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Abstract

We show the existence and uniqueness of a viscosity solution for an oblique nonlinear problem
suggested by the study of the Backus problem on the determination of the external gravitational
potential of the Earth from surface measurements of the modulus of the gravity force field.
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1. Introduction

We show the existence and uniqueness of a solution of the oblique boundary problem{
�v = 0 in B(0, 1),

v + �v

�n
=√

(g2 − |∇sv|2)+ on �B(0, 1),
(1.1)

where B(0, 1) denotes the unit ball of R3.
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The study of this problem was suggested in a previous paper by the authors [8] in order
to deal, after some transformations, with the Backus problem coming from Geodesy (see,
for example, [2,6,11,12,18,35]) and Geomagnetism (see, [2–4,21]). Assuming the surface
of the Earth (S) to be known, in Geodesy it is posed the problem of whether the external
gravitational field of the Earth can be (or not) determined merely from measurements of its
intensity on the Earth surface. If we denote the gravitational or Newtonian potential of the
Earth by u, and g denotes the modulus of the force of gravity on S (in Geodesy g is simply
called gravity), then by well-known properties of u (see, for example, [13, Chapter 1]) the
problem can be formulated as{�u = 0 in �,

|∇u| = g on S,

u(x) → 0 as x → ∞,

(1.2)

where S is a closed surface in R3, � denotes its exterior domain and g is a given positive
continuous function on S. Notice that we do not take into consideration the Earth rotation
(for a more complete model see, for instance, [6]). This geodetic problem is quite realistic
since the gravity can be easily measured both in land and sea, and by spatial positioning
techniques the hypothesis concerning the knowledge of S is not far from being realistic too,
nowadays. In Geomagnetism, we may formulate a completely analogous problem for the
external magnetic field of the Earth.

In R3 space, the usual two-dimensional approach (the inversion defined by z=x + iy �→
z̄−1 where z̄ = x − iy and (x, y) ∈ R2) is not feasible (we refer to [9] and [24] for this
problem in R2). If we use the Kelvin transformation (see [1, Chapter 4]) the boundary
condition is not preserved and it changes slightly. For example, if now v denotes the Kelvin
transform of u and

S = {x = (x1, x2, x3) ∈ R3 : x2
1 + x2

2 + x2
3 = 1}, (1.3)

then it can be proved (see [27]) that (1.2) is equivalent to{�v = 0 inside S,(
v + �v

�n

)2

+ |∇sv|2 = g2 on S,
(1.4)

where �v/�n is the outer normal derivative of v and ∇sv denotes the tangential or surface
gradient of v.

As far as the authors know, there is not yet a global existence theorem for (1.2). Some
local existence theorems are known (see [6,16,32]): roughly speaking, if g is close enough
(in a convenient Hölder space of functions) to some g0 such that g0 = |∇u0| on S, where u0
is a given, regular at infinity, harmonic function in �, then there is a function u close to u0
solution of (1.2). (Hereafter, by a solution of (1.2) we mean a function u ∈ C2(�)∩C1(�̄),
vanishing at infinity, and satisfying pointwise both the Laplace equation and boundary
condition.)

The following uniqueness result for problem (1.2) is well known (see [2,18]): there is at
most one solution of (1.2) whose normal derivative is strictly negative (or strictly positive)
at each point of S. In Section 2 of this paper, we generalize this result to functions with
nonpositive (or nonnegative) normal derivative. Although our approach is the same as that



G. Díaz et al. / Nonlinear Analysis: Real World Applications 7 (2006) 147–166 149

followed by Backus (via the maximum principle), our generalization comes from a slightly
more careful examination of the boundary condition.

Section 3 is devoted to the study of the oblique problem. The key idea connecting this
problem and the Backus problem is based on the following simple remark: if (1.4) has a
solution which satisfies v + �v/�n�0, then necessarily

v + �v

�n
=
√

g2 − |∇sv|2.

The results of this paper improve and complete those of the previous paper by the
authors [8].

Throughout this work we shall denote the real space of harmonic functions in an open
subset � of RN by H(�). For unbounded �, H∞(�) will denote the subset of H(�)

consisting of functions vanishing at infinity. If S is a closed surface in R3, we shall use the
notation C+(S) = {g ∈ C(S) : g(x)�0 : ∀x ∈ S}.

