ ∂P

∂y
(xp, fk(x)) mod xk+1.

Once we have n = nk ≤ k, f = fk + ak+1x
k+1 + · · · with ak 6= 0, we write

P (xp, fk(x) + xk+1z)

= P (xp, fk(x)) +
∂P

∂y
(xp, fk(x))xk+1z +

1

2

∂2P

∂y2
(xp, fk(x))x2(k+1)z2 + · · ·

and substitute z = (f − fk)/xk+1 = ak+1 + · · · to get

−P (xp, fk(x)) =
∂P

∂y
(xp, fk(x))(f − fk) +

1

2

∂2P

∂y2
(xp, fk(x))(f − fk)2 + · · · .

Since n = nk < k + 1, we deduce ω(P (xp, fk(x))) = n+ k + 1 and

P (xp, fk(x) + xk+1z) = xn+k+1H(x, z),

with ∂H/∂z(0, 0) 6= 0. Consequently, by the Implicit Functions Theorem, there is
h(x) ∈ K{x} such that H(x, h(x)) = 0, and (fk + xn+k+1h)(t1/p) is a root of P . �

c) The preceding remark is useful when P has real coefficients, and we find
recursively a root in C{t∗}: the root is real when the first n coefficients ak are real
(notations as above). Indeed, once these coefficients are real, the others come from
the Implicit Functions Theorem applied in R{x, z}. �
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IV Nullstellensätze

Summary. This chapter is devoted to the real and complex Nullstellensätze. In the
complex case the Nullstellensatz is a direct consequence of Rückert’s Parametriza-
tion. In the real case two other results are essential, the Homomorphism Theorem
and the solution to Hilbert’s 17th Problem. We consider only the analytic case,
remarking that everything can be done analogously in the formal one.

1 Zero Sets and Zero Ideals

According to Definitions and Notations III.4.1, let K{t∗} be the ring of convergent
Puiseux series over K = R or C, K({t∗}) its quotient field and m∗ its maximal ideal.
We will also use the notations

W = K{t∗}, U = m∗, F = K({t∗}).

(1.1) Fix an integer n ≥ 0 and put D = U × · · · × U ⊂ Fn. Let f ∈ On. Then
for every x(t) = (x1(t), . . . , xn(t)) ∈ D the substitution f(x(t)) is a well defined
convergent Puiseux series. Indeed, up to an isomorphism τp (III.4.1) this is only a
substitution of ordinary convergent power series. An associated function can thus
be defined by

D = U × · · · × U →W ⊂ F : x(t) 7→ f(x(t)).

An intuitive way to see this construction is the following. The field F is an extension
of K which contains an infinitesimal t, that is, an element which belongs to every
neighborhood of 0 in K. Then D is a neigborhood of the origin in Fn which is small
enough to be contained in the convergence domain D(f) of any series f ∈ On.

Definition 1.2 Let I be an ideal of On. The zero set of I is the set

Z (I) = {x(t) ∈ D | f(x(t)) = 0 for all f ∈ I}.

The familiar properties of this operator are:

Proposition 1.3 Let I, J be two ideals of On. Then:

a) Z (I) ⊂ Z (J) if I ⊃ J .

b) Z (I · J) = Z (I ∩ J) = Z (I) ∪ Z (J).

c) Z (I + J) = Z (I) ∩ Z (J).
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Proof. a) is immediate. For b) note that a) implies the inclusions

Z (I · J) ⊃ Z (I ∩ J) ⊃ Z (I) ∪ Z (J) .

Now let x(t) ∈ Z (I · J)\Z (I), that is, f(x(t)) 6= 0 for some f ∈ I. Then, for every
g ∈ J we get

0 = (gf)(x(t)) = g(x(t))f(x(t)),

and so g(x(t)) = 0. Thus x(t) ∈ Z (J). We leave the last formula c) as an exercise.
�

The other standard operator is:

Definition 1.4 Let Y ⊂ D. The zero ideal of Y is the ideal

J (Y ) = {f ∈ On | f(x(t)) = 0 for all x(t) ∈ Y }.

It is clear that the zero ideal is indeed an ideal, and the following properties are also
immediate:

Proposition 1.5 Let Y, Z be two subsets of D. Then:

a) J (Y ) ⊂ J (Z) if Y ⊃ Z.

b) J (Y ∪ Z) = J (Y ) ∩ J (Z).

The problem solved by the Nullstellensätze is the determination of the ideal J (Z (I))
for any given ideal I. There are two different solutions according to whether C or R
is considered as coefficient field K, as we will find in the coming sections. First we
introduce an equivalent description of zero sets that will be useful later.

Proposition 1.6 Let Φ denote the collection of all homomorphisms of K-algebras
On → K{t∗}, and set

Φ(I) = {ϕ ∈ Φ | ker(ϕ) ⊃ I}

for I ⊂ On. Then we have:

a) Every homomorphism ϕ ∈ Φ is local and it is defined by the substitution

ϕ(f) = f(x1(t), . . . , xn(t)), f ∈ On,

where xi(t) = ϕ(xi) ∈ m∗ for 1 ≤ i ≤ n.

b) The correspondence: ϕ 7→ (ϕ(x1), . . . , ϕ(xn)) is a bijection from Φ onto the
set D = U × · · · × U ⊂ Fn.

c) This bijection maps Φ(I) onto the zero set Z (I) for every ideal I ⊂ On.

d) J (Z (I)) =
⋂
ϕ∈Φ(I) ker(ϕ).
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Proof. a) To see that ϕ is local, we refer to the proof that every analytic homo-
morphism is local (Proposition II.1.3). Once this is known, we set

ϕ(xi) = xi(t) ∈ m∗

for 1 ≤ i ≤ n, and define φ ∈ Φ by

φ(f) = f(x1(t), . . . , xn(t)), f ∈ On.

We will show that ϕ = φ using a proof similar to that of Proposition II.1.3 a), but
here the argument ends differently since Krull’s Theorem fails for the ring K{t∗}.
First, we put

xi(t) = uit
mi/pi ,

where ui is a unit, for 1 ≤ i ≤ n, and

m0

p0
= min

{
m1

p1
, . . . ,

mn

pn

}
.

Suppose now that there is an f ∈ On such that ϕ(f) 6= φ(f), so that we can write

ϕ(f)− φ(f) = utm/p,

where u is a unit; we then choose an integer s such that sm0

p0
≥ 1 + m

p , and set

f = g +
∑
|ν|=s

hνx
ν1
1 · · · xνnn ,

with g ∈ K[x1, . . . , xn] and hν ∈ On for |ν| = s. Since ϕ and φ are homomorphisms
of K-algebras, we obtain

ut
m
p = ϕ(f)− φ(f) =

=
∑
|ν|=s

(ϕ(hν)− φ(hν))x1(t)ν1 · · ·xn(t)νn =
∑
|ν|=s

aνt
ν1
m1
p1

+···+νn mnpn =

=
∑
|ν|=s

bνt
(ν1+···+νn)

m0
p0 =

∑
|ν|=s

bν

 t
s
m0
p0 = bts

m0
p0 = ct1+m

p .

where aν , bν , b, c ∈ K{t∗}. Hence u = ct, which is impossible because u is a unit,
and so we are done.

b) follows immediately from a).
c) Every ϕ ∈ Φ is defined by

ϕ(f) = f(x1(t), . . . , xn(t)), f ∈ On,

for unique x1(t), . . . , xn(t). Thus

ker(ϕ) = {f ∈ On | f(x1(t), . . . , xn(t)) = 0},
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and ker(ϕ) ⊃ I if and only if (x1(t), . . . , xn(t)) ∈ Z (I). We hence get c).
d) Suppose that f ∈ ker(ϕ) whenever I ⊂ ker(ϕ), and let x(t) ∈ Z (I). Then by

b), there is a homomorphism ϕ ∈ Φ(I) defined by

x(t) = (ϕ(x1), . . . , ϕ(xn)),

and consequently

f(x(t)) = f(ϕ(x1), . . . , ϕ(xn)) = ϕ(f) = 0,

and so f ∈ J (Z (I)).
Conversely, suppose that f /∈ ker(ϕ) for some ϕ whose kernel contains I. Then

x(t) = (ϕ(x1), . . . , ϕ(xn)) ∈ Z (I), but f(x(t)) = ϕ(f) 6= 0. Thus f /∈ J (Z (I)).
�

Remarks and Examples 1.7 Zero sets and zero ideals are the first concern of
local analytic geometry. All the machinery developed so far can be understood in
geometric terms using them. We will have more occasions to do this, but here are
some examples. Let I 6= 0 be an ideal of On and Y = Z (I) ⊂ D its zero set.

a) A point x(t) ∈ D corresponds to a homomorphism φ ∈ Φ(I) (Proposition
1.6), which is trivial if and only if the point is the origin x(t) = (0, . . . , 0), and we
exclude this case in the sequel. Hence the kernel p of the homomorphism is a prime
ideal different from the maximal one. Then the analytic ring On/p has dimension 1
(since φ induces an integral extension On/p→ K{t∗}). In the converse, the question
is whether every prime ideal p ⊃ I of height n− 1 corresponds to a point of Y . The
answer depends on the coefficient field K.

Suppose, first, K = C. In this case the analytic ring On/p has dimension 1,
and by Proposition III.3.2 its normalization is C{t}. This gives a homomorphism
On → On/p → C{t} → C{t∗}, whose kernel is p, and hence the point of Y we
sought. Thus, over C, we can look at the zero set of I as the set of all prime ideals
of height n− 1 containing I.

Let now K = R. Then the normalization of On/p is either R{t} or C{t}, and it
is only in the first case that we get a point of Y . We notice that the normalization
is R{t} if and only if On/p is a 2-real domain, in which case we call p real. Hence,
when working over R, the zero set Y of I is seen as the set of all real prime ideals of
height n− 1 containing I. One may ask where the non-real prime ideals have gone.
The solution is easy: they are in the zero set Ỹ of the ideal Ĩ = IC{x}. This is the
geometric way of defining complexification.

b) We now explain the important fact that the singular locus of Y is again a
zero set.

A regular point of dimension 1 of Y is a point x(t) ∈ Y such that the local ring
(On)p/I(On)p is regular, where p is the height n − 1 prime ideal corresponding to
x(t); otherwise x(t) ∈ Y is called a singular point of dimension 1. By the Regularity
Jacobian Criterion (Proposition II.4.3), the set of singular points of dimension 1 of
Y is the zero set of the ideal R1(I) + · · ·+Rn(I). �
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c) An ideal I ⊂ On has an isolated singularity if for every prime ideal p 6= mn,
the local ring (On)p/I(On)p is regular. In the common usage the term singularity
excludes the possibility of On/IOn being regular.

In case K = C this definition means exactly that the zero set of I has no singular
point of dimension 1. Indeed, this latter condition is equivalent to the fact that
(On)p/I(On)p is regular for every prime ideal p ⊃ I with ht(p) = n − 1. Choose
any other prime ideal q ⊃ I, which will be contained in some p with ht(p) = 1
(this follows from Corollary II.2.5). Now, by the Regularity Jacobian Criterion
(Proposition II.4.3), p 6⊃ Rs(I) with suitable s, and thus q 6⊃ Rs(I). Again by the
Regularity Jacobian Criterion, (On)q/I(On)q is regular of dimension ht(q)− s.

If K = R the preceding argument does not work, because when we choose p ⊃ q,
we need p to be real. For an explicit counterexample, consider the ideal I ⊂ R{x, y, z}
generated by f = x2 + (y2 + z2)2. One easily checks that the zero set of I reduces
to the origin, but I has not an isolated singularity: the localization at the prime
ideal p ⊂ R{x, y, z} generated by x, y2 + z2 is not regular. Again this is reflected
in the complexification: the singular point of dimension 1 that corresponds to p is
(0, t,

√
−1t). We leave to the reader the easy exercise of stating the general result

corresponding to this remark.

2 Rückert’s Complex Nullstellensatz

The main result of this section is:

Proposition 2.1 (Rückert’s Nullstellensatz) Let I be an ideal of C{x}, where as
usual x = (x1, . . . , xn). The following assertions are equivalent:

a) f ∈ J (Z (I)).

b) There is an integer p ≥ 1 such that fp ∈ I.

Proof. First of all, note that we can equivalently state the result in the form:

J (Z (I)) =
√
I.

Secondly, it is immediate that

J (Z (I)) = J
(
Z
(√

I
))

.

Now, we can write
√
I as an intersection of prime ideals, namely

√
I = p1 ∩ · · · ∩ pr,

and by Propositions 1.3 b) and 1.5 b)

J (Z (I)) = J
(
Z
(√

I
))

= J (Z (p1)) ∩ · · · ∩ J (Z (pr)) .
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Hence, it suffices to show that
J (Z (p)) = p

for every prime ideal p of C{x}. Finally, by Proposition 1.6 b), this is equivalent to⋂
ϕ∈Φ(p)

ker(ϕ) = p

for every prime ideal p of C{x}. More explicitely, we have to show that for every
f /∈ p there is a homomorphism of C-algebras ϕ : C{x} → C{t∗} such that ϕ(f) 6= 0
and ker(ϕ) ⊃ p.

We will deduce the last assertion from Rückert’s Parametrization Theorem (Pro-
position II.3.4 and Remark II.3.7). After a linear change of coordinates we are under
the conditions stated there, from which we pay special attention to:

a) The canonical homomorphism C{x′} = A → B = C{x}/p is finite and injec-
tive, where x′ = (x1, . . . , xd) and d = n− ht(p).

b) There is an irreducible polynomial P ∈ C{x′}[xd+1] whose discriminant δ ∈
C{x′} has the property that the canonical homomorphism

(C{x′}[xd+1]/P )δ → Bδ

is an isomorphism.

Since A→ B is finite, the element a = f mod p is integral over A, and there is an
equation

am + b1a
m−1 + · · ·+ bm = 0,

of minimal degree m. This minimality implies that bm 6= 0, because otherwise we
could divide by a to get another equation of smaller degree. Hence aa′ = b 6= 0,
where

a′ = am−1 + b1a
m−2 + · · ·+ bm−1 ∈ B, b = bm ∈ A.

Given that δb =
∑
aνx
′ν ∈ C{x′} is not zero, it has finite order, say p ≥ 0, and we

can choose a tuple c = (c1, . . . , cd) ∈ Cd such that
∑
|ν|=p aνc

ν 6= 0. We then define a

homomorphism of C-algebras ψ : A→ C{t∗} by the substitution xi = cit, 1 ≤ i ≤ d.
By the choice of c, ψ(δb) 6= 0.

Let now P = x
p
d+1 +a1x

p−1
d+1 + · · ·+ap ∈ A[xd+1]. By Newton-Puiseux’s Theorem

(Proposition III.4.4), the polynomial

Pψ = x
p
d+1 + ψ(a1)xp−1

d+1 + · · ·+ ψ(ap) ∈ C{t∗}[xd+1]

has some root xd+1(t) in the quotient field C({t∗}) of C{t∗}, and, Pψ being monic,
Proposition III.4.2 c) guarantees that xd+1(t) ∈ C{t∗}.

Now, since ψ(δ) 6= 0, we can extend ψ to

φ : (C{x′}[xd+1]/P )δ ≡ Bδ → C({t∗})
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by φ(xd+1 mod P ) = xd+1(t). Since B is integral over A, φ(B) is integral over
ψ(A) ⊂ C{t∗}, and the latter ring being integrally closed in its quotient field
(Proposition III.4.2 c)), we conclude that φ(B) ⊂ C{t∗}. Hence we indeed have
a homomorphism of C-algebras φ : B → C{t∗}.

Finally, as φ(aa′) = ψ(b) 6= 0, φ(f mod p) = φ(a) 6= 0, and the homomor-
phism ϕ ∈ Φ(p) we sought is the composite of φ and the canonical homomorphism
C{x} → C{x}/p. This completes the proof. �

Remarks 2.2 The above version of Rückert’s Nullstellensatz contains three impor-
tant classical results which we state here in terms of the analytic functions associated
to convergent power series (Proposition and Definition I.2.3, Proposition I.2.8).

a) (Rückert’s Nullstellensatz for Set Germs) Let g1, . . . , gr ∈ C{x} generate the
ideal I and let f ∈ C{x} be such that for any x ∈ Cn close enough to the origin,
ag1(x) = · · · = agr(x) = 0 implies af(x) = 0. Then f ∈

√
I.

Indeed, suppose f /∈
√
I. Then, by Proposition 2.1, we find a tuple of power series

x(t) = (x1(t), . . . , xn(t)) ∈ Z(I) with f(x(t)) 6= 0. Consequently, for t ∈ C small
and 6= 0, the point x = ax(t) ∈ Cn is close to the origin and ag1(x) = · · · = agr(x) = 0,
but af(x) 6= 0. �

b) (Complex  Lojasiewicz’s Inequality) Let f, g ∈ C{x} be convergent power series
such that for x ∈ Cn close to the origin, ag(x) = 0 implies af(x) = 0. Then, there
are positive real numbers c, θ, θ < 1, such that for x ∈ Cn close to the origin,
|af(x)| ≤ c|ag(x)|θ.

For, by a), there is an integer p ≥ 1 and h ∈ C{x} with fp = hg. Hence, near the
origin we have |af(x)|p = |ah(x)||ag(x)|. Then we can take θ = 1/p and any bound c
of the continuous function |ah| in a compact neighborhood of the origin. �

c) (Complex Curve Selection Lemma) Let f, g1, . . . , gr ∈ C{x} and suppose
that there are points x ∈ Cn arbitrarily close to the origin such that ag1(x) =
· · · = agr(x) = 0 and af(x) 6= 0. Then, there is an analytic curve germ x(t) =
(x1(t), . . . , xn(t)) such that for small enough t ∈ C, t 6= 0, ag1(x(t)) = · · · =
agr(x(t)) = 0 and af(x(t)) 6= 0.

For otherwise, by Proposition 2.1, fp = h1g1 + · · ·+hrgr with p ≥ 1, h1, . . . , hr ∈
C{x}, which clearly would imply af(x) = 0 for every x ∈ Cn near enough to the
origin such that ag1(x) = · · · = agr(x) = 0. �

We now deduce several important corollaries from Rückert’s Nullstellensatz.

Corollary 2.3 Let x = (x1, . . . , xn), y = (y1, . . . , yp), I ⊂ C{x} be an ideal and
ϕ : C{y} → C{x}/I an analytic homomorphism. We choose series hi ∈ C{x} such
that ϕ(yi) = hi mod I, 1 ≤ i ≤ p. The following assertions are equivalent:

a) ϕ is finite.

b) Z ((h1, . . . , hp) + I) = {0}.
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Proof. Indeed, by Rückert’s Nullstellensatz, b) is equivalent to

mB =
√
ϕ(mA)B,

where A = C{y} and B = C{x}, and this is equivalent to a) by the finiteness
criterion of Proposition II.1.7. �

Remarks 2.4 a) Condition b) in Corollary 2.3 means that the mapping

Z (I)→ F p : x(t) 7→ (h1(x(t)), . . . , hp(x(t)))

has trivial fiber over 0 ∈ F p. This is a fundamental geometric characterization of
finite maps in complex local analytic geometry.

By Proposition 1.3 c) we can express condition b) as

Z (I) ∩ {x(t) ∈ F p |h1(x(t)) = · · · = hp(x(t)) = 0} = {0}.

�
b) Another consequence of Rückert’s Nullstellensatz is a characterization of the

dimension typical of the complex case. A hyperplane is the zero set H of an ideal
h ⊂ C{x} generated by homogeneous linear forms. The height d of such an ideal is
clearly the minimal number of independent linear forms among the generators, and
after a linear change h = (x1, . . . , xd); quite naturally, d is the codimension of H.
With this terminology, from Remark II.2.7 a) we immediately deduce:

The dimension of an analytic ring C{x}/I is the smallest codimension of a
hyperplane H such that H ∩ Z (I) = {0}.

Corollary 2.5 Set K = R or C. The regularity ideals of a power series f ∈
K{x1, . . . , xn} with f(0) = 0 are

R1(f) =

√(
∂f

∂x1
, . . . ,

∂f

∂xn

)
and Rs(f) =

√
(f) for s > 1.

Proof. It is clear from the definitions (II.4.1) that Rs(f) =
√

(f) for s > 1 and

R1(f) =
√

(f, ∂f/∂x1, . . . , ∂f/∂xn). Hence, it suffices to prove that

f ∈

√(
∂f

∂x1
, . . . ,

∂f

∂xn

)
.