2. Some results about the uniqueness of solutions

We start by recalling some elementary results

Lemma 2.1 (Díaz et al. [8]). Let S be a closed surface in R3 and let � be the unbounded
connected component of R3\S. Let u ∈ H∞(�) ∩ C1(�̄) not vanishing identically. Then

min(m, 0) < u(x) < max(M, 0), ∀x ∈ �,

where m = minS u and M = maxS u.

We also recall the Hopf boundary point lemma.

Lemma 2.2 (Gilbarg and Trudinger [10, Lemma 3.4]). Let � be a domain in RN and
u ∈ H(�). Let x0 ∈ �� be such that

(a) u is continuous at x0;
(b) u(x0) > u(x) for all x ∈ �;
(c) �� satisfies an interior sphere condition at x0.

Then, the outer normal derivative of u at x0, if it exists, satisfies the strict inequality

�u

�n
(x0) > 0.

We are now in a position of proving our first theorem. We shall assume that S is regular
enough as to apply Lemma 2.2, and by �/�n we shall mean the derivative along the normal
of S pointing to the exterior of S. Let F : H∞(�) ∩ C1(�̄) → C+(S) be the operator
defined as

F(u) = �(|∇u|),
where � is the trace (or restriction to S) operator. Observe that F(u) = F(−u).
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Theorem 2.3. Let u ∈ H∞(�) ∩ C1(�̄) with �u/�n�0 on S. Let v ∈ H∞(�) ∩ C1(�̄)

be such that F(v)�F(u). Then, either v ≡ u or v < u in �̄.

Remark 2.1. Alternatively, if �u/�n�0 on S and F(v)�F(u), then, either v ≡ u or v > u

in �̄. Simply apply Theorem 2.3 to the functions −u and −v.

Remark 2.2. If u ∈ H∞(�)∩C1(�̄) is such that �u/�n�0 (�u/�n /≡ 0) on S then u > 0
in �̄. In fact, by Lemma 2.1 we only need to show that m=minS u > 0. If m�0 and x0 ∈ S

is such that u(x0) = m, then by Lemma 2.1 we have u(x) > u(x0). But Lemma 2.2 shows
that in this case �u/�n(x0) > 0.

Remark 2.3. If we restrict the domain of definition of F to

D−(F ) = {u ∈ H∞(�) ∩ C1(�̄) : �u/�n�0 on S}
then this theorem shows that F is injective. (The same remark holds if F is restricted to

D+(F ) = {u ∈ H∞(�) ∩ C1(�̄) : �u/�n�0 on S}.)
In other words, if u ∈ D−(F ) is a solution of problem (1.2), then it is the unique solution
of (1.2) in D−(F ). In addition, observe that if u ∈ D−(F ) is the (unique) solution of (1.2)
in D−(F ), then −u is the (unique) solution of (1.2) in D+(F ).

Remark 2.4. It should be noted that the problem

�u = 0 in D, |∇u| = g on S, (2.1)

where D is the interior of a closed surface S, which has no special relevance in Geodesy to
the best of our knowledge, is completely different from (1.2). This interior problem has been
studied by some authors (see, for example, [22,23]). Observe that for the interior problem
(2.1) the assumption �u/�n�0 on S for the solution has no sense, since if u ∈ H(�)∩C1(�̄)

then ∫
S

�u

�n
ds = 0

and so �u/�n necessarily changes sign on S unless u is constant.

Remark 2.5. Let u ∈ D−(F ) be a solution of (1.2) (assumed to exist). Then Theorem 2.3
and Remark 2.1 also give us the following result: if v ∈ H∞(�) ∩ C1(�̄) is any other
solution, then

−u < v < u in �̄

or in other words, −u and u would be the minimal and maximal solutions of (1.2),
respectively.