Since the real case of this latter assertion follows from the complex one by complex-
ification (II.5), we can assume K = C. By Rückert’s Nullstellensatz, we must show
that f(x(t)) = 0 for any x(t) = (x1(t), . . . , xn(t)) such that x(0) = 0 and

∂f

∂x1
(x(t)) = 0, . . . ,

∂f

∂xn
(x(t)) = 0.
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These xi(t) need not have integral exponents, but after a substitution t = tp we
may assume that in fact xi(t) ∈ C{t}, and by the chain rule

∂

∂t
f(x(t)) =

n∑
i=1

∂f

∂xi
(xi(t))

∂xi
∂t

(t) = 0,

and consequently
f(x(t)) = f(x(0)) = f(0) = 0.

�

Remarks 2.6 Set K = R or C.
a) Following Remarks and Examples 1.7 c), a series f ∈ K{x}, with f(0) = 0,

has a singularity if the analytic ring K{x}/(f) is not regular; this singularity is called
a hypersurface singularity . By Proposition II.4.3 and Corollary 2.5 this happens if
and only if no partial derivative ∂f/∂x1, . . . , ∂f/∂xn is a unit, that is, if and only if

∂f

∂x1
(0) = · · · = ∂f

∂xn
(0) = 0.

b) A hypersurface singularity corresponding to a series f ∈ K{x} is called isolated
when R1(f) is the maximal ideal m of K{x}. By Proposition II.4.3, this means that
for any prime ideal p 6= m the local ring K{x}p/f is regular of dimension ht(p)− 1,
which agrees with our prior definition in Remarks and Examples 1.7 c). On the
other hand, by the last corollary,

m = R1(f) =

√(
∂f

∂x1
, . . . ,

∂f

∂xn

)
,

and so the homomorphism

K −→ K{x}

/(
∂f

∂x1
, . . . ,

∂f

∂xn

)
is finite (Corollary 2.3). This means exactly that

dimK

(
K{x}

/(
∂f

∂x1
, . . . ,

∂f

∂xn

))
< +∞.

This dimension is called the Milnor number of f .
In the complex case, by Rückert’s Nullstellensatz, a hypersurface singularity

corresponding to a series f ∈ C{x} is isolated if and only if

Z
(
∂f

∂x1
, . . . ,

∂f

∂xn

)
= {0}.
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c) An isolated hypersurface singularity is square free. The converse is true in
dimension 2.

Let f ∈ K{x} have a factorization f = gh2. Then h divides all the derivatives
∂f/∂xi and R1(f) ⊂

√
(h) $ m. Conversely, let f ∈ K{x1, x2} be square-free.

We have to see that R1(f) ⊃ m. Since in K{x1, x2} any prime ideal different from
m is principal and generated by an irreducible series, if it were R1(f) 6⊃ m, some
irreducible power series h ∈ K{x1, x2} would divide f and all its derivatives. Thus
f = gh, and h would divide every derivative

∂f

∂xi
= g

∂h

∂xi
+ h

∂g

∂xi
.

Now, f being square-free, h would not divide g and, consequently, h would divide
all its derivatives, which is impossible. �

d) An isolated hypersurface singularity corresponding to a series f ∈ K{x} is
called Morse when its Milnor number is 1, or in other words, when the partial
derivatives ∂f/∂x1, . . . , ∂f/∂xn generate the maximal ideal m of K{x}. By Corollary
II.4.5 this is equivalent to the more familiar condition that the Hessian matrix(

∂2f

∂xi∂xj
(0)

)
1≤i,j≤n

has the maximum possible rank n. �

3 The Homomorphism Theorem

The real Nullstellensatz is more difficult than the complex one. In this section we
will obtain the key result needed to deduce it. To that end we will use the theory
of formally real fields ([L XI]), which was already quoted in the proof of Newton-
Puiseux’s Theorem. We will use the following terminology:

Definition 3.1 Let B be an integral domain and L its quotient field.

a) An ordering of B is the restriction of an ordering of L.

b) We say that B is formally real if there exists some ordering of B.

Note that an ordering of L is completely determined by its restriction to B, and
that B is formally real if and only if L is formally real.

Examples 3.2 a) The ring R{t} is formally real. In fact, it can be given exactly
two different orderings, characterized by the sign of the indeterminate t.

In fact, any f ∈ R{t} can be written as f = utp, where u is a unit. By II.4.7 u
is either a square or the opposite of one: f = ±v2tp, and the sign of f is completely
determined by the sign of t. �
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Henceforth we will always suppose t > 0, and the ordering is explicitely described
as follows: f = atp + · · · , a 6= 0, is positive if and only if a > 0.

b) The ring R{t∗} of Puiseux series has a unique ordering in which a series
f = atm/p + · · · , a 6= 0, is positive if and only if a > 0.

Any Puiseux series can be written in the form f = ±(t
m
2p )2v2, which determines

completely its sign. �
Of course, we already knew this, since the field of Puiseux series with coefficients

over R is real closed (Newton-Puiseux’s Theorem). As a matter of fact, it is the
real closure of R({t}) with respect to the ordering t > 0 described in a), since it is
algebraic over R({t}) by Proposition III.4.2 d).

Example 3.2 a) is a particular case of the following:

Lemma 3.3 Let R be a local regular ring, m its maximal ideal, k = R/m its residue
field, and R → k : a 7→ a the canonical homomorphism. Let � be an ordering in k.
Then there are orderings > in R such that for any unit u ∈ R: u > 0 if and only if
u � 0.

Proof. By induction on the dimension d of R. Suppose first d = 1. Then there is an
element t that generates m, and any a ∈ R can be written in the form a = utp, where
u is a unit and p ≥ 0 is the largest integer with a ∈ mp. We then set a > 0 if and
only if u � 0, and this is a well defined ordering of R that verifies the requirements
of the statement.

The only property which is not immediate is that a > 0, b > 0 implies a+ b > 0.
To see it, write

a = utp, b = vtq, u, v /∈ m, u � 0, v � 0

with, say, p ≤ q. Then a+ b = wtp with w = u+ vtq−p, and w is a unit with w � 0:
if q > p, then w = u � 0; if q = p, then w = u+ v � 0, since u � 0, v � 0.

Now let d > 1, and pick d elements x1, . . . , xd which generate m. The ring
R′ = R/(x1) is then a regular local ring of dimension d− 1 with residue field again
k. By induction we have an ordering of R′ verifying the lemma. This ordering is the
restriction of an ordering >′ of the quotient field k1 of R′. But k1 is the residue field
of the localization R1 = R(x1), which is a local regular ring of dimension 1. We thus
know that there is some ordering > of R1 verifying the statement with >′ instead
of �. Finally, one easily checks that the restriction of > to R solves the problem.

�

After this preparation we can obtain:

Proposition 3.4 (Homomorphism Theorem) Let p be a prime ideal of R{x} of
height r ≥ 0, where x = (x1, . . . , xn), and let f1, . . . , fp ∈ R{x}. The following
assertions are equivalent:

a) The classes b1 = f1 mod p, . . . , bp = fp mod p are positive in some ordering
of the domain B = R{x}/p.
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b) There is a homomorphism of R-algebras φ : B → R{t∗} such that φ(b1) >
0, . . . , φ(bp) > 0 and φ(δ mod p) 6= 0 for some δ ∈ Rr(p).

c) There is x(t) ∈ Z (p) \ Z (Rr(p)) such that f1(x(t)) > 0, . . . , fp(x(t)) > 0.

(Here we set R0(0) = A.)

Proof. The equivalence between b) and c) follows from Proposition 1.6 b) and
c), since the homomorphisms of R-algebras B → R{t∗} can be identified with the
homomorphisms of Φ(p).

b)⇒ a) Suppose we are given φ : B → R{t∗} as stated in b). We denote by ϕ
the corresponding homomorphism R{x} → B → R{t∗}, and by q ⊃ p the kernel of
ϕ. Then ϕ(δ) 6= 0 and as δ ∈ Rr(p), we have q 6⊃ Jr(p). By the Regularity Jacobian
Criterion (Proposition II.4.3) the local ring R = R{x}q/pR{x}q is regular. Clearly
R = Bker(φ) ⊃ B, and, since φ(bi) 6= 0, the element bi = fi mod p is a unit of R.

On the other hand, the residue field k of R is the quotient field of B/ ker(φ),
which embeds into R({t∗}) via φ. The unique ordering of R({t∗}) restricts, thus, to
an ordering � of k, in which the classes bi mod ker(φ) are positive, since φ(bi) > 0.
Consequently, by Lemma 3.3, there is an ordering > in R in which the elements bi
are positive. The restriction of > to B is an ordering of B in which the bi’s are
positive, and a) is proved.

a)⇒ b) We first note that Rr(p) 6⊂ p: this is trivial for r = 0 and it follows
from Lemma II.4.2 for r > 0. Hence, we can choose δ ∈ Rr(p) \ p, so that the
element b = δ2 mod p ∈ B is positive in any ordering of B, and adding it to the
bi’s, any homomorphism φ : B → R{t∗} such that φ(b) > 0 has the property that
φ(δ mod p) 6= 0. This means that for the proof of this implication we need not care
about δ.

We will now argue by induction on the dimension d = n− r of B. If d = 0, then
B = R and the assertion is trivial. We next assume d > 0 and the result proved for
dimensions < d. Let L be the quotient field of B, > an ordering in which the bi’s
are positive and R the real closure of L with respect to >. We distinguish two cases:
Case 1: B is regular. If so, we may suppose B = R{x} with x = (x1, . . . , xd) (Lemma
II.1.9). After a linear change of coordinates and by Weierstrass’s Preparation The-
orem (Proposition I.3.3) we have

bi = uiPi, ui(0) 6= 0,

and Pi ∈ R{x1, . . . , xd−1}[xd] is a distinguished polynomial. We remark:

If u ∈ B is a unit and u(0) > 0 (resp. < 0) then u is positive (resp. negative)
in any ordering of B and φ(u) > 0 (resp. < 0) for any homomorphism φ :
B → R{t∗}.

If u(0) > 0 then u = v2 for some v ∈ B (II.4.7), and consequently u is positive in
any ordering; also, φ(u) = φ(v)2 is positive for any φ. If u(0) < 0 then u = −v2 and
the conclusion is similar.
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We thus have to find φ such that φ(Pi) has the same sign that Pi for all i.
We will use the following notations: x′ = (x1, . . . , xd−1), A = R{x′} and K for the

quotient field of A. Note that A ⊂ K ⊂ L ⊂ R. Now let z be a new indeterminate,
and consider Pi(x

′, z) ∈ A[z] ⊂ R[z]. As R is real closed we have a factorization of
the form

Pi(x
′, z) =

s(i)∏
j=1

(z− ξij)
r(i)∏
j=1

(
(z− αij)2 + β2

ij

)
, βij 6= 0, ξij , αij , βij ∈ R,

and the roots of Pi(x
′, z) are

ξij ∈ R, αij ±
√
−1βij ∈ R[

√
−1].

Since Pi(x
′, z) ∈ A[z] is monic, all these roots are integral over A, and it follows that

also αij , βij ∈ R are integral over A. We consider the domain

B′ = A[ξij , αij , βij ] ⊂ R.

By the preceding remarks, B′ is a finite module over A and
√
−1 /∈ B′. From Lemma

III.1.1 we deduce that B′ is an analytic domain over R. Moreover, since the ξij ’s
are roots of the distinguished polynomials Pi ∈ A[xd], they belong to the maximal
ideal of B′ (see the beginning of the proof of Lemma III.1.1).

We now consider the elements ξij , xd ∈ R and choose an element ζ ∈ B′ such
that

ζ − ξij > 0 if and only if xd − ξij > 0.

More precisely, we take

ζ = min
ij
{ξij} − x2

1, or
1

2
(ξij + ξi′j′), or max

ij
{ξij}+ x2

1,

according to whether xd is smaller than all the ξij ’s, or xd is in between ξij and ξi′j′ ,
or xd is larger than all the ξij ’s. This way ζ belongs to the maximal ideal of B′, and
by Lemma II.3.1, its irreducible polynomial over K is a distinguished polynomial

P (x′, z) ∈ A[z].

Consider the analytic ring over R, B∗ = R{x′, z}/P . By Rückert’s Division The-
orem (Proposition I.3.2), and since P is a distinguished polynomial, the canonical
homomorphism A[z]/P → B∗ is an isomorphism. In particular, the embedding

A→ A[z]/P ≡ B∗

is finite, and dim(B∗) = d− 1. We furthermore have

B = R{x′, xd} → B∗ = R{x′, z}/P ≡ A[z]/P ⊂ K[z]/P ≡ K[ζ] ⊂ R,
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where
xd 7→ z mod P 7→ ζ.

Consequently

Pi(x
′, xd) 7→ P ∗i = Pi(x

′, z) mod P 7→

7→ Pi(x
′, ζ) =

s(i)∏
j=1

(ζ − ξij)
r(i)∏
j=1

(
(ζ − αij)2 + β2

ij

)
∈ R

and by the choice of ζ, Pi(x
′, ζ) has the same sign as Pi. In other words, the ordering

of R restricts to an ordering of B∗ in which P ∗i has the same sign as Pi. Applying
now the induction hypothesis, we find φ∗ : B∗ → R{t∗} such that the sign of
φ∗(P ∗i ) is the same as the sign of P ∗i . The composite of this φ∗ with B → B∗ is the
homomorphism φ : B → R{t∗} we sought.

Finally, we note that in the argument above we tacitly assumed that some Pi
had at least one real root (s(i) > 0). But if this were not the case, the proof would
be even simpler, because then any ζ in the maximal ideal of B′ would lead to the
conclusion.
Case 2: B arbitrary. Consider the ring

B′ = B[
√
b1, . . . ,

√
bp ] ⊂ R.

By Lemma III.1.1, B′ is an analytic ring over R, and it is enough to find φ′ : B′ →
R{t∗} such that φ(b) 6= 0 for b = b1 · · · bp. For, if φ is the restriction of φ′ to B we
get

φ(bi) = φ′(
√
bi )2 ≥ 0 and φ(bi) 6= 0.

As dim(B′) = dim(B) we are reduced to the same question as in the complex case
(see the proof of Proposition 2.1), namely, whether

for every b ∈ B, b 6= 0, there is a homomorphism of R-algebras φ : B → R{t∗}
such that φ(b) 6= 0.

Furthermore the argument given there can be repeated here, with the following
modification. After a linear change the canonical homomorphism A = R{x′} → B,
x′ = (x1, . . . , xd), is finite, and we have the irreducible polynomial of xd+1 mod p,
P = x

p
d+1 +a1x

p−1
d+1 + · · ·+ap ∈ A[xd+1], its discriminant δ ∈ A and another element

b ∈ A. The key point is then to find a homomorphism φ : A → R{t∗} such that
φ(δb) 6= 0 and the polynomial

Pφ = x
p
d+1 + φ(a1)xp−1

d+1 + · · ·+ φ(ap) ∈ C{t∗}[xd+1]

has some root xd+1(t) ∈ R({t∗}). This was immediate in the complex case, because
the field C({t∗}) is algebraically closed, while R({t∗}) is not. To solve this additional
difficulty we use Sturm’s Theorem ([L XI.2]):
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Let Σ = {P0, . . . , Ps} be the standard Sturm sequence of P , that is:
P0 = P, P1 = ∂P/∂xd+1,

P`−2 = Q`−1P`−1 − P`, P` 6= 0, deg(P`) < deg(P`−1), 1 < ` < s,

Ps−1 = QsPs,

where all the polynomials are in L[xd+1]. Let

M = 1 + p+ a2
1 + · · ·+ a2

p ∈ A.

Then, since δ 6= 0, P has no multiple roots, and the number of them in the
real closed field R equals the difference of the sing changes of the two following
sequences of elements of R:

{P0(−M), . . . , Ps(−M)} and {P0(M), . . . , Ps(M)}.

We now write the non-zero coefficients of the polynomials P`, Q` ∈ L[xd+1] in the
form ci/di with ci, di ∈ A. After this preparation we apply Case 1 to find a homo-
morphism of R-algebras φ : A→ R{t∗} such that the signs in > of the elements

δ, a, ci, di, P`(−M), P`(M)

coincide respectively with the signs of the elements

φ(δ), φ(a), φ(ci), φ(di), φ(P`(−M)), φ(P`(M)).

We have:

a) Σφ = {Pφ0 , . . . , Pφs } is the standard Sturm sequence of Pφ.

The equations that define the standard Sturm sequence are still valid after applying
φ, because φ is a homomorphism that does not map to zero any denominator di.
Moreover, the conditions on the degrees are also preserved, since φ does not map to
zero any numerator ci, including those corresponding to the terms of higher degree
of the P`’s. We similarly see that

b) The discriminant of Pφ is φ(δ) 6= 0.

c) φ(M) = 1 + p+ φ(a1)2 + · · ·+ φ(ap)
2.

d) The sign changes in the sequences

{P0(−M), . . . , Ps(−M)} and {Pφ0 (−φ(M)), . . . , Pφs (−φ(M))}

(resp. {P0(M), . . . , Ps(M)} and {Pφ0 (φ(M)), . . . , Pφs (φ(M))})

coincide.
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After these remarks we apply Sturm’s Theorem to the polynomial Pφ and deduce
that the number of roots of Pφ in the real closed field R({t∗}) equals the number
of real roots of P in R. But P has at least the root xd+1 mod p ∈ B ⊂ R, and
consequently Pφ has at least one root xd+1(t) ∈ R({t∗}) as wanted.

As was explained before, once this xd+1 is available, the proof follows to the end
as in the complex case. �

Example 3.5 The regularity ideal is essential for the equivalence in the preceding
result. For instance, let p ⊂ R{x, y, z} be the ideal generated by x2 − zy2 and
consider the series f = −z. Then b = f mod p = −x2 mod p/y2 mod p is negative
in all orderings, but for x(t) = (0, 0,−t) ∈ Z (p) we have f(x(t)) = t > 0. Of
course the reason is that R1(p) = (x, y), and so x(t) ∈ Z (R1(p)). This example is
the famous Whitney’s Umbrella.

4 Risler’s Real Nullstellensatz

The real counterpart of Proposition 2.1 is:

Proposition 4.1 (Risler’s Nullstellensatz) Let I be an ideal of R{x}, where as usual
x = (x1, . . . , xn). The following assertions are equivalent:

a) f ∈ J (Z (I)).

b) There are an integer p ≥ 1 and power series g1, . . . , gs ∈ R{x} such that

f2p + g2
1 + · · ·+ g2

s ∈ I

.

Once we have obtained the Homomorphism Theorem (Proposition 3.4) the only
missing ingredient for the proof of the real Nullstellensatz is a notion that substitutes
the radical of an ideal and formalizes condition b) in the above statement.

Proposition y Definition 4.2 Let A be a commutative ring with unit, and I ⊂ A
an ideal. The set of all elements f ∈ A such that f2p + g2

1 + · · · + g2
s ∈ I for some

p ≥ 1 and some g1, . . . , gs ∈ A is an ideal of A, called the real radical of I and
denoted by r

√
I.

Proof. The tricky part is that if f, g ∈ r
√
I, then f + g ∈ r

√
I. To see this, write

f2p + a ∈ I, g2q + b ∈ I,

where a, b are sums of squares of A. Now, if p ≥ q, we have:(
(f + g)2 + (f − g)2

)2p
=
(
2f2 + 2g2

)2p
= αf2p + βg2q,
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and (
(f + g)2 + (f − g)2

)2p
= (f + g)4p + γ,

where α, β, γ are also sums of squares of A. It follows

(f + g)4p + γ + αa+ βb = α(f2p + a) + β(f2q + b) ∈ I,

and so f + g ∈ r
√
I. �

We finally come to the

Proof of Proposition 4.1: According to the definition of the real radical, the state-
ment can be equivalently formulated as

J (Z (I)) =
r
√
I.

To start with, we note that

J (Z (I)) = J
(
Z
(
r
√
I
))

.

Indeed, if f ∈ r
√
I we have an expression f2p+g2

1 +· · ·+g2
s ∈ I. Then, if x(t) ∈ Z (I),

we get
f(x(t))2p + g1(x(t))2 + · · ·+ gs(x(t))2 = 0.

This is a sum of squares of elements of R({t∗}), which is a formally real field, and
consequently, all the summands must be zero, so that f(x(t)) = 0. This means that

Z (I) ⊂ Z
(
r
√
I
)

, and consequently

J (Z (I)) ⊃ J
(
Z
(
r
√
I
))

.

The other inclusion follows from the general properties of Z and J , since I ⊂ r
√
I.

Now the ideal r
√
I is clearly radical and has a decomposition

r
√
I = p1 ∩ · · · ∩ pr

into prime ideals. Then

J (Z (I)) = J (Z (p1)) ∩ · · · ∩ J (Z (pr)) ,

and we have to see that J (Z (pi)) = pi for all i.
Fix i = 1, . . . , r and put B = R{x}/pi. We claim that B is a formally real

domain. We recall Artin-Schreier’s Criterion ([L XI.2]):

B is formally real if and only if any equation z2
1 + · · ·+ z2

s = 0 has only trivial
solutions in B.
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To check this criterion in our case, let h1, . . . , hs ∈ R{x} be such that

h2
1 + · · ·+ h2

s = 0 mod pi.