Remark 2.6. Compare Theorem 2.3 and these remarks with [29, Theorem 1] and
[28, Theorems 1 and 3], where similar results have been obtained for the problems

�u = −2 in � ⊂ RN, |∇u| = g�0 on ��
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and

�u = f (u) in � ⊂ RN, |∇u| = g�0 on ��,

where � is a bounded domain in RN and f satisfies

f ′(s)�0 (f ′(s) /≡ 0), f (0) = 0.

Proof of Theorem 2.3. If F(v)�F(u) then

〈∇w, ∇w + 2∇u〉�0 on S, (2.2)

where w = v − u. If w does not vanish identically, then by Lemma 2.1 we have

min(m, 0) < w(x) < max(M, 0) ∀x ∈ �,

where m = minS w and M = maxS w. If we prove that M < 0 then we would obtain the
desired result. Let x0 ∈ S be such that M = w(x0). If M �0 then w(x) < w(x0) for all
x ∈ �, and hence �w/�n(x0) < 0. But this is in contradiction with inequality (2.2) at x0. In
fact, since the tangential gradient of w at x0 is zero, (2.2) at x0 becomes

�w

�n

(
�w

�n
+ 2

�u

�n

)
�0,

so if �w/�n(x0) < 0 then 2�u/�n� − �w/�n > 0 at x0, but this is not true. This completes
the proof. �

It is also remarkable the following result (compare with [28, Theorem 1(iii)]).

Theorem 2.4. Let u be the (unique) solution of (1.2) which satisfies �u/�n�0 (assumed
to exist). Then, if v is any other solution of (1.2) (v /≡ ±u), there are points x0, x̃0 ∈ S such
that

�v

�n
(x0) = −�u

�n
(x0)�0 and

�v

�n
(x̃0) = �u

�n
(x̃0)�0.

Proof. Let w = v − u and w̃ = v + u. Then, by Theorem 2.3, w < 0 and w̃ > 0 in �̄. Let
x0 ∈ S be such that w(x0) = minS w, and let x̃0 ∈ S be such that w(x̃0) = maxS w̃. Then,
by Lemma 2.1 we have w(x0) < w(x) and w̃(x) < w̃(x̃0) in �̄. By the Hopf boundary point
lemma we then conclude that

�w

�n
(x0) > 0 and

�w̃

�n
(x̃0) < 0.

On the other hand, since ∇sw(x0) = ∇sw̃(x̃0) = 0, we have at x0

�w

�n

(
�w

�n
+ 2

�u

�n

)
= 0

and at x̃0

�w̃

�n

(
�w̃

�n
− 2

�u

�n

)
= 0.
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Hence, �w/�n + 2�u/�n = 0 at x0 and �w̃/�n − 2�u/�n = 0 at x̃0, and this completes the
proof of this theorem. �

Example 2.1. Let S be the unit sphere in R3 (see (1.3)). Let c be an arbitrary positive
constant. In this case, the functions ±c/r , where r = |x|, are the radial solutions of (1.2).
Let u = c/r . Since du/dr = −c < 0 on S, then by Remark 2.3 the function u is the unique
solution of (1.2) with g = c which satisfies �u/�n�0. In addition, if v ( /≡ ±u) is any other
solution of (1.2) with g = c, then by Remark 2.5 we have the estimate

|v| < c/r in �̄.

By Theorem 2.4, there are points x0, x̃0 ∈ S such that

�v

�n
(x0) = c,

�v

�n
(x̃0) = −c.

Since |�v/�n|�c on S, we conclude that c = maxS(�v/�n) and −c = minS(�v/�n).

In the next theorem, we shall denote the interior domain to S by D. We recall that if D is
starshaped (with respect to 0 ∈ D) then 〈x, n〉�0 on S.

Theorem 2.5. Let S be a closed surface in R3 such that D is starshaped. Let u be a solution
of (1.2). Then

u�(D2/d)‖g‖∞,

where D = maxS |x|, d = dist(0, S), and ‖g‖∞ = maxS g.

Proof. On S we have

|∇u(x)|� D2

r2 ‖g‖∞ (r = |x|).

Let v = c/r where c = D2‖g‖∞. Since |∇v| = c/r2, then

|∇u|� |∇v| on S.

Since in addition v ∈ H(R3\0) and 〈∇v, n〉 = −cr−3〈x, n〉�0 on S, by Theorem 2.3 we
have

u� c

r
� c

d

and this completes the proof. �

We also have the following gradient bound for solutions of (1.2).
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Theorem 2.6. Let u be a solution of (1.2). Then we have

sup
�

|∇u|�‖g‖∞.

Proof. It is easy to check that

�(|∇u|2) = 2 Tr(M2
u)�0,

where Mu is the matrix whose entries are the second derivatives of u. (For a more general
result concerning the subharmonic character of some powers of |∇u|, where u ∈ H(�),
see [33].) As in the proof of Lemma 2.1, let B(0, R) denote an open ball centered at the
origin 0 ∈ D of radius R and containing S. By the maximum principle for subharmonic
functions (see [10, Theorem 2.3]), in the connected open set �R = � ∩ B(0, R) we then
have

|∇u(x)|2 � sup
��R

|∇u|2 = max(‖g‖2∞, M(R)),

where M(R) = max�B(0,R) |∇u|2. Since M(R) → 0 as R → ∞ (see [34, Section 23.2]),
letting R → ∞ we obtain the desired result. �

Without any restriction on the sign of the normal derivative of the solution, it is clear that if
u is a solution of (1.2) then −u is a solution as well. We then could wonder if these functions
u and −u are the only solutions of the problem. In general, the answer is in the negative as
it was proved by Backus (see [3]). In fact, let H̃∞(�) be the subset of H∞(�) ∩ C1(�̄)

consisting of functions z not vanishing identically and such that the oblique boundary value
problem{�w = 0 outside S,

〈∇w, ∇z〉 = 0 on S,

w(x) → 0 as x → ∞
(2.3)

has a nontrivial C2(�) ∩ C1(�̄) solution. Since |∇u| = |∇v| if and only if

〈∇(u − v), ∇(u + v)〉 = 0,

we then have the following.

Proposition 2.7. H̃∞(�) �= ∅ if and only if there exist two functions u, v ∈ H∞(�) ∩
C1(�̄) (u /≡ ±v) such that |∇u| = |∇v| on S.

Proof. Let z ∈ H̃∞(�) and let w be a nontrivial solution of (2.3). Define u = (w + z)/2
and v = (w − z)/2. Then u, v ∈ H∞(�) ∩ C1(�̄) and

|∇u|2 = 1
2 (|∇w|2 + |∇z|2) = |∇v|2

on S.
On the other hand, if u and v (u /≡ ±v) are such that |∇u| = |∇v| on S, then u + v ∈

H̃∞(�). This completes the proof. �
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In the case of a sphere, Backus proved (see [3]) that H̃∞(R3\B̄(0, R)) �= ∅. In fact he
found nontrivial solutions of (2.3) by choosing z = x3/r3 ∈ H∞(R3\{0}). See [17] for a
related topic.

Remark 2.7. If S is smooth enough, it should be observed that if z ∈ H̃∞(�) then ∇z is
tangential to S in some set T ⊂ S. In fact, if T = ∅ then it follows that the only solution of
(2.3) is w = 0 (see, for example, [25]). In the above example of Backus the tangential set T
is the equator of the sphere.

Remark 2.8. The following question, posed by Backus [3], seems to still remain open:
let u ∈ H∞(�) ∩ C1(�̄); how many functions v are there in H∞(�) ∩ C1(�̄) such that
|∇v| = |∇u| on S? (see [36]).

3. On the oblique boundary value problem

In this section we shall restrict ourselves to the simplest case of a sphere (1.3) and consider
the equivalent problem (1.4). Specifically, we are interested in the boundary value problem{

�v = 0 in � = B(0, 1),

v + �v

�n
=√

(g2 − |∇sv|2)+ on ��,
(3.1)

where

(g2 − |∇sv|2)+ = max{(g2 − |∇sv|2), 0}.
(Hereafter we shall exclude the case g ≡ 0, since if g ≡ 0, by Theorem 3.15, the only
solution of Problem (3.1) is v ≡ 0.)