We choose an element h ∈
⋂
j 6=i pj \ pi and obtain

(hh1)2 + · · ·+ (hhs)
2 ∈

⋂
j 6=i

pj ∩ pi =
r
√
I.

Hence from the very definition we get

hh1, . . . , hhs ∈
r
√
I ⊂ pi,

and since h /∈ pi, we conclude h1, . . . , hs ∈ pi. In other words

h1 = · · · = hs = 0 mod pi,

as required.
We finally show that J (Z (pi)) ⊂ pi (the other inclusion is obvious). Fix an

ordering > in B and let f /∈ pi. Then f2 mod pi is positive in >, and by the
Homomorphism Theorem there is x(t) ∈ Z (pi) such that f(x(t))2 > 0. Then
f(x(t)) 6= 0 and f /∈ J (Z (pi)). �

Remarks 4.3 As in the complex case (Remarks 2.2), Proposition 4.1 implies the
usual version of the Nullstellensatz, as well as two other important results.

a) (Risler’s Nullstellensatz for Set Germs) Let g1, . . . , gr ∈ R{x} generate the
ideal I and let f ∈ R{x} be such that for any x ∈ Rn close enough to the origin,
ag1(x) = · · · = agr(x) = 0 implies af(x) = 0. Then f ∈ r

√
I.

Same proof as Remarks 2.2 a). �
b) (Real  Lojasiewicz’s Inequality) Let f, g ∈ R{x} be convergent power series

such that for x ∈ Rn close to the origin, ag(x) = 0 implies af(x) = 0. Then, there
are positive real numbers c, θ, θ < 1, such that for x ∈ Rn close to the origin,
|af(x)| ≤ c|ag(x)|θ.

Same proof as Remarks 2.2 b), using the real radical instead of the radical, and
the obvious inequality |af(x)|2p ≤ af(x)2p + ah1(x)2 + · · ·+ ahs(x)2, for x ∈ Rn near
the origin, and p ≥ 1, h1, . . . , hs ∈ R{x} �

c) (Real Curve Selection Lemma) Let f1, . . . , fs,g1, . . . , gr ∈ R{x} and suppose
that there are points x ∈ Rn arbitrarily close to the origin such that ag1(x) = · · · =
agr(x) = 0 and af1(x) > 0, . . . , afs(x) > 0. Then, there is an analytic curve germ
x(t) = (x1(t), . . . , xn(t)) such that for t ∈ R small enough and 6= 0, ag1(x(t)) =
· · · = agr(x(t)) = 0 and af1(x(t)) > 0, . . . , afs(x(t)) > 0.

Consider new indeterminates y = (y1, . . . , ys), the series gr+i = y2
i − fi(x) ∈

R{x, y}, 1 ≤ i ≤ s and the ideal I generated by g1, . . . , gr+s. By hypothesis, there
are points (x, y) ∈ Rn+s very close to the origin, with g1(x) = · · · = gr(x) =
gr+1(x, y) = · · · = gr+s(x, y) = 0 and y1 · · · ys 6= 0. Hence, y1 · · · ys /∈ r

√
I, and, by
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Proposition 4.1, there is (x(t), y(t)) ∈ Z(I) such that y1(t) · · · ys(t) 6= 0. Whence,
for small enough t ∈ R, t 6= 0, ag1(x(t)) = · · · = agr(x(t)) = 0 and af1(x(t)) =
ay1(t)2 > 0, . . . , afs(x(t)) = ays(t)

2 > 0. �
We can see Proposition 4.1 as a characterization of the zero ideals. In particular,

for prime ideals we obtain:

Corollary 4.4 Let p be a prime ideal of height r > 0 of R{x}, x = (x1, . . . , xn).
Then the following assertions are equivalent:

a) J (Z (p)) = p.

b) The domain B = R{x}/p is formally real.

c) There is a homomorphism of R-algebras φ : B → R{t∗} such that φ(δ mod p)
6= 0 for some δ ∈ Rr(p).

d) Z (p) \ Z (Rr(p)) 6= ∅.

Proof. By Risler’s Nullstellensatz (Proposition 4.1) a) is equivalent to the following:

If f2p + g2
1 + · · ·+ g2

s ∈ p then f ∈ p.

This, in turn, can be reformulated as:

If f2p + g2
1 + · · ·+ g2

s = 0 mod p, then f ∈ p.

But p is prime, and so f ∈ p if and only if fp ∈ p. Hence the last condition is exactly
Artin-Schreier’s Criterion. Consequently, a) is equivalent to b).

On the other hand, conditions b), c) and d) are equivalent by the homomorphism
theorem (Proposition 3.2) for fi = 1. �

Note that a) is always true in the complex case, while in the real one we have the
algebraic conditions b) and c). Condition b) is a strengthening of the notion of a 2-
real domain which was introduced in connection with complexifications (Proposition
and Definition II.5.6). In general it is strictly stronger: R{x, y, z}/(x2 + y2 + z2) is
a 2-real domain, but it is not formally real. However in dimension 1 we have:

Proposition 4.5 (Risler) Let B be an analytic ring over R, which is a domain of
dimension 1. Then B is 2-real if and only if it is formally real.

Proof. The “if” part is always true, so suppose that B is 2-real. Then its normal-
ization is isomorphic to K{t} (Proposition III.3.2) with K = R or C. But since B
is 2-real,

√
−1 /∈ K{t}, and so K = R. Thus, the quotient field of B is isomorphic

to that of R{t}, and as the latter ring is a formally real domain, we are done.
�
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5 Hilbert’s 17th Problem

Let W = R{t∗} be the ring of convergent Puiseux series, F = R({t∗}) its quotient
field and U = m∗ its maximal ideal. Fix n ≥ 1 and consider the set D = U×· · ·×U ⊂
Fn (1.1)

Definition 5.1 Let Y be a subset of D. A power series f ∈ R{x}, x = (x1, . . . , xn),
is called positive semidefinite on Y if f(x(t)) ≥ 0 for every x(t) ∈ Y .

Now Hilbert’s 17th Problem makes sense for power series with real coefficients, and
its solution is, as expected, that a positive semidefinite power series is always a sum
of squares. But this has to be formulated in a suitable way.

Proposition 5.2 Let I be an ideal of R{x}, x = (x1, . . . , xn), and f ∈ R{x}. Then
the following assertions are equivalent:

a) f is positive semidefinite on Z (I).

b) There are p ≥ 1 and h1, . . . , hr, g1, . . . , gs ∈ R{x} such that

f
(
f2p + h2

1 + · · ·+ h2
r

)
= g2

1 + · · ·+ g2
s mod I.

c) There are h, g1, . . . , gs ∈ R{x} such that

fh2 = g2
1 + · · ·+ g2

s mod I

and Z (h) ⊂ Z (f).

Proof. a)⇒ b) If f(0) 6= 0, then a) implies f(0) > 0, and f is a square in R{x}.
Thus we can assume f(0) = 0. Consider a new indeterminate z and the canonical
inclusion R{x} ⊂ R{x, z}. Let f1, . . . , fm ∈ R{x} be generators of I. We claim that

z ∈ J
(
Z
(
f + z2, f1, . . . , fm

))
.

Indeed, if (x(t), z(t)) ∈ Z
(
z2 + f, f1, . . . , fm

)
, then fi(x(t)) = 0 for all i, so that

x(t) ∈ Z (I) and by a) f(x(t)) ≥ 0. Moreover z(t)2 +f(x(t)) = 0 and consequently
z(t) = 0. Thus our claim is proved. Now, by Risler’s Nullstellensatz (Proposition
4.1), there are q ≥ 1 and α, βj , Fi ∈ R{x, z} such that

z2q +
∑
i

Fi(x, z)2 = α(x, z)(z2 + f(x)) +
∑
j

βj(x, z)fj(x).

Furthermore, multiplying by z2 if necessary, we may assume that q is odd: q = 2p+1
with p ≥ 1.

We next note that every series F ∈ R{x, z} can be uniquely written in the form

F (x, z) = G(x, z2) + zH(x, z2);



5. Hilbert’s 17th Problem 87

we call G the 0-component of F and H the 1-component. In our case we get

z2q +
∑
i

(
Gi(x, z

2) + zHi(x, z
2)
)2

=

(
α0(x, z2) + zα1(x, z2)

) (
z2 + f(x)

)
+
∑
j

(
βj0(x, z2) + zβj1(x, z2)

)
fj(x)

and comparing the 0-components of both sides of this equality it follows

z2q +
∑
i

(
Gi(x, z

2)2 + z2Hi(x, z
2)2
)

= α0(x, z2)(z2 + f(x)) +
∑
j

βj0(x, z2)fj(x).

Recalling that q = 2p+ 1, we rewrite this equation in the form:

z2

(
z4p +

∑
i

Hi(x, z
2)2

)
+
∑
i

Gi(x, z
2)2 =

α0(x, z2)(z2 + f(x)) +
∑
j

βj0(x, z2)fj(x).

On the other hand the homomorphism

R{x, z} → R{x, z} : T (x, z) 7→ T (x, z2)

is injective. For, it is finite (1 and z generate the second ring as a module over the
first), and, since both rings are domains of the same dimension, its kernel must be
zero. Hence, from the last equation we deduce

z

(
z2p +

∑
i

Hi(x, z)2

)
+
∑
i

Gi(x, z)2 = α0(x, z) (z + f(x)) +
∑
j

βj0(x, z)fj(x).

Finally, since f(0) = 0, we can substitute z = −f(x) to obtain the equation of the
statement.

b)⇒ c) It is enough to take h = f2p + h2
1 + · · ·+ hr, which obviously verifies the

condition required:

fh2 = (f2p + h2
1 + · · ·+ hr)(g

2
1 + · · ·+ g2

s) mod I,

where the right hand side is again a sum of squares.
c)⇒ a) Suppose fh2 = g2

1 + · · ·+ g2
s mod I with Z (h) ⊂ Z (f), and let x(t) ∈

Z (I). If f(x(t)) = 0 there is nothing to prove. If f(x(t)) 6= 0, we also have, by the
condition on h, h(x(t)) 6= 0, and since

f(x(t))h(x(t))2 = g1(x(t))2 + · · ·+ gs(x(t))2 ≥ 0,

we conclude f(x(t)) ≥ 0. �
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Remarks and Examples 5.3 a) The preceding result shows that positive semidef-
inite functions are sums of squares, allowing denominators of course. Nevertheless,
these denominators are not arbitrary.

b) Conversely a sum of squares with arbitrary denominator need not be positive
semidefinite. For instance, let I = p ⊂ R{x, y, z} be the ideal generated by x2 − zy2

and consider the series f = z. Then fy2 = x2 mod p, but for x(t) = (0, 0,−t) ∈
Z (p) we have f(x(t)) = −t < 0. We are to see that this fact is true in general, and
the obstruction to positiveness lies in the regularity ideals.

After the preceding remarks we will characterize the sum of squares with arbi-
trary denominators. For the sake of simplicity we restrict ourselves to the case of
prime ideals, and leave to the reader the exercise of formulating the corresponding
result for arbitrary ideals.

Proposition 5.4 Let p be a prime ideal of height r ≥ 0 of R{x}, x = (x1, . . . , xn).
The following assertions are equivalent:

a) f is positive semidefinite on Z (p) \ Z (Rr(p)).

b) There are h, g1, . . . , gs ∈ R{x}, h /∈ p, such that

fh2 = g2
1 + · · ·+ g2

s mod p

Proof. Set B = R{x}/p and let L be the quotient field of B.
Suppose first Z (p) \ Z (Rr(p)) = ∅. Then B is not formally real (Corollary 4.3)

and −1 is a sum of squares in L. On the other hand, b = f mod p ∈ B can be
written in the form

b =
1

4

(
(b+ 1)2 − (b− 1)2

)
,

and, −1 being a sum of squares in L, b is a sum of squares, too. This shows that
under our initial assumption both conditions a) and b) hold, and we are done.

Let now Z (p) \ Z (Rr(p)) 6= ∅. Then B is formally real (Corollary 4.3) and the
element b = f mod p ∈ B is a sum of squares in L if and only if b is positive in
all orderings of B ([L XI.2]). By the Homomorphism Theorem (Proposition 3.4) the
latter assertion is equivalent to a). �

Of course all these differences disappear in the regular case:

Corollary 5.5 (Risler) Let f ∈ R{x}, x = (x1, . . . , xn). The following assertions
are equivalent:

a) f is positive semidefinite on D.

b) There are h, g1, . . . , gs ∈ R{x}, h 6= 0, such that

fh2 = g2
1 + · · ·+ g2

s .
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c) There are h, g1, · · · , gs ∈ R{x} such that

fh2 = g2
1 + · · ·+ g2

s

and Z (h) ⊂ Z (f).

Remarks and Examples 5.6 a) In general, denominators cannot be avoided.
Indeed, Motzkin found the following example. Consider the Arithmetic-Geometric
Identity

(a+ b+ c)3 − 27abc =
27

4
c(a− b)2 +

1

4
(4a+ 4b+ c)(a+ b− 2c)2.

After the substitution a = x4y2, b = y4z2, c = z4x2 we get a series h ∈ R{x, y, z}
which factorizes into h = fg with

f(x, y, z) = α− 3β, g(x, y, z) = α2 + αβ + β2,

α = x4y2 + y4z2 + z4x2, β = x2y2z2.

Clearly f, g, h are sums of squares, and we claim that to express f as a sum of
squares the denominators are essential.

Let f =
∑
i f

2
i for some fi ∈ R{x, y, z}. Since f is an homogeneous polynomial of

degree 6, looking at the expansions of the fi’s we can suppose they are homogeneous
polynomials of degree 3. Then

• For y = z = 0 we get 0 =
∑
i(aix

3)2, and so ai = 0 and x3 does not appear in
any fi. Similarly, y3, z3 do not appear either.

• For z = 0 we get x4y2 =
∑
i(aix

2y + bixy
2)2. Hence bi = 0 and xy2 does not

appear in any fi. Analogously, neither x2z nor yz2 appear in any fi.

Summarizing,
fi = aix

2y + biy
2z + ciz

2x + dixyz,

and consequently,
∑
i d

2
i = −3, which is impossible. �

b) Denominators are not necessary in dimension ≤ 2. For dimension 1 the proof
is easy: any f ∈ R{t} can be written as f = εu2tq with ε = ±1 and u(0) 6= 0. If f
is positive semidefinite, we have

• 0 ≤ f(+t) = εu2tq, and so ε = +1.

• 0 ≤ f(−t) = u(−t)2(−t)q, and so q is even, say q = 2p.

Hence f = (utp)2 is a square without any denominator. �
We end this section with the proof of the fact stated above that denominators

are not needed in dimension 2.

Proposition 5.7 (Bochnak-Risler) Every power series f ∈ R{x1, x2} which is pos-
itive semidefinite is a sum of two squares in R{x1, x2}.
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Proof. We first write f = x
p
1g with g(0, x2) 6= 0. Then g is regular of some order

with respect to x2 and by Weierstrass Preparation Theorem there is a distinguished
polynomial P ∈ R{x1}[x2] and a unit u ∈ R{x1, x2} such that f = uxp1P .

We now factorize P into irreducible components according to Remark II.2.2, and,
after associating factors of even multiplicity, we can write P = P1P2, where P1 is a
square in R{x1, x2} and P2 has not multiple factors. We claim that P2 has no root
in the field of Puiseux series F = R({t∗}).

Suppose otherwise, and let ξ the biggest of such roots. Since P2 is a distinguished
polynomial, ξ ∈ R{t∗}, and furthermore ξ belongs to the maximal ideal U = m∗ of
R{t∗}. By the choice of ξ there are elements ζ and ζ ′ in U such that:

a) ζ ′ < ξ < ζ,

b) ζ and ζ ′ are bigger than all the other roots of P2, and

c) ζ and ζ ′ are different from all the roots of P .

We can now factorize P2 in F [x2] as:

P2 = (x2 − ξ)
∏
i

(x2 − ξi)
∏
j

(
(x2 − αj)2 + β2

j

)
, βj 6= 0,

and it follows easily that
f(t, ζ)f(t, ζ ′) < 0,

which is impossible because f is positive semidefinite. Thus the claim is proved.
From the claim we deduce that P2 is positive semidefinite, and since P1 is a

square, P is positive semidefinite, too. Then for any x(t) = (±t, θ), θ ∈ U , with
P (x(t)) 6= 0 we get

f(x(t)) = (±t)pu(x(t))P (x(t)) > 0,

which implies (±1)pu(0, 0) > 0 and consequently u(0, 0) > 0 and p is even. In other
words, we have

f = g2Q1 · · ·Qs,

where g ∈ R{x1, x2} and every Qi ∈ R{x1}[x2] is an irreducible distinguished poly-
nomial without roots in F .

Next, the identity

(a2 + b2)(c2 + d2) = (ac− bd)2 + (ad+ bc)2

shows that it is enough to prove that every Q = Qi is a sum of 2 squares in R{x1, x2}.
To see this, consider the analytic ring A = R{x1, x2}/Q. If this ring where 2-real,
its normalization would be isomorphic to R{t}, and we would get a homomorphism
R{x1, x2} → R{t} such that x1 7→ tq, x2 7→ x2(t) and Q(tq, x2(t)) = 0. Then
ξ = x2(t1/q) would be a root of Q, which has none. Hence, A is not 2-real, and so
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its complexification is not a domain. In other words, Q is reducible in C{x1, x2}.
We can thus factorize Q in C{x1, x2}, and by the properties of conjugation (II.5.2),
one immediately gets:

Q = HH, H = h1 +
√
−1h2, h1, h2 ∈ R{x1, x2}.

Consequently
Q = h2

1 + h2
2,

which ends the proof. �

We leave the reader the exercise of translating into more classical statements the
results of this section, along the lines given in Remarks 2.2 and 4.3.
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V Approximation Theory

Summary. The central result of this chapter is M. Artin’s Approximation Theorem
of formal solutions of analytic systems, which we obtain in Section 3. To prove it we
need a generalization of the classical Implicit Functions Theorem due to Tougeron
(Section 1). This generalization has its own independent interest, which we illustrate
in Section 2 with several consequences concerning the equivalence of power series
and polynomials. Next we deduce (Section 4) the excellent behaviour of analytic
rings under completion. Finally, we introduce in Section 5 the Nash rings, which are
the smallest subrings of analytic rings that share with them all the nice properties
proved so far.

1 Tougeron’s Implicit Functions Theorem

Set x = (x1, . . . , xn), y = (y1, . . . , yp), and

A = K{x} (resp. K[[x]]), B = K{x, y} (resp. K[[x, y]]).

We fix an element F = (F1, . . . , Fq) ∈ Bq with F (0, 0) = 0, and look for a solution
y1 = y1(x), . . . , yp = yp(x) of the system

F (x, y1, . . . , yp) = 0,

under assumptions milder than the ones of the classical Implicit Functions Theorem.
Of course those conditions will involve the Jacobian matrix

λ =

(
∂Fi
∂yj

(x, 0)

)
.

(1.1) The matrix λ defines a homomorphism of A-modules λ : Ap → Aq. Namely,
let {ε1, . . . , εp} and {e1, . . . , eq} be the canonical bases of Ap and Aq. Then,

λ(εj) =

q∑
i=1

∂Fi
∂yj

(x, 0)ei =

(
∂F1

∂yj
(x, 0), . . . ,

∂Fq
∂yj

(x, 0)

)
.

Furthermore, we consider the A-module

M = Aq/Im(λ).

With these notations, an element δ ∈ A belongs to the annihilator Ann(M) of M if
and only if there are power series αij ∈ A such that

δei = λ

 p∑
j=1

αijεj

 = λ(αi1, . . . , αip);
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then, if µ : Aq → Ap is the homomorphism defined by the matrix (αij), we can
rewrite the latter condition in the form

λ ◦ µ = δ · IdAq .

We now introduce new indeterminates

y(i) = (y
(i)
1 , . . . , y(i)

p ), 1 ≤ i ≤ r,

where r is any fixed positive integer. In this situation

Lemma 1.2 Let δ1, . . . , δr ∈ Ann(M). Then, there are convergent power series
Y (i) = Y (i)(x, y(1), . . . , y(r)), 1 ≤ i ≤ r, such that

F

(
x,

r∑
i=1

δiY
(i)

)
= F (x, 0) + λ

(
r∑
i=1

δiy
(i)

)
,

Y (1)(x, 0, . . . , 0) = · · · = Y (r)(x, 0, . . . , 0) = 0.