Before to deal with the existence and uniqueness of solutions let us examine the relation-
ship between problems (3.1) and (1.4). We have

Lemma 3.1. Let v be the solution (assumed to exist) of (3.1). If

|∇sv|�g on �� (3.2)

then v is the unique solution of (1.4) such that v + �v/�n�0 on ��.
In addition, if v does not satisfy (3.2) then the boundary value problem (1.4) has no

solutions satisfying v + �v/�n�0 on ��.

Remark 3.1. In the first part of this lemma, the uniqueness of v is clear from Remark 2.3.
In fact, the function v in (1.4) is the Kelvin transform of u, that is to say

v(x) = |x|−1u(|x|−2x),

so we have on ��

v + �v/�n = −�u/�n (3.3)

and then v + �v/�n�0 if and only if �u/�n�0.
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Remark 3.2. For an arbitrary positive constant c, if g(x) ≡ c then v ≡ c is the unique
solution of (3.1). Since ∇sv ≡ 0, by Lemma 3.1 we then conclude that v ≡ c is the unique
solution of (1.4) satisfying v + �v/�n�0 on ��. Compare this result with Example 2.1.

Therefore, what we want to prove is that indeed problem (3.1) has a solution and we have
(3.2) for the solution of (3.1). Then we could conclude an existence theorem for (1.4). We
have still not proved these things but we state the following.

Conjecture 3.1. Problem (3.1) has a unique solution v ∈ C2(�) ∩ C1(�̄). In addition, v

satisfies (3.2).

This conjecture is based on the remainder results of this section. With respect to condition
(3.2) we have the following result.

Proposition 3.2. Let g ∈ C+(��) and let v be a classical solution (assumed to exist) of
(3.1). Then

{x ∈ �� : |∇sv| < g} �= ∅.

Proof. Assume, on the contrary, that |∇sv|�g on ��. Then we have

v + �v/�n = 0 on ��.

With the same argument used in the proof of Theorem 3.15 we now conclude that v ≡ 0 in
�̄, and this would imply that g ≡ 0. The proof is complete. �

Remark 3.3. If g > 0 the conclusion of this proposition directly follows from the fact that
if v ∈ C1(�̄), as we are assuming, then the tangential gradient of v vanish at the points of
the boundary where the harmonic function v reaches its maximum and minimum values.

We now introduce the following sets:

A− = {x ∈ �� : |∇sv| < g}
and

A+ = {x ∈ �� : |∇sv| > g}.
In order to obtain some more information about these sets, we shall use the following
identity which can be inferred from an integral identity due to Rellich [31]; see also [30,
(2.14)] and compare with [14, (1.1.4)].

Proposition 3.3. Let v ∈ H(�) ∩ C1(�̄), where � = B(0, 1) in RN (N �2). Then,

(N − 2)

∫
�

|∇v|2 dx =
∫
��

(
|∇sv|2 −

∣∣∣∣�v

�n

∣∣∣∣2
)

ds.
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Since by Green’s first identity we have∫
�

v�v dx +
∫
�

|∇v|2 dx =
∫
��

v
�v

�n
ds

if v ∈ H(�), then∫
��

v
�v

�n
ds =

∫
�

|∇v|2 dx�0.

By Proposition 3.3 we then have (N > 2)∫
��

v
�v

�n
ds = 1

N − 2

∫
��

(
|∇sv|2 −

∣∣∣∣�v

�n

∣∣∣∣2
)

ds. (3.4)

Since on the other hand, we can write∫
��

(
v

�v

�n
+
∣∣∣∣�v

�n

∣∣∣∣2
)

ds =
∫
��

(
v + �v

�n

)2

ds −
[∫

��
v2 ds +

∫
��

v
�v

�n
ds

]

�
∫
��

(
v + �v

�n

)2

ds, (3.5)

combining (3.4) and (3.5), we have proved the following inequality.

Corollary 3.4. Let v ∈ H(�) ∩ C1(�̄), where � = B(0, 1) in RN (N > 2). Then,

1

N − 2

∫
��

(
|∇sv|2 + (N − 3)

∣∣∣∣�v

�n

∣∣∣∣2
)

ds�
∫
��

(
v + �v

�n

)2

ds. (3.6)

If N = 3 and v is a solution of (3.1), then from (3.6) we get∫
��

|∇sv|2 ds�
∫
��

(g2 − |∇sv|2)+ ds.

Then ∫
A−

|∇sv|2 ds +
∫

A+
|∇sv|2 ds�

∫
A−

(g2 − |∇sv|2) ds (3.7)

and hence

2
∫

A−
|∇sv|2 ds +

∫
A+

|∇sv|2 ds�
∫

A−
g2 ds.

Since ∫
A+

|∇sv|2 ds >

∫
A+

g2 ds,

then we can state the following.
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Proposition 3.5. Let g ∈ C+(��) and let v be a classical solution (assumed to exist) of
(3.1). Then∫

A−
g2 ds >

∫
A+

g2 ds (3.8)

and, in particular m(A−) > 0. Moreover,

m

({
x ∈ �� : |∇sv|� g√

2

})
> 0 (3.9)

and ∫
A+

|∇sv|2 ds < ‖g‖2
L2(��)

. (3.10)

(Here m(C) denotes the surface-area measure of a set C ⊆ ��.)

Proof. That m(A−) > 0 comes from (3.8). To prove (3.9) we use the decomposition A− =
B1 ∪ B2 where

B1 =
{
x ∈ A− : g√

2
< |∇sv|

}
and

B2 =
{
x ∈ �� : g√

2
� |∇sv|

}
.

From inequality (3.7) we deduce that

0�
∫

A+
|∇sv|2 ds�

∫
A−

(g2 − 2|∇sv|2) ds

=
∫

B1

(g2 − 2|∇sv|2) ds +
∫

B2

(g2 − 2|∇sv|2) ds. (3.11)

Calling f (x) = g2(x) − 2|∇sv(x)|2 for x ∈ ��, it is obvious that f (x) < 0 on B1, whereas
f (x)�0 on B2. Then, if m(B2) = 0 we arrive at a contradiction since m(B1 ∪ B2) =
m(A−) > 0. Inequality (3.10) immediately follows from (3.7). The proof is complete. �

Remark 3.4. If g > 0, (3.9) also follows from Remark 3.3.

Although we have not proved that A+ = ∅, the Proposition 3.5 can be considered as a
partial result in this direction.

Now we concentrate our attention on the existence of solutions of (3.1). It should be noted
that in contrast to problem (1.4), problem (3.1) is oblique using the terminology followed
in [19]. In fact, for a general formulation{

�u = 0 in �,

G(x, u, ∇u) = 0 on ��
(3.12)
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the problem (3.12) is oblique if, at � = �� × R × R3, the following inequality is satisfied:

� = 〈Gp, n〉 > 0, (3.13)

where Gp denotes the (possibly weak) partial derivative with respect to p when G is ex-
pressed in dummy variables (x, z, p) ∈ �. Note that in the case of the original Backus
problem (1.2) G(x, z, p) = |p| and then G is oblique if and only if 〈p, n〉 > 0 (i.e. the
condition depends on �u/�n which is a priori unknown; the same can be said for
problem (1.4)).

Lemma 3.6. Problem (3.1) is oblique.

Proof. In these variables the boundary operator in (3.1) is given by

G(x, z, p) = z + 〈p, n〉 −
√

(g2(x) − |pt |2)+, (3.14)

where pt = p − 〈p, n〉n is the tangential projection of p. Differentiating G with respect to
p we get that for any prescribed (x, z)

Gp =
{

n if |pt | > g(x),

n + pt√
g2(x) − |pt |2

if |pt | < g(x)

and this proves that � = 1. �

Remark 3.5. It is interesting to note the following property of the operator (3.14). Let
� > 0. Observing that

〈p + �n, n〉 = 〈p, n〉 + �

and since the tangential projections of p and of p + �n coincide, then we have

G(x, z, p + �n) − G(x, z, p) = � (3.15)

for all (x, z, p) ∈ �. From (3.15) we can conclude that the function G(x, z, p) is strictly
increasing with respect to p in the normal direction to �� at x. Barles [5] has recently
proved that nonlinear boundary value problems with this property have, under some other
additional conditions, a unique viscosity solution (see [5, Section I]) in C(�̄).