Proof. Consider further indeterminates

z = (z1, . . . , zp); z(i) = (z
(i)
1 , . . . , z(i)

p ), 1 ≤ i ≤ r.

Using the Taylor expansion with respect to z we obtain

F (x, z) = F (x, 0) + λ(z) +
∑
`,m

G`,mz`zm,

with G`,m ∈ Bq. By means of the substitution z =
∑r
i=1 δiz

(i) we then get

F

(
x,

r∑
i=1

δiz
(i)

)
= F (x, 0) + λ

(
r∑
i=1

δiz
(i)

)
+
∑
ij

Yij(x, z
(1), . . . , z(r))δiδj ,

Yij(x, 0, . . . , 0) =
∂Yij

∂z
(`)
m

(x, 0, . . . , 0) = 0,

with Yij ∈ Eq and E = K{x, z(1), . . . , z(r)}.
Now, by the remark preceding the statement, there are homomorphisms of A-

modules µ1, . . . , µr : Aq → Ap such that

λ ◦ µj = δj · IdAq , 1 ≤ j ≤ r.

These µj extend naturally to homomorphisms Eq → Ep, and λ to a homomorphism
Ep → Eq; these extensions are denoted by the same letters. We then put

ai = z(i) +

r∑
j=1

µj(Yij), 1 ≤ i ≤ r,
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and get

λ(ai) = λ(z(i)) +

r∑
j=1

λ ◦ µj(Yij) = λ(z(i)) +

r∑
j=1

Yijδj .

Hence

F

(
x,

r∑
i=1

δiz
i

)
= F (x, 0) + λ

(
r∑
i=1

δia
i

)
. (1)

On the other hand, the system

ai(x, z
(1), . . . , z(r)) = y(i), 1 ≤ i ≤ r,

can be solved by means of the classical Implicit Function Theorem (Proposition
II.4.6 b)). In fact, since Yij(x, 0, . . . , 0) = 0 it follows that

ai(x, 0, . . . , 0) = 0,

and, since
∂Yij

∂z
(`)
m

(x, 0, . . . , 0) = 0, that

∂ai

∂z
(`)
m

(x, 0, . . . , 0) = 1.

Hence, there are convergent series Y (i) = z(i)(x, y(1), . . . , y(r)) such that

ai(x, Y
(1), . . . , Y (r)) = y(i), 1 ≤ i ≤ r.

Moreover, the Y (i)(x, 0, . . . , 0)’s are a solution of

ai(x, 0, . . . , 0) = 0, 1 ≤ i ≤ r,

and this system has only the trivial solution (again by the classical Implicit Functions
Theorem). We conclude

Y (i)(x, 0, . . . , 0) = 0, 1 ≤ i ≤ r,

and, substituting z(i) = Y (i) in (1) we obtain the formula of the statement. �

Finally we obtain:

Proposition 1.3 (Tougeron’s Implicit Functions Theorem) With all the notations
introduced above, suppose q ≤ p and let I ⊂ A be the ideal generated by the q-minors
of the matrix λ and I ′ ⊂ A another ideal. Then, if

F1(x, 0), . . . , Fq(x, 0) ∈ I ′I2,

there are y1(x), . . . , yp(x) ∈ I ′I such that

F (x, y1(x), . . . , yp(x)) = 0.
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Proof. Let δ be a q-minor of λ, say the one consisting of the first q rows and
columns. With the notations of 1.1 we have

δ = det(λ(ε1), . . . , λ(εq)).

The expansion of this determinant gives

δei =

n∑
j=1

(−1)j+1 det(λ(ε1), . . . , a∗j , . . . , λ(εq))λ(εj),

where a∗j = ei. This shows that δAq ⊂ Im(λ), and so, δ ∈ Ann(M). In particular,

I ′I2 ⊕ · · · ⊕ I ′I2 ⊂ (Im(λ)) I.

Let now δ1, . . . , δr be the q-minors of λ, which generate I. From the hypothesis we
get

F (x, 0) = λ

(
r∑
i=1

δiβ
(i)

)
,

where β(i) = (β
(i)
1 , . . . , β

(i)
r ), β

(i)
j ∈ I ′. We make y(i) = −β(i) in the formula of

Lemma 1.2, to obtain F (x, y(x)) = 0 with

y(x) = (y1(x), . . . , yp(x)) =

r∑
i=1

δiY
(i)(x,−β(1), . . . ,−β(r)).

Using the Taylor expansion with respect to y(1), . . . , y(r) of this power series, and
taking into account that Y (i)(x, 0, . . . , 0) = 0, one easily checks that all the mono-

mials in the y1(x), . . . , yp(x) are generated by the elements δiβ
(`)
j ∈ I ′I. Hence

y1(x), . . . , yp(x) ∈
⋂
s≥0

(I ′I + ms) = I ′I

(the last equality by Krull’s Theorem). The proof is thus complete. �

2 Equivalence of Power Series

Here we will obtain some basic results concerning the so-called equivalence problem.
Let K = R or C and consider the convergent power series ring K{x}, where x =
(x1, . . . , xn); the maximal ideal of K{x} will be denoted by m. As usual we omit the
discussion of the formal case, which would be analogous.
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Definition 2.1 Two power series f, g ∈ K{x} are called equivalent when there are
power series h1, . . . , hn ∈ K{x} such that

h1(0) = · · · = hn(0) = 0,
D(h1, . . . , hn)

D(x1, . . . , xn)
(0) 6= 0

and
f(h1, . . . , hn) = g.

This is an equivalence relation by the Inverse Function Theorem (Proposition II.4.6
a)). On the other hand, the above giving of h1, . . . , hn is the same as the giving of
an analytic isomorphism of K{x} that maps f to g (Propositions II.1.3, II.1.8 and
Corollary II.4.5).

Now the problem is to recognize which power series g are equivalent to a given
one f ∈ K{x}, and we notice two facts. First, g is equivalent to f if and only if
g(0) = f(0) and g− g(0) is equivalent to f − f(0). Second, suppose that f has order
1, say ∂f/∂x1(0) 6= 0. Applying the Inverse Function Theorem to f, x2, . . . , xn, we
see that f is equivalent to x1. Thus, a power series is equivalent to x1 if and only if
its order is 1. In view of these two remarks, we can always assume that

f(0) =
∂f

∂x1
(0) = · · · = ∂f

∂xn
(0) = 0,

or, in other words, that f is a hypersurface singularity (Remarks IV.2.6 a)).
Consequently

m ⊃ If =

(
∂f

∂x1
, . . . ,

∂f

∂xn

)
,

where If is the modified Jacobian ideal used to define the Milnor number (Remark
IV.2.5 b)):

µ(f) = dimK

(
K{x}

/(
∂f

∂x1
, . . . ,

∂f

∂xn

))
One easily checks that If is invariant by analytic isomorphisms ϕ of K{x}: ϕ(If ) =
Iϕ(f). Hence any series equivalent to f has the same Milnor number µ(f), which is
already a necessary condition for equivalence. Furthermore, we have the following
useful sufficient condition:

Lemma 2.2 Let f ∈ K{x} be a power series with f(0) = 0 and If ⊂ m. Then, f is
equivalent to every g ∈ K{x} such that f − g ∈ mI2

f .

Proof. Consider new indeterminates y = (y1, . . . , yn) and the equation

F (x, y) = f(x + y)− g(x) = 0.

We have the Jacobian matrix

λ =

(
∂F

∂yi
(x, 0)

)
1≤i≤n

=

(
∂f

∂xi
(x, 0)

)
1≤i≤n

,
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and we can apply Tougeron’s Implicit Functions Theorem (Proposition 1.3) with
q = 1, I = If and I ′ = m: there are y1(x), . . . , yn(x) ∈ mIf such that

F (x, y1(x), . . . , yn(x)) = 0,

that is,
f(x1 + y1(x), . . . , xn + yn(x)) = g(x).

Finally, the power series we are looking for are

hi = xi + yi(x), 1 ≤ i ≤ n.

Indeed,
∂hi
∂xj

=
∂yi
∂xj

if j 6= i,
∂hi
∂xi

= 1 +
∂yi
∂xi

.

Since yi ∈ mIf ⊂ m2,
∂yi
∂xj

(0) = 0,

which gives
D(h1, . . . , hn)

D(x1, . . . , xn)
(0) = 1.

�

A nice application of this lemma is:

Proposition 2.3 (Mather) Let f ∈ K{x} have an isolated singularity with Milnor
number µ, and g ∈ K{x} any power series with f − g ∈ m2µ+1. Then f and g are
equivalent.

Proof. We recall that µ = dimK (K{x}/If ) ≥ 1, and so If ⊂ m. We also know that
m =

√
If , and since power series rings are noetherian, there is some ` such that

m` ⊂ If . In fact, we can take ` = µ. Indeed, consider the sequence

K{x} ⊃ m + If ⊃ · · · ⊃ mµ + If ⊃ If .

As the dimension of K{x}/If over K is µ, one of the inclusions above must be an
equality, and so we get

mk + If = mk+1 + If

for some k ≤ µ. Multiplying by m, we obtain

mµ + If = mµ+1 + If = · · · = m` + If = If ,

and consequently mµ ⊂ If .
Once this is shown,

f − g ∈ m2µ+1 ⊂ mI2
f ,
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and the result follows from the preceding lemma. �

Remarks 2.4 The last proposition contains two famous facts:
a) Every isolated hypersurface singularity is algebraic. More precisely, if f ∈

K{x} has an isolated singularity with Milnor number µ, then f is equivalent to a
polynomial of degree ≤ 2µ.

This follows from Proposition 2.3 by taking g to be the sum of the terms of
degree ≤ 2µ of the Taylor expansion of f . �

b) (Morse’s Lemma) Let f ∈ K{x} have a Morse singularity, that is, f is an
isolated singularity with Milnor number µ = 1. This is to say that the Hessian
matrix of f has rank n (Remark 2.5 d)), and as above f is equivalent to the quadratic
form

Q(x) =
∑
i,j

∂2f

∂xi∂xj
(0)xixj .

Then, by the elementary theory of symmetric matrices, after a linear change of
coordinates we obtain:

Q(x) = x2
1 + · · ·+ x2

n, if K = C,

Q(x) = x2
1 + · · ·+ x2

s − x2
s+1 − · · · − x2

n, if K = R.

�
The second remark above can be further improved, again by means of Lemma

2.2:

Proposition 2.5 (Morse’s Generalized Lemma) Let f ∈ K{x} be a power series
whose Hessian matrix has rank r ≥ 1. Then f is equivalent to a power series of the
form

x2
1 + · · ·+ x2

r + g(xr+1, . . . , xn), if K = C,

x2
1 + · · ·+ x2

s − x2
s+1 − · · · − x2

r + g(xr+1, . . . , xn), if K = R,

with ω(g) ≥ 3.

Proof. By the hypothesis, after a linear change of coordinates we have

f = a1x
2
1 + · · ·+ arx

2
r + F (x1, . . . , xn), a1 6= 0,

with ω(F ) ≥ 3. Then we can apply the Implicit Functions Theorem to the equation

2a1y−
(
x1 −

∂F

∂x1
(y, x2, . . . , xn)

)
= 0,

to get a series h(x) such that

h =
1

2a1

(
x1 −

∂F

∂x1
(h, x2, . . . , xn)

)
,
∂h

∂x1
(0) =

1

2a1
.
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Hence, f is equivalent to

g = f(h, x2, . . . , xn) = a1h
2 + a2x

2
2 + · · ·+ arx

2
r + F (h, x2, . . . , xn).

We get
∂g

∂x1
=

(
2a1h+

∂F

∂x1
(h, x2, . . . , xn)

)
∂h

∂x1
= x1

∂h

∂x1
,

and since the last factor is a unit, we conclude that x1 ∈ Ig. On the other hand, we
can write

g =
1

4a1
x2

1 + a2x
2
2 · · ·+ arx

2
r +G0(x2, . . . , xn) + x1G1(x2, . . . , xn) + x2

1G2(x),

with ω(G0) ≥ 3, ω(G1) ≥ 2 and ω(G2) ≥ 1. Thus

g −
(

1

4a1
x2

1 + a2x
2
2 + · · ·+ arx

2
r +G0(x2, . . . , xn) + x1g1(x2, . . . , xn)

)
∈ mI2

g ,

and by Lemma 2.2 g is equivalent to

1

4a1
x2

1 + a2x
2
2 + · · ·+ arx

2
r +G0(x2, . . . , xn) + x1G1(x2, . . . , xn).

Finally, substituting h1 = x1 − 2a1g1(x2, . . . , xn), h2 = x2, . . . , hn = xn in the latter
series we obtain

1

4a1
x2

1 + a2x
2
2 + · · ·+ arx

2
r +H(x2, . . . , xn), ω(H) ≥ 3.

Clearly, by repeating this process we see that f is equivalent to a series of the form

a1x
2
1 + · · ·+ arx

2
r + g(xr+1, . . . , xn),

with ω(g) ≥ 3, and by an additional obvious linear change we are done. �

Remark 2.6 If the Hessian matrix of the series f has rank n−1, then f is equivalent
to a series ±x2

1 ± · · ·+±x2
n−1 ± xµ+1

n , where µ ≥ 2 is the Milnor number of f .
Indeed, then f is equivalent to a series ±x2

1 ± · · · ± x2
n−1 + g(xn), say g(xn) =

xpnu(xn), with u(0) 6= 0, p ≥ 3. Hence, there is v(xn) such that v(xn)p = ±u(xn),
that is, (xnv)p = ±g, and the substitution h1 = x1, . . . , hn−1 = xn−1, hn = xnv
transforms f into ±x2

1 ± · · · ± x2
n−1 ± xpn. Moreover, the modified jacobian ideal of

this latter series is (x1, . . . , xn−1, x
p−1
n ), so that the Milnor number is µ = p− 1. �.

In case the singularity is not isolated the equivalence problem becomes much more
difficult. But again Tougeron’s Implicit Functions Theorem provides a systematic
approach that generalizes the method used to prove Proposition 2.2. We illustrate
this with another famous theorem:
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Proposition 2.7 (Shiota) Every power series f ∈ K{x1, . . . , xn}, n ≥ 2, is equiva-
lent to a polynomial in two indeterminates g ∈ K{x1, . . . , xn−2}[xn−1, xn].

In particular, every power series in two indeterminates is equivalent to a poly-
nomial.

Proof. We will use another different jacobian ideal. To define it, fix a factoriza-
tion f = fα1

1 · · · f
αp
p into irreducible power series, and let If denote here the ideal

generated by the (p+ 1)-minors of the matrix
∂f1
∂x1

· · · ∂f1
∂xp

f1 · · · 0
...

...
...

. . .
...

∂fp
∂x1

· · · ∂fp
∂xp

0 · · · fp
0 · · · 0 α1 · · · αp


We will need later the fact, easily checked by direct computation, that linear changes
of coordinates are compatible with this definition of If . Also, consider f∗ = f1 · · · fp.
Now, we claim

f∗,
∂f∗

∂x1
, . . . ,

∂f∗

∂xn
∈
√
If .

Indeed, by complexification (II.5.3) we can suppose K = C. Then, by Rückert’s
Nullstellensatz (Proposition IV.2.1) we must see that

f∗(x(t)) =
∂f∗

∂x1
(x(t)) = · · · = ∂f∗

∂xn
(x(t)) = 0

for x(t) ∈ Z(If ). To that end, denote by hi ∈ If the minor corresponding to the
i-th column and the last p columns. An easy computation gives:

±hi =

p∑
j=1

αjf1 · · ·
∂fj
∂xi
· · · fp.

Hence, ∂f/∂xi = fα1−1
1 · · · fαp−1

p hi ∈ If , and (∂f/∂xi)(x(t)) = 0. This holds for
1 ≤ i ≤ n, and, by Corollary IV.2.5, we deduce f(x(t)) = 0, so that fj(x(t)) = 0
for some j = 1, . . . , p. From this we already get f∗(x(t)) = 0. Furthermore, when
we substitute x = x(t) in hi and in the derivatives of f∗ all summands containing
fj vanish, and we obtain

0 = hi(x(t)) = αjf1(x(t)) · · · ∂fj
∂xi

(x(t)) · · · fp(x(t)) = αj
∂f∗

∂xi
(x(t)).

Whence, our claim is proved.
Our second claim is that ht(If ) ≥ 2, which is proved using the trick of Remark

IV.2.6 c). Suppose ht(If ) = 1, so that there is a height 1 prime ideal p ⊃ If . Since
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the ring K{x} is factorial (Proposition II.2.1), p is principal, say generated by an
irreducible power series h. Thus √

If ⊂ (h).

By the previous claim, we deduce that h divides f∗ and all its derivatives ∂f∗/∂xi.
Hence h = fj for some j, say j = 1, and

∂f∗

∂xi
=
∂f1

∂xi
f2 · · · fp + f1

∂

∂xi
(f2 · · · fp).

It follows that f1 divides all its derivatives, which is impossible. Thus the proof of
the second claim is finished.

We consider now the ideal

J = m2If
2 ⊂ m.

Since any prime ideal p 6= m that contains J must contain If and ht(If ) ≥ 2, we see
that also ht(J) ≥ 2, and after a linear change of coordinates (II.2.3) we may assume
that the canonical homomorphism

K{x1, . . . , xn−2} → K{x}/J

is finite. There is then a monic polynomial

P (t) = P (x1, . . . , xn−2, t) ∈ K{x1, . . . , xn−2}[t]

such that
P (xn−1), P (xn) ∈ J

(take P to be the product of two equations of integral dependence of xn−1, xn mod J).
Then, by Rückert’s Division Theorem, we obtain for every j = 1, . . . , p

fj = gj +QjP (xn−1) +Q′jP (xn),

where gj ∈ K{x} is a polynomial in xn−1, xn and Qj , Q
′
j ∈ K{x}. We thus have

f1 − g1, . . . , fp − gp ∈ J = m2If
2. Let us introduce new indeterminates (y, z) =

(y1, . . . , yp, z1, . . . , zp) and the system:{
Fj(x, y, z) = (1 + zj)fj(x + y)− gj(x) = 0, 1 ≤ j ≤ p,
Fp+1(x, y, z) = (1 + z1)α1 · · · (1 + zp)

αp − 1 = 0.

An immediate computation shows that the jacobian matrix

λ =

(
∂Fj
∂yk

(x, 0, 0),
∂Fj
∂z`

(x, 0, 0)

)
j,k,`
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is exactly the matrix used to define the ideal If . Hence, we can apply Tougeron’s
Implicit Functions Theorem with q = p + 1, I = If and I ′ = m2. Thus we find
yk(x), z`(x) ∈ m2 such that{

(1 + zj(x))fj(x1 + y1(x), . . . , xn + yn(x)) = gj(x), 1 ≤ j ≤ p,
(1 + z1(x))α1 · · · (1 + zp(x))αp = 1.

Finally, we set hi = xi + yi(x) for 1 ≤ i ≤ n, and, since y1(x), . . . , yn(x) ∈ m2, it
holds

h1(0) = · · · = hn(0) = 0,
D(h1, . . . , hn)

D(x1, . . . , xn)
(0) = 1 6= 0.

Furthermore, from the equations above we deduce

f(h1, . . . , hn) = gα1
1 · · · gαpp ,

and f is equivalent to g = gα1
1 · · · g

αp
p , which is a polynomial in xn−1 and xn.

�

3 M. Artin’s Approximation Theorem

As usual, we consider the coefficient field K = R or C, and indeterminates x =
(x1, . . . , xn), y = (y1, . . . , yp). We will denote by m the maximal ideal of a ring of
convergent power series, and by m̂ the maximal ideal of the corresponding ring of
formal power series.

This section is devoted to the main result of the chapter:

Proposition 3.1 (M. Artin’s Approximation Theorem) Let f = (f1, . . . , fq) ∈
K{x, y}q be such that f(0, 0) = 0. Consider a solution ŷ(x) = (ŷ1(x), . . . , ŷq(x)) ∈
K[[x]]q of the system f(x, y) = 0. Then for every integer α ≥ 1 there exists a solution
y(x) = (y1(x), . . . , yq(x)) ∈ K{x}q of f(x, y) = 0 such that

y(x) = ŷ(x) mod m̂α.

Proof. We argue by induction on n. For n = 0 there is nothing to prove, hence we
suppose n ≥ 1 and the result proved for fewer that n xk’s.

The proof will proceed now by descending induction on the height of the ideal
I ⊂ K{x, y} generated by the fi’s. Our first step is:

A) Reduction to prime ideals.

We have a decomposition
√
I = p1 ∩ · · · ∩ pr for some prime ideals

pk = (gk1, . . . , gkqk) ⊂ K{x, y}.
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We consider the elements g(k) = (gk1, . . . , gkqk) ∈ K{x, y}qk , and claim that ŷ(x)
is a solution of some of the analytic systems g(k)(x, y) = 0. Suppose we had
gk`k(x, ŷ(x)) 6= 0 for 1 ≤ k ≤ r. There would then be m ≥ 1 such that

h = (g1`1 · · · gr`r )m ∈ I,

that is,
h(x, y) = h1(x, y)f1(x, y) + · · ·+ hq(x, y)fq(x, y)

for some h1, . . . , hq. Thus, making y = ŷ(x), we would get non-zero on the left hand
side and zero on the right hand side. This contradiction shows that ŷ(x) must be a
solution of some of the systems g(k)(x, y) = 0. Whence the reduction A) is done.

We now start our descending induction on s = ht(I). If I has the maximal
height s = n + p, the only prime ideal containing I is the maximal ideal, and for
this everything is trivial. By the preceding reduction, the result follows for I. Let,
next, s < n+ p and assume the result to be proved for heights > s. We start again
with a simplification of the problem:

B) Reduction to the case when I is generated by s elements h1, . . . , hs, and there
is a Jacobian

δ =
D(h1, . . . , hs)

D(yk1 , . . . , yks)

such that δ(x, ŷ(x)) 6= 0.

By the previous reduction we can assume that I is a prime ideal of height s which
will be denoted by p. There are then h1, . . . , hs ∈ p and indeterminates z1, . . . , zs
among x1, . . . , xn, y1, . . . , yp such that the Jacobian

δ′ =
D(h1, . . . , hs)

D(z1, . . . , zs)
/∈ p

(Lemma II.4.2). In particular, ht(p + δ′K{x, y}) > s and if δ′(x, ŷ(x)) = 0 we can
apply the induction hypothesis to conclude the proof. Hence let δ′(x, ŷ(x)) 6= 0.
On the other hand, since hi belongs to the ideal generated by the fj ’s, we have
hi(x, ŷ(x)) = 0 and derivating:

∂hi
∂xj

(x, ŷ(x)) = −
p∑
`=1

∂hi
∂y`

(x, ŷ(x))
∂ŷ`(x)

∂xj
.

Consequently, if, say,

z1 = x1, . . . , zm = xm, zm+1 = y1, . . . , zs = yt,

a straightforward computation gives

0 6= δ′(x, ŷ(x)) =

= (−1)m
∑

`1,...,`m

∂ŷ`1(x)

∂x1
· · · ∂ŷ`m(x)

∂xm

D(h1, . . . , hs)

D(y`1 , . . . , y`m , y1, . . . , yt)
(x, ŷ(x)).
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Hence, some of the Jacobians in the right hand side must be different from zero, and
we can suppose without loss of generality

0 6= δ(x, ŷ(x)), δ =
D(h1, . . . , hs)

D(y1, . . . , ys)
/∈ p.

By the Regularity Jacobian Criterion (Proposition II.4.3) the elements h1, . . . , hs
generate the maximal ideal pK{x, y}p of the localization K{x, y}p. Thus, there
exists h /∈ p such that hp ⊂ (h1, . . . , hs) ⊂ K{x, y}, that is:

hfi = λi1h1 + · · ·+ λishs (1)

We again have ht(p+hK{x, y}) > s, so that by induction hypothesis we may suppose
h(x, ŷ(x)) 6= 0.

After all this preparation, let y(x) ∈ K{x}p be a solution of the system h1(x, y) =
· · · = hs(x, y) = 0 such that

yi(x) = ŷi(x) mod m̂α.

We then deduce using Taylor expansions that

h(x, y(x)) = h(x, ŷ(x)) mod m̂α.

Indeed, h(x, y(x))−h(x, ŷ(x)) belongs to the ideal generated by the differences yi(x)−
ŷi(x), which belong all to m̂α. Once we know this, for α large enough it follows
h(x, y(x)) 6= 0. From this and the equation (1) above we conclude that y(x) is
a solution of the initial system f1(x, y) = · · · = fq(x, y) = 0. The proof of this
reduction is finished.

Henceforth we assume the conditions of reduction B), and consider the convergent
power series ∆ = xαnδ

2. Then:

C) There exist convergent power series z1(x), . . . , zp(x) ∈ K{x} with

z1(x) = ŷ1(x), . . . , zp(x) = ŷp(x) mod m̂α

and
h1(x, z(x)), . . . , hs(x, z(x)) ∈ ∆(x, z(x))K{x},

where z(x) = (z1(x), . . . , zp(x)).

To prove this, up to a linear change of coordinates we can suppose that ∆(x, ŷ(x))
is regular of order s with respect to xn, and consequently ∆(x, ŷ(x))α is regular of
order αs with respect to xn. Setting x′ = (x1, . . . , xn−1) and applying Rückert’s
Division Theorem we get

ŷj(x) = q̂j(x)∆(x, ŷ(x))α + ẑj(x),

ẑj(x) =
∑αs
`=1 x

αs−`
n (ŷj`(x

′) + y0
j`),

q̂j(x) ∈ K[[x]], ŷj`(x
′) ∈ K[[x′]], ŷj`(0) = 0, y0

j` ∈ K.
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Furthermore
ẑj(0) = ŷj(0)− q̂j(0)∆(0, ŷ(0))α = 0,

that is,
y0
j,αs = 0.

We write ẑ(x) = (ẑ1(x), . . . , ẑp(x)) and since the order of the power series ∆(x, ŷ(x))α

is ≥ α, it holds
ŷ1(x) = ẑ1(x), . . . , ŷp(x) = ẑp(x) mod m̂α.

On the other hand, looking at the Taylor expansion of the series ∆(x, ŷ(x)) −
∆(x, ẑ(x)), we see that it belongs to the ideal generated by the differences

ŷ1(x)− ẑ1(x), . . . , ŷp(x)− ẑp(x).

But this ideal is contained in the one generated by ∆(x, ŷ(x))α, and so

∆(x, ŷ(x))−∆(x, ẑ(x)) = ĥ(x)∆(x, ŷ(x))α, ĥ(x) ∈ K[[x]],

or equivalently

∆(x, ẑ(x)) = û(x)∆(x, ŷ(x)), û(x) = 1− ĥ(x)∆(x, ŷ(x))α−1,

and for α ≥ 2, û(0) 6= 0 and û is a unit. Thus, the power series ∆(x, ẑ(x)) is regular
of order s with respect to xn as ∆(x, ŷ(x)) is.

We now introduce new indeterminates yj` and consider the polynomials

zj =

αs∑
`=1

xαs−`n (yj` − y0
j`).

We put z = (z1, . . . , zp) and notice that ∆(x, z) ∈ K{x, yj`} is regular of order s with
respect to xn as ∆(x, ẑ) is, because zj(x, 0) = ẑj(x, 0). Hence by Rückert’s Division
Theorem

hi(x, z) = Qi(x, yj`)∆(x, z) +

s∑
m=1

xs−mn gim(x′, yj`),

where Qi(x, yj`) and the gim(x′, yj`)’s are convergent power series. Making the
substitution yj` = ŷj`(x

′) we obtain:

hi(x, ẑ(x)) = Qi(x, ŷj`(x
′))∆(x, ẑ(x)) +

s∑
m=1

xs−mn gim(x′, ŷj`(x
′)). (2)

We now recall that ŷ(x) is a formal solution of f(x, y) = 0, so that hi(x, ŷ(x)) = 0
and

hi(x, ẑ(x)) = hi(x, ẑ(x))− hi(x, ŷ(x)).

Using again the Taylor expansion, and that the differences ẑj(x) − ŷj(x) belong to
the ideal generated by ∆(x, ŷ(x))α, it follows at once that hi(x, ẑ(x)) also belongs to
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that ideal. In particular, hi(x, ẑ(x)) is divisible by ∆(x, ŷ(x)), and consequently also
by ∆(x, ẑ(x)) = û(x)∆(x, ŷ(x)), because û is a unit. This means that the remainder
in the division of equation (2) must be zero, or in other words

gim(x′, ŷj`(x
′)) = 0

for 1 ≤ m ≤ s, 1 ≤ i ≤ q. We thus have a solution ŷj`(x
′) ∈ K[[x′]] of an

analytic system with n − 1 xk’s, and by induction hypothesis, there is a solution
yj`(x

′) ∈ K{x′} such that yj` = ŷj` mod m̂α. Substituting yj` by yj` in the zj ’s we
get

zj(x) =

αs∑
`=1

xαs−`n (yj`(x
′)− y0

j`) ∈ K{x},

and
zj(x) = ẑj(x) = ŷj(x) mod m̂α.

We next put z(x) = (z1(x), . . . , zp(x)) and obtain

hi(x, z(x)) = Qi(x, yj`(x
′))∆(x, z(x)) ∈ ∆(x, z(x))K{x},

which concludes the proof of C).
We can now complete the proof of the proposition. Consider new indeterminates

Y = (Y1, . . . , Yp) and the system

Fi(x, Y) = hi(x, Y + z(x)) = 0, 1 ≤ i ≤ s. (3)

It holds
Fi(x, 0) = hi(x, z(x)) ∈ xαnδ(x, z(x))2K{x}

and
D(F1, . . . , Fs)

D(Y1, . . . , Ys)
(x, 0) = δ(x, z(x)),

so that by Tougeron’s Implicit Functions Theorem (Proposition 1.3) we obtain a
solution

Y1(x), . . . , Yp(x) ∈ xαnK{x}

of the system (3) above. Then

yi(x) = Yi(x) + z(x) = z(x) mod m̂α,

and we set y(x) = (y1(x), . . . , ys(x)). Clearly, y(x) ∈ K{x}p is the solution we were
looking for, and the proof of the proposition finishes here. �
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4 Formal Completion of Analytic Rings

In this section we obtain the basic comparison theorems for analytic rings and their
formal completions. Proofs will consist of the systematic application of M. Artin’s
Approximation Theorem. In order to do so, we first state a slightly weaker version
of that theorem.

Let A = K{x}/I be an analytic ring, with x = (x1, . . . , xn). Its formal completion

is the formal ring Â = K[[x]]/IK[[x]]. The extension of an ideal a ⊂ A to the formal

completion will be denoted by â = aÂ. Note that the extension of the maximal ideal
m = mA is the maximal ideal m̂ = mÂ.

Proposition 4.1 Let y = (y1, . . . , yp) be new indeterminates and P1, . . . , Ps ∈ A[y].

Let â1, . . . , âp ∈ Â be a solution of the system

P1(y) = 0, . . . , Ps(y) = 0.

Then, for every integer α ≥ 1 there is a solution a1, . . . , ap ∈ A of the system such
that

a1 = â1, . . . , ap = âp mod m̂α.

Proof. Let f1, . . . , fr ∈ K{x} be generators of I, H1, . . . ,Hs ∈ K{x}[y] polynomials
whose classes mod I are P1, . . . , Ps, and ĝ1, . . . , ĝp ∈ K[[x]] formal power series whose
classes mod IK[[x]] are â1, . . . , âp. Then,

Hi(x, ĝ1(x), . . . , ĝp(x)) = λ̂i1f1 + · · ·+ λ̂irfr, 1 ≤ i ≤ s,

for some λ̂ij ∈ K[[x]]. Applying M. Artin’s Approximation Theorem (Proposition
2.1) to the system

Hi(x, y1, . . . , yp) = zi1f1 + · · ·+ zirfr, 1 ≤ i ≤ s,

where the zij ’s are new indeterminates, we get convergent power series g`, λij ∈ K{x}
such that

g1 − ĝ1, . . . , g1 − ĝp ∈ (x1, . . . , xn)α,

and
Hi(x, g1(x), . . . , gp(x)) = λi1f1 + · · ·+ λirfr, 1 ≤ i ≤ s.

Consequently, the classes a` = g` mod I, 1 ≤ ` ≤ s are the solution we sought.
�

We can now deduce Nagata’s comparison results. First of all:

Proposition 4.2 (Flatness) We have:

a) â ∩ A = a for every ideal a of A. In particular, the canonical homomorphism

A→ Â is injective, and we write A ⊂ Â.
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b) (a ∩ b)̂ = â ∩ b̂ for every two ideals a, b of A.

c) An element δ ∈ A is a zero divisor in Â if and only if it is a zero divisor in A.

d) Let K denote the total ring of fractions of A. Then Â ∩K = A.

Proof. a) Let a1, . . . , ap be generators of a. If c ∈ â∩A, then there are λ̂1, . . . , λ̂p ∈ Â
such that

c = λ̂1a1 + · · ·+ λ̂pap.

Given each α ≥ 1 we can choose elements λ1, . . . , λp ∈ A such that

λ1 = λ̂1, . . . , λp = λ̂p mod m̂α.

Then,
cα = λ1a1 + · · ·+ λpap ∈ a, c− cα ∈ mα,

and so,

c ∈
⋂
α

(a + mα) = a.

b) Let a1, . . . , ap be generators of a and b1, . . . , bq generators of b. If ĉ ∈ â ∩ b̂,
we have

ĉ = λ̂1a1 + · · ·+ λ̂pap = µ̂1b1 + · · ·+ µ̂pbp,

for some λ̂i, µ̂j ∈ Â. We then consider the polynomial equation

y1a1 + · · ·+ ypap = z1b1 + · · ·+ zpbp.

By Proposition 4.1, for each α ≥ 1 we get λi, µj ∈ A such that

λi = λ̂i, µj = µ̂j mod m̂α,

and an element

cα = λ1a1 + · · ·+ λpap = µ1b1 + · · ·+ µpbp.

Clearly
cα ∈ a ∩ b, ĉ = cα mod m̂α.

Consequently

ĉ ∈
⋂
α

(
(a ∩ b)̂ + m̂α

)
= (a ∩ b)̂ .

This shows one inclusion, and the other is immediate.
c) Suppose there is a non-zero element â ∈ Â such that δâ = 0. Then, by

Proposition 4.1, for every α ≥ 1 there is an element aα ∈ A such that

δaα = 0, a = aα mod m̂α.
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If α is large enough, then aα 6= 0, and we see that δ is a zero divisor in A. The
opposite implication is trivial.

d) Let a, δ ∈ A, where δ is not a zero divisor in A, be such that a/δ ∈ Â. This
means that the equation

a = δy

has some solution in Â, and by Proposition 4.1 it has one in A. We are done.
�

The proofs required to get the preceding proposition only involve linear equations,
which are the true concern of flatness, and there are much more direct proofs of the
same facts without using the approximation technique. Our approach here is chosen
so to avoid diversions and to be consistent with the other arguments of the section.

Proposition 4.3 (Primary decompositions and dimension) We have:

a)
√
â =
√̂
a for every ideal a ⊂ A.

b) The extension q̂ of a primary ideal q ⊂ A is a primary ideal.

c) The extension p̂ of a prime ideal p ⊂ A is a prime ideal, and ht(p) = ht(p̂).

d) Let a be an ideal of A, a = q1 ∩ · · · ∩ qr its primary decomposition, and p1 =√
q1, . . . , pr =

√
qr its associated primes. Then, the primary decomposition of

â is â = q̂1 ∩ · · · ∩ q̂r, and its associated primes are p̂1, . . . , p̂r.

Proof. a) Let us prove the non-trivial inclusion. Consider any generators a1, . . . , ar
of a. If ĉ ∈

√
â, then there are an integer p ≥ 1 and elements λ̂1, . . . , λ̂r ∈ Â such

that
ĉp = λ̂1a1 + · · ·+ λ̂rfr.

Once again by Proposition 4.1, for every α ≥ 1 we get cα, λ1, . . . , λr ∈ A such that

cpα = λ1a1 + · · ·+ λrar

and ĉ = cα mod m̂α. It follows that cα ∈
√
a and consequently

c ∈
⋂
α

(√̂
a + m̂α

)
=
√̂
a.

b) Let a1, . . . , aq be generators of q and b̂, ĉ ∈ Â such that b̂ĉ ∈ q̂. Then,

b̂ĉ = λ̂1a1 + · · ·+ λ̂qaq

for some λ̂i ∈ Â. By Proposition 4.1, there are bα, cα, λiα ∈ A such that

b̂ = bα, ĉ = cα mod m̂α, bαcα = λ1αa1 + · · ·+ λqαaq ∈ q.

There are now two possibilities:



110 V. Approximation Theory

• bα ∈ q for infinitely many α’s. Then

b̂ ∈
⋂
α

(q̂ + m̂α) = q̂.

• bα /∈ q for all α large. Then, as q is primary, cα ∈
√
q for all α large, and so

ĉ ∈
⋂
α

(√̂
q + m̂α

)
=
√̂
q ⊂

√
q̂.

This shows that q̂ is primary.
c) That p̂ is prime is an immediate consequence of a) and b), and then we

get the inequality ht(p) ≤ ht(p̂). Conversely, if ht(p) = r, there are r elements
a1, . . . , ar ∈ A such that

√
{a1, . . . , ar}Ap = pAp ([A-McD 11.14]). It follows easily

that
√
{a1, . . . , ar}Âp̂ = p̂Âp̂. Hence ht(p̂) ≤ r ([A-McD 11.14] again).

d) is a consequence of the previous parts of the proposition. �

Corollary 4.4 (Nagata) An analytic ring is a reduced ring (resp. an integral do-
main) if and only if so is its formal completion.

Proposition 4.5 (Nagata) Let p be a prime ideal of our analytic ring A = K{x}/I
and q a prime ideal of its completion Â = K[[x]]/IK[[x]] such that q ∩ A = p. Then

Ap is regular if and only if Âq is regular.

Proof. Throughout the proof the same letter will denote an ideal of A (resp. Â)
and its inverse image in K{x} (resp. K[[x]]).

Suppose first that Ap = K{x}p/IK{x}p is regular. By the Regularity Jacobian
Criterion (Proposition II.4.3), it holds

p 6⊃ Js(I), ht(IK{x}p) ≤ s. (1)

It follows immediately from the definitions (II.4.1) that Js(I K[[x]]) = Js(I)K[[x]],
and, by flatness (Proposition 4.2 a)), we deduce that K{x} ∩ Js(I K[[x]]) = Js(I).
This, together with the hypothesis q∩K{x} = p and the first condition in (1), imply

q 6⊃ Js(I K[[x]]). (2)

Now, by Proposition 4.3 c) and d) we have ht(IK{x}p) = ht(IK[[x]]p̂), and, since
q ⊃ p̂, ht(IK[[x]]p̂) ≥ ht(IK[[x]]q). Consequently,

ht(IK[[x]]q) ≤ s. (3)

Thus, from (2) and (3) we conclude that Âq is regular (again by the Regularity
Jacobian Criterion).
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Suppose conversely that Âq is regular. First of all, we notice that q contains

some minimal prime q′ of p̂ = pÂ. Since Âq is regular and q′ ⊂ q also Â′q is regular
(this follows immediately from the Regularity Jacobian Criterion). In other words,
we may assume that q is a minimal prime of p̂. By Proposition 4.3 c) and d), we

deduce that p generates the maximal ideal qÂq of Âq and d = dim(Ap) = dim(Âq).
Now, since the latter ring is regular by hypothesis, its maximal ideal can be generated
by exactly d elements, and we claim that these elements can be chosen in p.

Indeed, set n = qÂq and κ = Âq/qÂq. Then, any given elements generate n
if and only if their classes mod n2 generate n/n2 as κ-linear space (Nakayama’s
Lemma). Since n can be generated by d elements, it follows that the dimension of
that linear space is ≤ d, and so we can select d generators from any given generators.
In particular, from p.

Once our claim is proved, let a1, . . . , ad ∈ p generate of qÂq, and let us show that

they also generate pAp. Consider any b ∈ pAp. There are then d, c1, . . . , cd ∈ Â,
d /∈ q such that

db = c1a1 + · · ·+ cdad.

Now, by Proposition 4.1, for every α ≥ 1 we find dα, c1α, . . . , cdα such that

d− dα ∈ m̂α, dαb = c1αa1 + · · ·+ cdαad.

If α is large enough, then dα /∈ p, for otherwise

d ∈
⋂
α

(
p̂ + m̂α

)
⊂ q.

Hence, b belongs to the ideal generated in Ap by a1, . . . , ad, as wanted.
Whence, pAp can be generated by d elements, and the local ring Ap is regular.

�

Proposition 4.6 (Nagata) Let A and Â be integral domains and denote by K and

K̂ their quotient fields. Then K is algebraically closed in K̂.

Proof. Consider a polynomial

P (t) = c0t
p + c1t

p−1 + · · ·+ cp ∈ A[t]

and â, b̂ ∈ Â, b̂ 6= 0 such that â/b̂ is a root of P . It follows

c0â
p + c1â

p−1b̂+ · · ·+ cpb̂
p = 0.

Applying as usual Proposition 4.1, we find aα, bα ∈ A such that

â = aα, b̂ = bα mod m̂α, P (aα/bα) = 0
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(note that since b̂ 6= 0, also bα 6= 0 for α large). On the other hand, K is a field of
characteristic zero, and so P has at most p roots. We can thus assume aα/bα = a0/b0.
But

âb0 − b̂a0 = aαb0 − bαa0 mod m̂α,

and so
âb0 − b̂a0 ∈ m̂α

for all α. Hence âb0 − b̂a0 = 0 and â/b̂ = a0/b0 ∈ K. �

Proposition 4.7 (Nagata) An analytic ring A is normal if and only if so is its

formal completion Â.

Proof. Since a normal analytic (resp. formal) ring is always an integral domain

(Proposition III.2.4), in view of Corollary 4.4 we can assume that A and Â are

integral domains. We denote by K the quotient field of A and by K̂ that of Â.
We suppose first that A is normal. Consider â, b̂ ∈ Â, b 6= 0, ĉ1, . . . , ĉp ∈ Â such

that
(â/b̂)p + ĉ1(â/b̂)p−1 + · · ·+ ĉp = 0.

We deduce
âp + ĉ1â

p−1b̂+ · · ·+ ĉpb̂
p = 0.

As usual, we obtain aα, bα, ciα ∈ A with

apα + c1αa
p−1
α bα + · · ·+ cpαb

p
α = 0, â = aα, b̂ = bα mod m̂α

and since A is integrally closed in K, we deduce that aα/bα ∈ A, that is,

aα ∈ bαA.

It follows that

a ∈
⋂
α

(
aαÂ+ m̂α

)
⊂
⋂
α

(
bαÂ+ m̂α

)
⊂
⋂
α

(
b̂Â+ m̂α

)
= b̂Â,

and â/b̂ ∈ Â. Whence Â is integrally closed in K̂.

Conversely, if Â is normal, A is normal, too by Proposition 4.2 d). �

From the preceding proposition, the good behaviour of associated primes under com-
pletion (Proposition 4.3), and the description of normalizations given in Proposition
III.2.3, we get:

Proposition 4.8 Let A be a reduced analytic ring, Â its formal completion and
B = B1×· · ·×Bs its normalization. Then, the normalization of Â is the completion
of B; that is,

(Â)ν ' B̂1 × · · · × B̂s.
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We conclude this section with some specific properties of the real case:

Proposition 4.9 (Risler) Let K = R, and suppose that A and Â are integral do-
mains. Then,

a) A is 2-real if and only if so is Â.

b) A is formally real if and only if so is Â.

c) Every ordering of A extends to an ordering of Â.

Proof. a) If Â is not 2-real, there are â, b̂ ∈ Â, neither of them zero, such that

â2 + b̂2 = 0. Then for every α ≥ 1 there are aα, bα ∈ A such that

a2
α + b2α = 0; â = aα, b̂ = bα mod m̂α.

Thus, if α is large, neither aα nor bα are zero, and A is not 2-real.
b) can be proved as a), using Artin-Schreier’s Criterion (proof of Proposition

IV.4.1), but it also follows from c), proved below.
c) Let M = {ai | i ∈ I} be the collection of all elements of A wich are positive in

a fixed ordering of A. We must show that there is an ordering of Â in which all the
ai’s are positive. According to Serre’s Criterion ([L XI.2 Cor to Th.4]) this follows
if we show that no equation

ai1y
2
1 + · · ·+ airy

2
r = 0

has non-trivial solutions in Â. But, were there a non-trivial solution in Â, by the
usual approximation trick there would be one in A, which is impossible, because all
the ai’s are positive in the fixed ordering. �

5 Nash Rings

Let K = R or C.

(5.1) Algebraic power series. A power series f ∈ K[[x]], where x = (x1, . . . , xn),
is called algebraic if there is a non-zero polynomial

P (x, t) = a0(x)tp + a1(x)tp−1 + · · ·+ ap(x) ∈ K[x, t]

such that P (x, f(x)) = 0.
We notice that an algebraic power series is convergent. Indeed, by M. Artin’s

Approximation Theorem, there are convergent power series fα(x) whose Taylor ex-
pansions coincide with that of f(x) up to an arbitrarily high order α and such that
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P (x, fα(x)) = 0. If fα 6= f for infinitely many α’s, then the polynomial P (x, t)
would have infinitely many roots, which is impossible. �

In other words, algebraic power series are the elements of K{x} which are alge-
braic over K[x]. By the general properties of algebraic dependence ([L VII.1]), they
form a ring which will be denoted by either Nn, K〈x〉, or K〈x1, . . . , xn〉. If f ∈ K〈x〉
and f(0) 6= 0, then 1/f ∈ K[[x]] is algebraic, and consequently f is a unit in K〈x〉.
Thus, the ring of algebraic power series is a local ring with maximal ideal

{f ∈ K〈x〉 | f(0) = 0},

and we have the local inclusions Nn ⊂ On ⊂ Fn.

(5.2) Substitution. Let y = (y1, . . . , yp) and t be new indeterminates, and P ∈
K[[y]][t] a distinguished polynomial of degree p. We denote by F the algebraic
closure of the quotient field of K[[y]] and consider a root ξ ∈ F of P .

For f(y, t) ∈ K[[y, t]], let R(y, t) ∈ K[[y]][t] be the remainder of the formal
division of f by P (Proposition I.3.2), and set

f(y, ξ) = R(y, ξ) ∈ F.

Then:

a) The map f(y, t) 7→ f(y, ξ) is a homomorphism of K-algebras.

Only the equality (f1f2)(y, ξ) = f1(y, ξ)f2(y, ξ) needs some explanation. This equal-
ity is clear in case f1, f2 ∈ K[[y]][t], and the general case reduces to this replacing
f1, f2 by their remainders after division by P . (Compare with the more general
construction in the second half of the proof of Lemma III.1.1.) �

b) If f ∈ K〈y, t〉 and f(y, ξ) = 0, then ξ is algebraic over K[y].

Consider any equation

a0(y, t)fq(y, t) + · · ·+ aq(y, t) = 0, a0, . . . , aq ∈ K[y, t], aq 6= 0.

By a) we can substitute t = ξ to get aq(y, ξ) = 0, since aq(y, t) 6= 0, we are done. �

c) If f ∈ K〈y, t〉 and ξ is algebraic over the polynomials, then f(y, ξ) is also
algebraic over the polynomials.

Consider again an equation

a0(y, t)f(y, t)q + · · ·+ aq(y, t) = 0, a0, . . . , aq ∈ K[y, t], aq 6= 0,

with the additional condition that the coefficients ai(y, t) ∈ K(y)[t] have no common
irreducible factor (which is possible because the ring K(y)[t] is factorial, [L V.6
Th.10]). Making the substitution t = ξ we obtain

a0(y, ξ)f(y, ξ)q + · · ·+ aq(y, ξ) = 0,
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and we claim that some coefficient ai(y, ξ) 6= 0. Otherwise, all the ai(y, t)’s would be
multiples of the irreducible polynomial of ξ over K(y), and they were chosen without
common factors. �

Proposition 5.3 Let f, g1, . . . , gn ∈ Nn, with g1(0) = · · · = gn(0) = 0. Then,
substitution gives an algebraic power series f(g1, . . . , gn) ∈ Nn.

Proof. We first rename some variables, writing g1(z), . . . , gn(z). We then consider
the division

f(x) = Q(z, x)(xn − gn(z)) +R(z, x1, . . . , xn−1),

where R(z, x1, . . . , xn−1) ∈ K[[x1, . . . , xn−1]]. Thus

f(x1, . . . , xn−1, gn(z)) = R(z, x1, . . . , xn−1),

and we get the same element that in 5.2 with

y = (z, x1, . . . , xn−1), t = xn, P = xn − gn(z), ξ = gn(z).

Hence, by 5.2 c),

f(x1, . . . , xn−1, gn(z)) ∈ K〈z, x1, . . . , xn−1〉.

The proof ends by repeating this argument n− 1 more times. �

Proposition 5.4 The derivatives of an algebraic power series are algebraic power
series, too.

Proof. Let f ∈ Nn, and

P (x, f(x)) = a0(x)f(x)p + · · ·+ ap(x) = 0

be an equation of algebraic dependence of f . We then have

0 =
∂

∂xi
(P (x, f(x))) =

p∑
j=0

∂aj
∂xi

fp−j +
∂f

∂xi

p−1∑
j=0

ajf
p−j−1.

If we choose P of minimal degree, the second sum in the right hand side of this
equality is not zero, and since the derivatives of the aj ’s are polynomials, the power
series ∂f/∂xi is algebraic over K(x)[f ], and consequently over K(x). �

Remarks 5.5 a) Every algebraic power series f ∈ K〈x〉 can be written in the form

f = f(0) + x1f1 + · · ·+ xnfn,
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where fi ∈ K〈x1, . . . , xi〉 for 1 ≤ i ≤ n.
We obtain

x1f1 by the substitution x2 = · · · = xn = 0 in f − f(0),

x2f2 by the substitution x3 = · · · = xn = 0 in f − f(0)− x1f1,

and so forth. �
b) The indeterminates x1, . . . , xn generate the maximal ideal of Nn.
In fact, the maximal ideal consists of the f ’s such that f(0) = 0. �
c) Let f =

∑
p≥0 ap(x

′)xn ∈ K[[x′, xn]], where x′ = (x1, . . . , xn−1). If f is
algebraic, then all the coefficients ap are algebraic, since

ap(x
′) =

1

p!

∂f

∂xn
(x′, 0).

�
The essential fact is the following:

Proposition 5.6 (Rückert’s Division Theorem for algebraic power series) Proposi-
tion I.3.2 is also valid when substituting On by Nn and On−1 by Nn−1.

Proof. Let Φ ∈ Nn be regular of order p with respect to xn and f ∈ Nn. By the
Preparation Theorem (Proposition I.3.3) and Remark II.2.2, we have

Φ = UP1 · · ·Pr, U ∈ Fn, U(0) 6= 0,

where each Pi is an irreducible distinguished polynomial of Fn−1[xn] of degree pi.
The Pi’s are not necessarily distinct, and p = p1 + · · ·+ pr. Let x′ = (x1, . . . , xn−1).

We can apply the substitution procedure described in 5.2 to every root ξ of every
Pi, so that Φ(x′, ξ) = 0, and by 5.2 b), ξ is algebraic over K[x′]. But the coefficients of
the polynomial Pi are the symmetric functions of its roots, and so those coefficients
are algebraic over K[x′]. Consequently, Pi ∈ Nn−1[xn] for all i and then U ∈ Nn.

Now we notice that succesive divisions by P1, . . . , Pr give the division by U−1Φ,
hence by Φ. By all of this, we can suppose without loss of generality that Φ is an
irreducible distinguished polynomial.

Consider the formal division

f = QΦ + a1(x′)xp−1
n + · · ·+ ap(x

′).

We must see that Q and the ai’s are algebraic, and for this it is enough that the ai’s
are algebraic. To that end, we will use the p roots ξ1, . . . , ξp of Φ in the algebraic
closure F of the quotient field of Fn−1. These roots are all different because Φ is an
irreducible polynomial. Then, substituting as explained in 5.2, we get

f(x′, ξi) = a1(x′)ξp−1
i + · · ·+ ap(x

′), 1 ≤ i ≤ p.
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This linear system gives the a`’s as rational functions of the ξi’s and the f(x′, ξj)’s,
since the determinant is ∏

i<j

(ξi − ξj) 6= 0.

Finally, by 5.2 c), the f(x′, ξj)’s are algebraic over K[x′] as the ξi’s are, and we
conclude that the coefficients a` are algebraic as wanted. We are done. �

Once Rückert’s Division Theorem is available, all the subsequent theory can be
developed for algebraic power series as it was for convergent and formal power series.
In doing this we introduce the following terminology:

Definition 5.7 A Nash ring over K is a ring isomorphic to K〈x〉/I with x =
(x1, . . . , xn); usually we will not specify “over K”. If A,B are two Nash rings, a
Nash homomorphism A → B is a homomorphism of K-algebras. The field K is
called the coefficient field.

As said before, the full theory developed in the analytic category is valid in the Nash
category: Weierstrass’s Preparation Theorem, Hensel’s Lemma, Mather’s Finiteness
Theorem, transversal changes of coordinates, dimension, the Local Parametrization
Theorem, Nagata’s Jacobian Criteria, complexification, Nullstellensätze, M. Artin’s
Approximation Theorem, completions. With respect to the latter, note that Nash
rings have formal completions, as analytic rings have, but also analytic completions,
defined in the obvious way. Of course the behaviour is always the same. We will use
freely all these facts, quoting the corresponding result in the analytic category.
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VI Local Algebraic Rings

Summary. We study in this chapter some local properties of real and complex
algebraic varieties. This study consists of the comparison of the so-called local
algebraic rings and their completions. In Section 1 we define the local algebraic
rings and their Nash, analytic and formal completions, and check the typical flat
behaviour. In Section 2 we prove Chevalley’s Theorem concerning completions of
local algebraic domains. Section 3 is devoted to Zariski’s Main Theorem stating
that the completion of a local algebraic normal domain is normal. In Section 4 we
describe the completion of the normalization of a local algebraic domain. Finally,
we obtain in Section 5 Efroymson’s Theorem, which deals with the implications of
adding reality assumptions to Chevalley’s and Zariski’s statements.

1 Local Algebraic Rings

We introduce in this section several local rings attached to a point of an algebraic
subset of the affine space. These local rings are the suitable tools to study and
compare algebraic and analytic properties at a given point. Clearly, we can assume
without loss of generality that the point is the origin, and we will do so from now
on.

Let K = R or C, and consider indeterminates x = (x1, . . . , xn). We denote byRn,
K0[x] or K0[x1, . . . , xn] the localization of the polynomial ring K[x] at the maximal
ideal generated by x1, . . . , xn. Clearly

Rn = {f/g | f, g ∈ K[x], g(0) 6= 0}.

This is a local regular ring of dimension n with maximal ideal

{h ∈ Rn |h(0) 6= 0},

and the canonical inclusions

Rn ⊂ Nn ⊂ On ⊂ Fn

are local homomorphisms.

Definition 1.1 A local algebraic ring over K is a ring isomorphic to K0[x]/I with
x = (x1, . . . , xn); usually we will not specify “over K”. If A,B are two local algebraic
rings, a local algebraic homomorphism A → B is a homomorphism of K-algebras.
The field K is called the coefficient field.
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Local algebraic rings are the local rings of the algebraic category. We have to consider
the local rings corresponding to the other three categories. This is done as follows.

Let A = Rn/I be a local algebraic ring. The Nash completion of A is the Nash
ring Nn/INn. Similarly, the analytic completion of A is On/IOn, and the formal
completion of A is Fn/IFn.

Now let A∗ be a completion of A (either Nash, analytic or formal). The extension
to A∗ of an ideal a of A will be denoted by a∗. If m is the maximal ideal of A, then
m∗ is the maximal ideal of A∗.

After this preparation, comparing algebraic with Nash, analytic or formal prop-
erties is comparing A with its Nash, analytic or formal completion.

To study an extension A → A∗ we do not dispose of M. Artin’s Approximation
Theorem, and so all comparison results of Section V.4 have to be revised. However
we still have the following useful fact:

Lemma 1.2 Let y = (y1, . . . , yp) be new indeterminates and consider a linear poly-
nomial

P (y) = c0 + c1y1 + · · ·+ cpyp ∈ A[y].

Let a∗ = (a∗1, . . . , a
∗
p) ∈ A∗

p be a solution of the linear equation P (y) = 0. Then for
every integer α ≥ 1 there is a solution a = (a1, . . . , ap) ∈ Ap of the same equation
such that

a1 = a∗1, . . . , a1 = a∗1 mod m∗α.

Proof. Recall that A = Rn/I, and pick generators h1, . . . , hq ∈ Rn of the ideal I.
Choose also elements g0, . . . , gp ∈ Rn whose classes mod I are c0, . . . , cp. Then, the
linear equation given over A reduces to the following one over Rn:

g0 + g1y1 + · · ·+ gpyp + h1z1 + · · ·+ hqzq = 0,

where z1, . . . , zq are additional variables. Consequently, we can assume without loss
of generality that A = Rn.

Now, for every integer β > α set

a∗ = aα + a′ + a′′,

where
aαi = terms of degree < α of ai,

a′i = terms of degree ≥ α and < β of ai,

a′′i = terms of degree ≥ β of ai.

We have
aαi, a

′
i ∈ K[x], a′′i ∈ R∗n,

and
a′i ∈ mα, a′′i ∈ m∗β .
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As P (a∗) = 0, we have

P (aα) +

p∑
i=1

cia
′
i = −

p∑
i=1

cia
′′
i ∈ m∗β .

Hence, the polynomial in the left hand side has no monomial of degree < β, that is,
it belongs to mβ . This is valid for all β > α with α fixed, which by Krull’s Theorem
implies:

P (aα) ∈
⋂
β

(
{c1, . . . , cp}mα + mβ

)
= {c1, . . . , cp}mα.

Thus

P (aα) =

p∑
i=1

cibi,

with b1, . . . , bp ∈ mα, and finally, since aαi − bi = aαi = a∗i mod m∗α,

a = (aα1 − b1, . . . , aαp − bp)

is the solution we were looking for. �

Once the preceding lemma is available, we can repeat the proof of Proposition V.4.2
to get:

Proposition 1.3 (Flatness) We have:

a) a∗ ∩A = a for every ideal a of A. In particular, the canonical homomorphism
A→ A∗ is injective, and we will write A ⊂ A∗.

b) (a ∩ b)∗ = a∗ ∩ b∗ for every two ideals a, b of A.

c) An element δ ∈ A is a zero divisor in A∗ if and only if it is a zero divisor in
A.

d) Let K denote the total ring of fractions of A. Then A∗ ∩K = A.

2 Chevalley’s Theorem

In this section we discuss primary decompositions, which is a more involved matter.
We will show:

Proposition 2.1 (Chevalley) Let A be a local algebraic ring and A∗ a completion
of A. Let p ⊂ A be a prime ideal of height r. Then the extension p∗ = pA∗ is a
radical ideal whose associated prime ideals all have height r.

In this statement A∗ is either the Nash, the analytic or the formal completion. From
it we get
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Corollary 2.2
√
a∗ = (

√
a)∗ for every ideal a ⊂ A. In particular, A is reduced if

and only if so is A∗.

Proof. Clearly
a∗ ⊂ (

√
a)∗ ⊂

√
a∗,

and we have to see that the ideal (
√
a)∗ is radical. But

√
a is radical, and so√

a = p1 ∩ · · · ∩ pr for certain prime ideals pi. By the proposition, the extensions p∗i
are radical ideals, and by Proposition 1.3 b), we have

(
√
a)∗ = p∗1 ∩ · · · ∩ p∗r .

Hence (
√
a)∗ is radical, and the proof is finished. �

Now, by Proposition V.4.3, it is enough to prove the proposition for the Nash com-
pletion. The advantage of Nash completions is the following:

Lemma 2.3 Let A be a local algebraic ring and A∗ its Nash completion.

a) Let q ⊂ A∗ be a prime ideal, p = q∩A and K the quotient field of A/p. Then

dim(A∗/q) = tr.deg.(K : K).

b) Let q ⊂ q′ be two prime ideals of A∗. If q ∩A = q′ ∩A then q = q′.

Proof. a) Let L be the quotient field of A∗/q. Then, by Noether’s Projection
Lemma (Proposition II.2.6), after a linear change of coordinates the canonical ho-
momorphism K〈x1, . . . , xd〉 is injective and finite, where d = dim(A∗/q). Then, L is
algebraic over Nd, which in turn is algebraic over K[x1, . . . , xd], and so

d = tr.deg.(L : K).

But K(x1, . . . , xd) ⊂ K ⊂ L, and consequently

d = tr.deg.(K : K).

b) By a), dim(A∗/q) = dim(A∗/q′), and since q ⊂ q′, it must be q = q′.
�

We will now prove Proposition 2.1 for the Nash completion. In fact, we will prove
the following quite stronger assertion:

Proposition 2.4 Let A be a local algebraic ring and A∗ its Nash completion. Let
p ⊂ A be a prime ideal of height r. Then, the extension p∗ = pA∗ is a radical ideal
whose associated prime ideals are exactly the prime ideals lying over p, and all of
them have height r.
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Proof. Let q be an associated prime of p∗. We will show that q ∩A = p.
By Proposition 1.3 a), p = p∗ ∩ A ⊂ q ∩ A. For the converse inclusion consider

δ ∈ q ∩ A. Then δ is a zero divisor in the Nash ring A∗/p∗ ([A-McD 4.7]), which is
the Nash completion of the local algebraic ring A/p. By Proposition 1.3 c), δ is also
a zero divisor in A/p and so δ ∈ p. This gives p ⊃ q ∩A.

Let now q be a prime ideal lying over p: q∩A = p. Then q ⊃ p∗, and consequently
there is some associated prime q′ of p∗ contained in q. Thus, q′ ∩ A = p, and by
Lemma 2.3 b) we get q′ = q, and q is an associated prime of p∗.

So far, we have shown that the associated primes of p∗ are the prime ideals q of
A∗ lying over p. We will next see that all of them have height r = ht(p).

First we notice that any chain of prime ideals of A∗ contained in q gives a chain
of prime ideals of A contained in p, and by Lemma 2.3 the length of both chains is
the same. Hence r = ht(p) ≥ ht(q). Conversely, let p = p0 ⊃ p1 · · · ⊃ pr be a chain
of prime ideals of A. We then put q = q0, and so q0 ⊃ p∗1. It follows that q0 contains
some associated prime q1 of p∗1, and we know that q1 ∩ A = p1. Repeating this, we
end up with a length r chain of prime ideals of A∗ contained in q, and so ht(q) ≥ r.

It remains to see that p∗ is a radical ideal. To do so we can assume A = Rn, A∗ =
Nn and use the Equidimensionality Jacobian Criterion (Proposition II.4.8): we will
find an element in the regularity ideal Rr(p

∗) which is not a zero divisor in A∗/p∗,
where r = n − dim(A∗/p∗) = ht(p∗). We recall that those zero divisors are the
elements of the associated primes q of p∗, and it will be enough to see that no q
contains Rr(p

∗). This will finally follow from showing that p∗ generates the maximal
ideal of the localization A∗q, since in this case

A∗q/p
∗A∗q

is a field, that is, a regular ring of dimension 0 = ht(q) − r, and by the Regularity
Jacobian Criterion (Proposition II.4.3) Rr(p

∗) 6⊂ q. Let us prove, hence, that

p∗A∗q = qA∗q.

First of all, by Lemma 2.3 a)

tr.deg.(K : K) = dim(A∗/q) = n− r,

where as usual K stands for the quotient field of A/p. We then apply Noether’s
Projection Lemma for polynomials ([A-McD §5 Ex.16]), and after a linear change
of coordinates the classes xi mod p, 1 ≤ i ≤ n− r are integral over the polynomial
ring K[x1, . . . , xn−r]. Then, any equation of integral dependence of xi mod p gives a
polynomial Pi(x

′, xi) ∈ p∩Rn−r[xi] and, maybe after substituting Pi by a derivative,
we can suppose that ∂Pi/∂xi /∈ p (n− r < i ≤ n). Clearly

δ =
D(Pn−r+1, . . . , Pn)

D(xn−r+1, . . . , xn)
=

∏
n−r<i≤n

∂Pi
∂xi

/∈ p = q ∩Rn.
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Consider the ideal
I = {Pn−r+1, . . . , Pn}A∗ ⊂ p∗.

Since I is generated by r elements, 1 ∈ Gr(I ′) and the regularity ideal is Rr(I) =√
Jr(I). Hence, δ ∈ Rr(I)\q, and by the Regularity Jacobian Criterion (Proposition

II.4.3) the local ring
A∗q/IA

∗
q

is regular of dimension ht(q)− r = 0. In other words,

qA∗q = IA∗q ⊂ p∗A∗q .

�

We finally have:

Proposition 2.5 Let A be a local algebraic ring and A∗ a completion of A. Let
p ⊂ A, q ⊂ A∗ be prime ideals such that q ∩ A = p. Then Ap is regular if and only
if so is A∗q.

Proof. By Proposition V.4.5, we can assume without loss of generality that A∗ is
the Nash completion of A. Then q is an associated prime of the extension p∗ = qA∗,
which is a radical ideal, and d = dim(Ap) = dim(A∗q). Hence, if Ap is regular, its
maximal ideal pAp is generated by d elements, which in turn generate pA∗q = qA∗q,
and A∗q is regular. The converse implication follows by the same argument as in
Proposition V.4.5, using Lemma 1.2 instead of Proposition V.4.1. �

3 Zariski’s Main Theorem

In this section we prove the famous Zariski’s Main Theorem. To start with, we
need a lemma that mixes completions with the local parametrization techniques of
Sections II.2, II.3 and II.4:

Lemma 3.1 (Zariski’s Condition D) Let A be a local algebraic domain, A∗ a com-
pletion of A and B∗ the normalization of A∗. There is then an element δ ∈ A such
that δB∗ ⊂ A∗.

Proof. We will prove the result for the Nash completion, and the same argument
would work for the other completions. First of all, let A = Rn/p, where p is a
prime ideal of height, say, r of Rn. Then A∗ = Nn/p∗ and, by Chevalley’s Theorem
(Proposition 2.4),

p∗ = q1 ∩ · · · ∩ qs,
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where the qi have height r and lie over p. By notational convenience we denote also
by qi the associated prime qi mod p∗ of (0) ⊂ A∗. We recall that

d = n− r = tr.deg.(K : K),

where K stands for the quotient field of A (Lemma 2.3 a)).
Next, we recall the description of the normalization B∗ of A∗ given in Proposition

III.2.2. Let K∗ denote the total ring of fractions of A∗ and K∗i that of A∗i = Nn/qi
for 1 ≤ i ≤ s. Then K∗ is canonically isomorphic to K∗1 × · · · × K∗s , and this
isomorphism maps B∗ onto the product B∗1 × · · · × B∗s , where the B∗i ’s are the
normalizations of the A∗i ’s.

We now apply simoultaneously Noether’s Projection Lemma to p and the qi’s.
This is possible because the linear changes used for polynomials, and the ones used
for power series are of the same type (compare [A-McD 5 Ex.16] with II.2.3 and
Proposition II.2.6). In the end we have the following situation:

• Every canonical homomorphism Nd → A∗i is finite and injective, and the ele-
ment θi = xd+1 mod qi is a primitive element of K∗i over the quotient field
L∗ of Nd.

• The canonical homomorphism Rd → A is injective, and the elements

θ = xd+1 mod p, xd+2 mod p, . . . , xn mod p

are integral over Rd.

We are thus in the conditions of Propositions II.3.2 and II.4.4, from which we stress:

• The irreducible polynomial of θi over L∗ is a distinguished polynomial Pi ∈
Nd[t] whose discriminant δi ∈ Nd has the property that δiB

∗
i ⊂ A∗i .

On the other hand, θ is integral over Rd and so there is a monic polynomial P ∈
Rn[t] such that P (θ) = 0. This implies P (θi) = 0 for each i, and since Pi is the
irreducible polynomial of θi and it is distinguished, we have P = UPi for some
U ∈ Nd[t]. Consequently, δ = ηδi, where δ ∈ Rn is the discriminant of P and
η ∈ Nd (by [L V.10] this η is exactly the product of the discriminant of U and the
resultant of U,Pi, but we do not need such a detail here). Hence, from the last
remark we deduce:

a) There is an element δ ∈ Rd ⊂ A ⊂ A∗ such that δB∗i ⊂ A∗i for all i.

We next use that every xi mod p (d + 1 < i < n) is integral over Rd: we pick
equations of integral dependence

Qi(xi mod p) = 0

with Qi ∈ Rd[t] of minimal degree. Furthermore, we put Qd+1 = P , and consider
the Jacobian

δ′ =
D(Qd+1(xd+1), . . . , Qn(xn))

D(xd+1, . . . , xn)
=
∂Qd+1(xd+1)

∂xd+1
· · · ∂Qn(xn)

∂xn
∈ Rn.
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By the minimality of the Qi’s, this Jacobian does not belong to p, and consequently
δ′ /∈ p∗. Since δ′ ∈ Jr(p∗) and p∗ is a reduced ideal whose associated primes have
all height r, we deduce from the Regularity Jacobian Criterion (Proposition II.4.3):

b) The localization A∗q is a local regular ring for every prime ideal q such that
δ′ /∈ q.

After this preparation, we will prove the lemma by showing that

(δδ′)pB∗ ⊂ A∗

for some integer p ≥ 0.
To see this, we put ρ = δδ′ and remark that from a) it follows

ρB∗ ⊂ (ρB∗1)× · · · × (ρB∗s ) ⊂ A∗1 × · · · ×A∗s.

Thus, it is enough to see that

ρq (A∗1 × · · · ×A∗s) ⊂ A∗

for some q ≥ 0. Furthermore, A∗1×· · ·×A∗s ⊂ B∗ is a finite A∗-module (Proposition
III.2.3), and consequently we are reduced to show that for every (f1, . . . , fs) ∈
A∗1 × · · · ×A∗s there is q ≥ 0 such that

ρq(f1, . . . , fs) ∈ A∗.

For this, consider the ideal

I = {h ∈ A∗ |h(f1, . . . , fs) ∈ A∗}.

Clearly, we must prove that δ ∈
√
I. But did it not belong, there would be a

prime ideal q such that ρ /∈ q. Then δ′ /∈ q and, by b) above, A∗q would be a local
regular ring. In particular it is a domain, and q contains one and only one associated
prime ideal of (0), say q1. Then for all i > 0 we find hi ∈ qi \ q and the element
h =

∏
i>1 hi ∈

⋂
i>1 qi \ q. We claim that h ∈ I. The reason is that hf = 0 mod qi

for f ∈ A∗i and i > 1, which implies

h(f1, . . . , fs) = h(f1, 0, . . . , 0) = h(f1, . . . , f1) = hf1 ∈ A∗.

But I ⊂ q and h /∈ q, which is a contradiction. The proof of the lemma is finished.
�

We now prove:

Proposition 3.2 (Zariski’s Main Theorem) Let A be a local algebraic ring and A∗

a completion of A. Then, A is a normal domain if and only if so is A∗.
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Proof. As usual, to prove the statement for the three completions of A it is enough
to do it for the Nash one. Hence we suppose from now on that A∗ is the Nash
completion of A. One implication is easy: if A∗ is integrally closed in its total ring
of fractions K∗, so is A in its quotient field K, because A∗∩K = A (Proposition 1.3
d)). Thus, we assume that A is a normal domain and will prove that A∗ is normal,
too, or, in other words, that A∗ coincides with its integral closure B∗ in K∗.

To start with, we prove the following weaker fact:

Let P be a height one prime ideal of A and consider the multiplicative system
SP = A \P. Then, the ring of fractions S−1

P A∗ is integrally closed in its total
ring of fractions, which is K∗.

Indeed, set D = S−1
P A∗. Since A is a domain, no element of SP is a zero divisor in

A, nor, by Proposition 1.3 c), in A. Thus A∗ ⊂ D ⊂ K∗. Let z ∈ K∗ be integral
over D, say z = a/b with a, b ∈ A∗ and b not a zero-divisor in A∗. We consider the
ideal

I = {c ∈ D | ca ∈ bD}.
If 1 ∈ I we are done. Otherwise, I ⊂ R for some proper prime ideal R of D. Such
a prime ideal is in fact a prime ideal of A∗ which does not meet S, that is, such
that R ∩ A ⊂ P. Moreover, R ∩ A 6= (0). For, did R lie over (0) ⊂ A, it would
be an associated prime of (0) ⊂ A∗ (Chevalley’s Theorem for Nash completions,
Proposition 2.4) and all its elements would be zero divisors in A∗, which b ∈ I is
not. Thus, as ht(P) = 1, we conclude R ∩ A = P; hence, by Chevalley’s Theorem
again, R is a minimal associated prime of the extended ideal PA∗. Now, A being
a normal domain, the localization AP is a normal domain of dimension 1, and
consequently its maximal ideal PAP is principal ([A-McD 9.2]). But

RDR = RA∗R = PA∗R,

since R is a minimal prime of PA∗, and we conclude that the maximal ideal of the
local ring DR is principal. Since D has no nilpotent element, it follows easily that
DR is a domain, and by [A-McD 9.2] it is a normal domain. We finally pick any
equation of integral dependence of z over D and get after localization at R one over
DR. By the preceding remarks, we deduce z ∈ DR, which means that there are
elements c, u, v ∈ D, u, v /∈ R with

u(va− bc) = 0

(as D is not a domain, we have to use carefully the definition of a ring of fractions,
see [A-McD §3]). Whence uv ∈ I ⊂ R and uv /∈ R, contradiction. In this way we
have proved our claim.

Now we will show that A∗ itself is integrally closed in K∗. By Zariski’s Condition
D (Lemma 4.1) there is an element δ ∈ A such that δB∗ ∈ A∗. We have the following
formula

δA =
⋂

δ∈P, ht(P)=1

I(P), (1)
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where I(P) = A ∩ δAP for every prime ideal P ⊂ A.
Let us admit (1) for the moment, and deduce from it that B∗ = A∗. Since δ is

not a zero divisor in A∗, it suffices to see that δB∗ ∈ δA∗. But, by Proposition 1.3
b), the formula (1) above extends to A∗ in the form

δA∗ =
⋂

δ∈P,ht(P)=1

I(P)∗,

and we are reduced to show that

δB∗ ⊂ I(P)∗

for every height 1 prime P ⊂ A that contains δ. But B∗ is integral over A∗ ⊂ S−1
P A∗,

and the latter ring is integrally closed, so that B∗ ⊂ S−1
P A∗. It follows

δB∗ ⊂ A∗ ∩ δ(S−1
P A∗),

and we have to see that A∗ ∩ δ(S−1
P A∗) ⊂ I(P)∗. Hence let z ∈ A∗ be such that

uz − δy = 0,

where y ∈ A∗, u ∈ SP = A \P (note that no element of SP is a zero divisor in A∗,
which simplifies the description of S−1

P A∗). We then have the linear equation

uz− δy = 0, c, δ ∈ A,

with a solution z = z, y = y in A∗. By Lemma 1.2, for every α ≥ 1 there is a
solution z = zα, y = yα in A such that zα = z mod m∗α. Hence uzα = δyα, and
since c /∈ P,

zα ∈ A ∩ δAP = I(P).

Consequently

z ∈
⋂
α

(I(P)∗ + m∗α) = I(P)∗,

as wanted.
It only remains to prove the formula (1) stated above. This is a general fact valid

in any noetherian normal domain, but as it is not explicitely formulated in our basic
reference [A-McD] we include a proof.

Let δA = a1 ∩ · · · ∩ as be a primary decomposition of δA, with associated primes

P1 =
√
a1, . . . ,Ps =

√
as.

If we show that
ht(P1) = · · · = ht(Ps) = 1,

then aj 6⊂ Pi for j 6= i, and our formula (1) follows from [A-McD 4.9].
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Thus, we put P = Pi, and will see that P has height 1, or, more explicitely, that
PAP is principal. Set C = AP and n = PAP. Then C is a local normal domain
with quotient field K. Furthermore, n is still an associated prime of δC (again by
[A-McD 4.9]). We now consider

n−1 = {x ∈ K |xn ⊂ C} ⊃ C,

and claim that

n−1n = C (2)

Clearly, n−1n ⊂ C is an ideal and contains n. Hence, if it were a proper ideal, it
would coincide with n. It would then follow n(n−1)m = n for all m ≥ 1, and so

a(n−1)m ⊂ C

for any chosen non-zero element a ∈ n. Hence,

C[n−1] ⊂ a−1C.

As a−1C is a finite C-module, so would be C[n−1], which consequently would be
integral over C. As C is normal, we conclude n−1 ⊂ C. But this is impossible. For,
by a general property of associated primes ([A-McD 4.5]), there is a ∈ C such that n
is the radical of the ideal a = {c ∈ C | δ divides ac}. Hence nm ⊂ a for some m ≥ 1.
Let z = a/δ ∈ K; it holds znm ⊂ C. If n−1 ⊂ C, then z ∈ C, and we would get
1 ∈ a ⊂ n, which is absurd. We are done.

Once (2) is proved we are ready to show that n is principal. By Nakayama’s
Lemma, n 6= n2 and we pick an element t ∈ n \ n2. Clearly, tn−1 ⊂ C, and if it
were tn−1 ⊂ n we would get tC = tn−1n ⊂ n2 by (2). Hence, tn−1 = C, and so
n = tn−1n = tC by (2) again.

Thus we have completed the proof that n = PAP is principal, and with it the
proof of (1) and the proof of Zariski’s Main Theorem. �

4 Normalization and Completion

We will describe here the normalization of a local algebraic domain. First we have
the following consequence of Zariski’s Condition D:

Proposition y Definition 4.1 Let A be a local algebraic domain, K its quotient
field and B the integral closure of A in K. Then:

a) B is a finite A-module and a noetherian ring.

b) B has finitely many maximal ideals, which are the prime ideals n1, . . . , nr of
B lying over the maximal ideal m of A.
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c)
√
mB = n1 ∩ · · · ∩ nr.

The ring B is the normalization of A.

Proof. By Zariski’s Condition D (Lemma 3.1), there is a non-zero element δ ∈ A
such that δB∗ ⊂ A∗. Hence δB ⊂ A∗ ∩ K = A (Proposition 1.3 d)). Since A is
noetherian, we deduce that δB is a finite A-module, and consequently so is B. It
also follows that B is noetherian ([A-McD 6.5]). Let now n be a prime ideal of B.
By a basic fact on integral dependence ([A-McD 5.8]) n is maximal if and only if
n ∩A is maximal. It follows that the maximal ideals of B are the prime ideals of B
lying over m, or, equivalently, the prime ideals of B containing mB. Hence they are
exactly the associated primes of mB and their intersection is the radical of mB.

�

We are ready to compare the normalization of a local algebraic domain and its
completion. We recall that our coefficient field is K = R or C.

(4.2) Normalization after completion. Let A be a local algebraic domain over
K and K its quotient field. We consider the normalization B ⊂ K of A and a
completion A∗ of A.

By Chevalley’s Theorem (Proposition 2.1), A∗ is reduced and the ideal (0) ⊂ A∗
has finitely many associated primes qi. By Proposition and Definition 4.1, B has
finitely many maximal ideals nj . We are to compare the qi’s and the nj ’s through the
normalization B∗ of A∗, as described in Proposition III.2.2: B∗ is a direct product
of the normalizations B∗i of the domains A∗/qi. Recall also that the factors B∗i are
the localizations of B∗ at its maximal ideals n∗i . As usually, we suppose that A∗

is the Nash completion, since what we prove for it will also hold for the others by
Nagata’s comparison theorems. First of all, we have:

a) B∗ ∩K = B

Clearly, B∗ ∩K ⊃ B. On the other hand, by Zariski’s Condition D, there is δ ∈ A
with δB∗ ⊂ A∗. Consequently

δ(B∗ ∩K) ⊂ (δB∗) ∩K ⊂ A∗ ∩K = A

(the last equality by Proposition 1.3 d)). Hence δ(B∗ ∩K), and thus B∗ ∩K, is a
finite A-module. It follows that B∗ ∩K is integral over A, and so B∗ ∩K ⊂ B. �

Then:

b) Every maximal ideal n∗i of B∗ lies over one nj of B.

Since n∗i lies over the maximal ideal of A∗, it lies over the one m of A. This implies
that n∗i ∩B is a prime ideal of B that lies over m, and by Proposition and Definition
4.1, it is a maximal ideal of B, that is, some of the nj ’s. �

Conversely, we have
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c) Over every maximal ideal nj of B there lies some maximal ideal n∗i of B∗.

It is enough to show that the extended ideal njB
∗ is proper, since then it will be

contained in some maximal ideal n∗i of B∗, which of course will lie over nj . Now,
to see that njB

∗ is indeed proper, we argue as follows. As B is a finite A-module,
there are elements z1, . . . , zm ∈ B such that B = A[z1, . . . , zm], and we consider the
extensions

B ⊂ C = A∗[z1, . . . , zm] ⊂ B∗.

Since B∗ is integral over C, any proper ideal of C extends to a proper ideal of B∗

([A-McD 5.10]) and so we only have to see that njC is proper. But suppose 1 ∈ njC.
Then, there is an expression

1 = P1(a, z)c1 + · · ·+ Ps(a, z)cs,

where a = (a1, . . . , ap) ∈ (A∗)p, z = (z1, . . . , zm), c1, . . . , cs ∈ nj and every P` ∈
Z[a, z] is linear in the ak’s. We now apply Lemma 1.2 to this equation in the ak’s
and find a′ ∈ Ap such that

1 = P1(a′, z)c1 + · · ·+ Ps(a
′, z)cs.

But then 1 ∈ nj , which is absurd. This concludes the proof of c). �

(4.3) Completion after normalization. We will next construct the completion of
every localization Bnj (we keep the notations of 4.2). There are several possibilities,
depending on the type of extension we get via the canonical homomorphism K =
A/m ⊂ B/nj = K′. Note that since B is integral over A, that extension is algebraic,
and must be either R ⊂ R, R ⊂ C or C ⊂ C. The simplest situation is:

a) The extension is trivial, that is, K = B/nj.

We pick a surjective homomorphism K0[x]→ A, with x = (x1, . . . , xn), and elements
z1, . . . , zm in B such that B = A[z1, . . . , zm]. Since the extension K ⊂ B/nj is trivial,
there are z0

1 , . . . , z
0
m ∈ K ⊂ B with

z1 − z0
1 , . . . , zm − z0

m ∈ nj .

We then put y = (y1, . . . , ym) and extend K0[x]→ A to a surjection

K0[x, y]→ Bnj

by
y1 7→ z1 − z0

1 , . . . , ym 7→ zm − z0
m.

We have thus shown that Bnj is a local algebraic ring over K, and can consider its
Nash completion (Bnj )

∗.
Now, since the canonical homomorphism A→ Bnj is local, it extends to a Nash

homomorphism A∗ → (Bnj )
∗ (this follows immediately from Proposition II.1.3).
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The kernel of this extension lies over (0) ⊂ A, because A→ Bnj is injective. Then,
by Chevalley’s Theorem for Nash completions (Proposition 2.4), that kernel is an
associated prime qk.

Next, we consider a maximal ideal n∗i of B∗ that lies over nj and the correspond-
ing local homomorphism Bnj → B∗i = B∗n∗i . Again we can extend this to a Nash

homomorphism (Bnj )
∗ → B∗i and we obtain

A∗ → A∗/qk ↪→ (Bnj )
∗ → B∗i .

Clearly, this is the canonical homomorphism A → B∗i , and qk is its kernel; in
particular, k = i. Moreover, by Zariski’s Main Theorem (Proposition 3.2), the Nash
ring (Bnj )

∗ is normal, and we conclude that (Bnj )
∗ = B∗i . This shows in addition

that the maximal ideals n∗i lying over nj correspond to the associated primes qi which
occur as kernels of Nash homomorphisms A → (Bnj )

∗ that extend the canonical
inclusion A → Bnj . But such a Nash homomorphism is completely determined by
the images of the generators of the maximal ideal m∗ of A∗ (Proposition I.1.3 a)),
and since m∗ = mA∗, those images are prescribed from the very beginning. Whence,
there is a unique n∗i lying over nj . �

The other possibility is that K = R ⊂ B/ni = C. Then if n∗i lies over nj , the
coefficient field of B∗i = B∗n∗i must be C. We still need to distinguish two subcases:

b) B is not 2-real.

Then
√
−1 ∈ K (Proposition and Definition II.5.6), and since B is integrally closed

in K,
√
−1 ∈ B and C ⊂ B. We now repeat the reasoning of a), but notice that

z0
1 , . . . , z

0
m ∈ C. This leads to a surjection C0[x, y] → Bnj . In this way, Bnj is a

local algebraic ring over C. The rest of the argument goes the same: we get a Nash
homomorphism A∗ → (Bnj )

∗ whose kernel is the associated prime qi corresponding
to n∗i . From this we conclude that there is a unique maximal ideal n∗i lying over
nj and the localization B∗i of B∗ at n∗i is the Nash completion (Bnj )

∗ of Bnj . It
is important to observe the extension of the coefficient field along this process, and
the small abuse of terminology when we consider homomorphisms from A∗, whose
coefficient field is R, to (Bnj )

∗, whose coefficient field is C. Clearly this abuse does
not affect the argument. �

c) B is 2-real.

Then
√
−1 /∈ K, and the extension B[

√
−1] is a domain (Proposition and Definition

II.5.6). As the coefficient field of the Nash ring B∗i is C, we get a homomorphism
B[
√
−1]→ B∗i . Hence n∗i lies over a maximal ideal n′ of B[

√
−1] which in turn lies

over nj . We can again construct a surjective homomorphism C0[x, y] → B[
√
−1]n′

and B[
√
−1]n′ is a local algebraic ring over C. The Nash completion of this local

algebraic ring is still denoted by (Bnj )
∗ and once again we obtain a Nash homo-

morphism A∗ → (Bnj )
∗ whose kernel determines n∗i . Also, (Bnj )

∗ is canonically
isomorphic to B∗i .
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The more delicate point here is the uniqueness of n∗i . As in the previous cases,
this is a consequence of the fact that the kernel qi of the Nash homomorphism
φ : A∗ → (Bnj )

∗ = B∗i is completely determined by its restriction ϕ : A → Bnj to
A. This fact in turn comes from the following characterization of qk. Let f ∈ A∗
and for every α ≥ 0 write f in the form

f = fα + hα, fα ∈ A, hα ∈ m∗α.

Then φ(f) = 0 if and only if for every β ≥ 0 there is α ≥ β such that ϕ(fα) ∈ nβj .
To obtain this characterization, suppose first that the condition holds true. Then

for every β ≥ 0 there is α ≥ β with

φ(f) = ϕ(fα) + φ(hα) ∈ nβjB
∗
i + n∗i

α ⊂ n∗i
β ,

and so
φ(f) ∈

⋂
β

n∗i
β = (0).

Conversely, suppose that φ(f) = 0. Then

ϕ(fα) = −φ(hα) ∈ n∗i
α,

and we must see that for every β ≥ 0 there is some α such that

n∗i
α ∩Bnj ⊂ nβj .

We recall the construction of (Bnj )
∗ = B∗i : it is the Nash completion of the local

algebraic ring B[
√
−1]n′ . By (Proposition 1.3 a))

(n∗i )
α ∩B[

√
−1]n′ = n′

α
,

and consequently we are reduced to find α such that

n′
α ∩Bnj ⊂ nβj .

Since all prime ideals of B[
√
−1] lying over nj are maximal (a basic property of

integral dependence, [A-McD 5.8]) we deduce that n′ is the unique prime ideal of
B[
√
−1]n′ lying over nj . This means that

n′ =

√
njB[

√
−1]n′ ,

and since this localization is a noetherian ring, we get

n′
γ ⊂ njB[

√
−1]n′

for some γ ≥ 1. Hence

n′
γβ ⊂ nβjB[

√
−1]n′ ,
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and we will have finished if

nβjB[
√
−1]n′ ∩Bnj = nβj . (1)

To see this, consider generators h1, . . . , hm of nβj . An element a belongs to the left
hand side of (1) if and only if

ua = c1h1 + · · ·+ cmhm,

where u, c` ∈ B[
√
−1], u /∈ n′. We then write

u = u′ +
√
−1u′′, c` = c′` +

√
−1c′′` ,

where u′, u′′, c′`, c
′′
` ∈ B. As u /∈ n′, then either u′ /∈ n′ or u′′ /∈ n′. Suppose, say, the

first condition. Then u′ /∈ nj and we have

u′a = c′1h1 + · · ·+ c′mhm.

So a belongs to the ideal generated by h1, . . . , hm in Bnj , which is the right hand
side of (1). This gives the non-immediate inclusion and concludes the proof of the
characterization of the elements of qk. As explained before, the uniqueness of n∗i is a
consequence of that characterization, and the discussion of this case c) is complete.

�

We summarize the constructions of the preceding two paragraphs in a single state-
ment:

Proposition 4.4 Let A be a local algebraic domain, A∗ a completion of A and B
the normalization of A. Then, the normalization of A∗ is the completion of B, that
is,

(A∗)ν ' (Bn1
)
∗ × · · · × (Bns)

∗
,

where n1, . . . , ns are the maximal ideals of B. In particular, the isomorphisms

(A∗/qi)
ν ' (Bni)

∗, 1 ≤ i ≤ s,

give a bijection between the associated primes qi of (0) ⊂ A∗ and the maximal ideals
ni of B.

5 Efroymson’s Theorem

The goal of this section is to describe the behaviour of the completions of a local
algebraic ring with respect to orderings. To do this we fix the following notations.

Let A be a local algebraic domain over R, m its maximal ideal and K its quotient
field. Let A∗ denote the Nash (resp. analytic, formal) completion of A. Namely, we
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have A = Rn/p, A∗ = Rn∗/p∗. By Chevalley’s Theorem (Proposition 2.1) the ideal
p∗ is radical, and its associated primes have all height = ht(p), say

p∗ = q1 ∩ · · · ∩ qs.

Then, for every i = 1, . . . , s, we put A∗i = A∗/qi and denote by K∗i the quotient field
of A∗i .

In this situation, the problem is to know how an ordering of the domain A can
be extended to some A∗i . For this we need a new notion:

Definition 5.1 Let B be a local domain, with maximal ideal n. Then:

a) A local ordering of B is an ordering < such that for every g ∈ B and f ∈ n
with 0 < g < f it follows g ∈ n; we also say that n is convex with respect to <.

b) We say that B is locally real if there exists some local ordering of B.

Remarks 5.2 Let B be a local algebraic (resp. a Nash, an analytic, a formal) ring
over R with maximal ideal n, and < a local ordering of B. Then:

a) Any h ∈ B with h(0) > 0 is positive in <.
If h were negative, then −h would be positive. Hence

0 < −h < h(0)− h, h(0)− h ∈ n, −h /∈ n,

and n would not be convex. �
b) Every h ∈ B is bounded by a real number, that is, −M < h < M for some

positive real number M .
Take −M < h(0) < M . Then (M −h)(0) = M −h(0) > 0 and by a), M −h > 0.

Analogously, h+M > 0, and the assertion is proved. �
c) The maximal ideal n consists exactly of the infinitesimal elements, that is, the

elements f ∈ B such that −ε < f < ε for every positive real number ε.
If f ∈ n, then (ε− f)(0) = (ε+ f)(0) = ε > 0 and by a), −ε < f < ε. If f /∈ n,

then f(0) 6= 0 and we set ε = 1
2f(0) > 0. In case f(0) > 0, (f − ε)(0) = 1

2f(0) > 0
and, from a) once more, it follows that 0 < ε < f . A similar argument shows that
f < −ε < 0 in case f(0) < 0. Thus f is not infinitesimal. This concludes the proof.

�

When the Implicit Functions Theorem holds, all orderings are local:

Proposition 5.3 Let B be a Nash (resp. an analytic, a formal) ring over R with
maximal ideal n. Then every ordering < of B is a local ordering.

Proof. Suppose 0 < g < f with g ∈ B and f ∈ n. Then f(0) = 0 and we must see
that g(0) = 0. If g(0) < 0, then −g = h2 for some h ∈ B (II.4.7) and so −g > 0,
against the hypothesis. Thus g(0) ≥ 0. If g(0) > 0, then (f −g)(0) = −g(0) < 0 and
f − g = −h2 for some h ∈ B (II.4.7). Hence f − g < 0, also against the hypothesis.
Consequently, g(0) = 0 as wanted. �

After this preparation we can state the central result:
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Proposition 5.4 Let < be an ordering of A. The following assertions are equiva-
lent:

a) < is a local ordering.

b) < extends to some A∗i = A∗/qi.

If this is the case, qi corresponds via the bijection of Proposition 4.4 to the unique
maximal ideal ni of the normalization B of A which is convex with respect to <.

Proof. The implication b) ⇒ a) is an immediate consequence of Proposition 5.3.
For the converse implication it is enough to prove the case of the Nash completion,
by Proposition V.4.9 c), and to do it, we start with the particular case A = Rd,
A∗ = Nd.

We will use Serre’s Criterion as stated in the proof of Proposition V.4.9 c): let
f1, . . . , fm ∈ Rd be positive in < and let us see that the equation

f1y
2
1 + · · ·+ fmy

2
m = 0 (1)

has in Nd only the trivial solution.
Indeed, for every real number ε > 0 the polynomial

hε = ε− (x2
1 + · · ·+ x2

d)

is positive in < (because hε(0) > 0 and < is local). Then, by E. Artin’s Specialization
Theorem ([L XI.3 Lem.2]), we have

{x ∈ Rd |hε(x) > 0, f1(x) > 0, . . . , fm(x) > 0} 6= ∅.

As this holds for every ε > 0 we deduce that the origin is adherent to the open set

Z = {x ∈ D | f1(x) > 0, . . . , fm(x) > 0},

where D ⊂ Rd is an open polycylinder centered at the origin on which f1, . . . , fm
are well defined analytic functions (such a D exists because the fi’s are rational
functions whose denominators do not vanish at the origin).

Let now g1, . . . , gm ∈ Nn ⊂ On be a solution of the equation (1), and consider
the associated functions

agi : D(gi)→ R, 1 ≤ i ≤ m

(see I.2). Since f1g
2
1 + · · ·+ fmg

2
m = 0 in Od, this holds the same for the associated

functions on some non-empty open neighborhood of the origin

U ⊂ D ∩D(g1) ∩ · · · ∩D(gm).

It follows that each agi vanishes on the open set U ∩ Z ⊂ D(gi). But Z is adherent
to the origin, so that U ∩Z 6= ∅, and from the Identity Principle (Proposition I.2.9)
we deduce gi = 0. This ends the proof of the particular case.

We next apply to p Noether’s Projection Lemma for polynomials ([A-McD §5
Ex.16]), and can assume the following conditions:



136 VI. Local Algebraic Rings

a) The canonical homomorphism Rd → A is local and injective, with d = dim(A).

b) The classes θj = xj mod p ∈ A are integral elements over Rd.

Let now < be our local ordering of A. It restricts to an ordering of Rd, which is also
local; this restriction is again denoted by <. By the particular case already solved,
< extends from Rd to Nd, or, in other words, from the quotient field L of Rn to the
one L∗ of Nd. Then, we consider the real closure F of L∗ and get a chain of ordered
algebraic extensions

L ⊂ L∗ ⊂ F.

In addition, we have the ordered finite extension L ⊂ K, that must also embed in
F : K ⊂ F . For these facts we refer to [L XI.2 Th.3].

On the other hand, consider the element θj and a monic polynomial P ∈ Rd[t]
such that P (θj) = 0 (which exists by b)). By Weierstrass’s Preparation Theorem

P = UPj , U, Pj ∈ Nd[t], U(0, 0) = η 6= 0,

and Pj is distinguished. Set θ∗j = (θj). Since < is local, the element θj ∈ m is
infinitesimal (Remark 5.2 c)), that is,

−ε < θj < ε for every real number ε > 0.

Suppose now U(θj) = 0. Then

θqj + a1θ
q−1
j + · · ·+ aq = 0, aq(0) = U(0, 0) = η 6= 0,

where the coefficients a` ∈ Nd are bounded (Remark 5.2 b)):

−M < a` < M for some real number M > 1.

A straightforward computation gives

∓aq = ±(θq−1
j + a1θ

q−2
j + · · ·+ aq−1)θj < qMε (2)

for every ε > 0.
Then if, say, η > 0, we have

(aq − qMε)(0) = η − qMε > 0

for small enough ε > 0, and by Remark 5.2 a)

aq > qMε,

against (2). If η < 0 we would similarly conclude −aq > qMε also against (2).
The conclusion is that θj is a root of the distinguished polynomial Pj .
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Once we have the Pj ’s, we use the method of the second half of the proof of
Lemma III.1.1 to construct a homomorphism

ϕ : Nn → Nd[θd+1, . . . , θn] ⊂ F

such that
x1 7→ x1, . . . , xd 7→ xd; xd+1 7→ θd+1, . . . , xn 7→ θn.

By construction, ϕ|Rn coincides with the composition

Rn → Rn/p = A ⊂ K ⊂ F,

and so p = Rn ∩ ker(ϕ). It follows from Proposition 2.4 that ker(ϕ) is an associated
prime qi of p∗, and we get another embedding

A∗i = Nn/qi ↪→ F.

Finally, the restriction to A∗i of the ordering of the real closed field F gives the
extension of < to A∗i we were looking for. This completes the equivalence between
a) and b).

We now prove the last assertion of the statement. The bijection of Proposition
4.4 gives a maximal ideal ni of B and a local inclusion Bni → B∗i , where B∗i stands
for the normalization of A∗i . The extension of < to A∗i is actually an ordering of
the quotient field of A∗i , and, consequently, an ordering of B∗i . Thus the coefficient
field of B∗i is R (Proposition III.2.6), and by Proposition 5.3 this ordering of B∗i is
local. Since the inclusion Bni → B∗i is local, the restriction to Bni is also a local
ordering. But this latter restriction is exactly our initial ordering < of A, because B
is contained in the quotient field K of A. Thus we see that ni is convex with respect
to <. It only remains to see that no other nj is convex with respect to <. But, if
j 6= i, there are elements

x ∈ nj \ ni, y ∈ ni \ nj ,

and the element z = x2 − y2 ∈ B verifies

x2 − z = y2 ∈ ni \ nj , y2 + z = x2 ∈ nj \ ni.

Since ni is convex with respect to <, the first condition implies z > 0. Indeed, if
z < 0 then 0 < x2 < x2 − z and by convexity x2 ∈ ni, contradiction. Similarly, if nj
were also convex, the second condition would imply z < 0, which is impossible. We
are thus done. �

From the preceding result and the fact that all orderings of the A∗i ’s are local (Propo-
sition 5.3) it follows immediately:

Corollary 5.5 (Efroymson) A local algebraic domain is locally real if and only if
some A∗i is formally real.
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Flatness, 107, 120
Formal completion of a local algebraic

ring, 119
Formal completion of a Nash ring, 117
Formal completion of an analytic ring,

107
Formal homomorphism, 17
Formal power series, 4
Formal Puiseux series, 60
Formal ring, 17
Formally real domain, 76
Function associated to a convergent

power series, 5, 67

Generic changes of coordinates, 27
Geometric characterization of dimen-

sion in the complex case, 74
Geometric characterization of finite-

ness in the complex case, 74

Height of an ideal, 23
Hensel’s Lemma, 15
Hessian matrix, 76
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Hilbert’s 17th Problem for power se-
ries with real coefficients, 86

Homomorphism Theorem, 77
Hypersurface singularity, 75

Identity Principle, 11
Infinitesimal element, 67, 134
Invertible convergent power series, 9
Invertible formal power series, 7
Isolated singularity, 71
Iterated series, 3

Jacobian ideal, 33

Leibnitz Formula, 9
Local algebraic homomorphism, 118
Local algebraic ring, 118
Local ordering, 134
Local Parametrization Theorem, 37
Locally real domain, 134
 Lojasiewicz’s Inequality, 73, 84

M. Artin’s Approximation Theorem,
102

Mather’s Finiteness Theorem, 19
Mather’s Preparation Theorem, 17
Milnor number, 75
Morse singularity, 76
Morse’s Generalized Lemma, 98
Morse’s Lemma, 98
Motzkin’s counterexample, 89
Multiplicity computed through normal-

ization, 56
Multiplicity of a 1-dimensional reduced

analytic ring, 56
Multiplicity of a planar ring, 58

Nagata’s comparison results, 107
Nash completion of a local algebraic

ring, 119
Nash homomorphism, 117
Nash ring, 117
Newton Algorithm, 65
Newton-Puiseux’s Theorem, 63

Noether’s Projection Lemma, 25
Normal analytic (resp. formal) ring,

51
Normalization of a 1-dimesional reduced

analytic ring, 56
Normalization of a local algebraic do-

main, 128
Normalization of a reduced analytic

(resp. formal) ring, 51
Normalization of a reduced analytic

(resp. formal) ring over C,
53

Normalization of a reduced analytic
(resp. formal) ring over R,
53

Normalization of the complexification
a reduced analytic (resp. for-
mal) ring over R, 53

Operations with power series, 6
Order of a power series, 4
Ordering of a domain, 76
Ordering of the ring of Puiseux series

over R, 77

Positive semidefinite power series, 86
Positive semidefinite power series in

two indeterminates, 89
Primitive Element Theorem, 26

Quadratic transform, 59
Quasifinite homomorphism, 19

Rückert’s Division Theorem, 12
Rückert’s Division Theorem for alge-

braic power series, 116
Rückert’s Nullstellensatz, 71, 73
Rückert’s Parametrization, 29
2-real domain, 44
Real radical, 82
Regular point of dimension 1 of a zero

set, 70
Regular power series, 11
Regular systems of parameters in rings

of power series, 31
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Regularity ideal, 34
Regularity Jacobian Criterion, 34
Risler’s Nullstellensatz, 82
Risler’s Nullstellensatz for Set Germs,

84
Roots of invertible power series, 40

Schwartz Rule, 9
Serre’s Criterion, 113
Singular locus of a zero set, 70
Singular point of dimension 1 of a zero

set, 70
Standard Sturm sequence, 81
Sturm’s Theorem, 80
Substitution of algebraic power series,

114
Substitution of power series, 7
Sum of a series, 1
Summable family of power series, 7

Taylor Expansion, 10
Tougeron’s Implicit Functions Theo-

rem, 94
Transversal changes of coordinates, 23

Uniform convergence of a power series,
4

Weierstrass’s Preparation Theorem, 15
Whitney’s Umbrella, 82

Zariski’s Condition D, 123
Zariski’s Main Theorem, 125
Zero ideal, 68
Zero set, 67
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