Although G given by (3.14) is not regular enough as to may apply a known existence
theorem for oblique nonlinear boundary value problems (see [19]), it seems possible to
approach G by more regular functions G� and to obtain an existence theorem for (3.1) by
passing to the limit. In fact, let � > 0 and consider the following modified problem{

�v� = 0 in �,

v� + �v�

�n
=√

� + (g2 − |∇sv�|2)+ on ��.
(3.16)

Firstly, we have the following uniqueness result for the problems (3.16).
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Lemma 3.7. Let ��0. Then problem (3.16) has at most one classical solution.

Proof. Exactly the same argument used to prove Theorem 3.15 can be used here to prove
this lemma. �

In addition, we have the following monotonicity (with respect to �) result.

Lemma 3.8. If 0��1 < �2 then

v�1 < v�2 ,

where v�1 and v�2 are the solutions (assumed to exist) of (3.16) for �1 and �2, respectively.

Proof. At some point x0 ∈ �� the harmonic function z = v�1 − v�2 takes its maximum
value. Since at this point we have

�1 − �2 = (z + �z/�n)(w + �w/�n)

(where w = v�1 + v�2 ) and w + �w/�n > 0, then at x0 we have

z + �z/�n < 0.

Hence we necessarily conclude that z(x0) < 0, and this completes the proof of this lemma.
�

We also have the following a priori estimates.

Lemma 3.9. Let v� be the solution (assumed to exist) of (3.16) where ��0. Then

(a) v� > 0;

(b) v� �
√

� + ‖g‖2∞ in �̄;

(c)
∣∣∣�v�

�n

∣∣∣ �
√

� + ‖g‖2∞ in �̄.

Proof. Although the proof of this lemma follows similar arguments used in [27, Lemmas
1, 2 and 3], here, we include this proof for sake of completeness. If � = 0 then part (a)
follows from Remark 2.2 and (3.3) if on �� v� + �v�/�n /≡ 0. If v� + �v�/�n ≡ 0 on ��,
then v� ≡ 0 in �̄ and g should vanish identically. If � > 0 then v� + �v�/�n > 0 on �� and
(a) also follows from Remark 2.2 and (3.3). Let x0 ∈ �� be a point where v� achieves its
maximum value; then, at this point we have

v� + �v�/�n =
√

�2 + g2.

Since �v�/�n(x0)�0 then we conclude (b). Finally, part (c) follows from (a), (b) and the
following inequalities (on ��):

�v�/�n�v� + �v�/�n�
√

�2 + ‖g‖2∞ (3.17)
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and

�v�/�n� − v�.

The upper bound for v� + �v�/�n in (3.17) is obtained by observing that

(v� + �v�/�n)2 = � + (g2 − |∇sv�|2)+
=
{

��� + ‖g‖2∞ if |∇sv�|2 �g2,

� + g2 − |∇sv�|2 �� + ‖g‖2∞ if |∇sv�|2 �g2. �

Now in order to get an existence theorem for the modified problem (3.16) we shall use
an existence theorem obtained by Lieberman and Trudinger (see, [19, Corollary 7.7]) for
the boundary value problem{

aij (x, u, ∇u)Diju + a(x, u, ∇u) = 0 in �,

G(x, u, ∇u) = 0 on ��,
(3.18)

where D2u= (Diju) denotes the Hessian matrix of the function u, and where � is a smooth
bounded domain in RN . In fact, they have proved that if G ∈ C0,1(�̄×R×RN) is oblique,
then under certain natural structure conditions the boundary value problem (3.18) has a
C1,�(�̄) ∩ C2(�) solution for some � > 0.

In our case, in the variables (x, z, p) the boundary operator in (3.16) is given by

G�(x, z, p) = z + 〈p, n〉 −
√

� + (g2(x) − |pt |2)+. (3.19)

Like in problem (3.1), the boundary operator (3.19) is oblique.
About the regularity of our modified boundary operator we have the following.

Lemma 3.10. Let � > 0. If g ∈ C0,1(��) then G� ∈ C0,1(�).

Proof. Let (x, z, p), (x′, z′, p′) ∈ �. Then

G�(x, z, p) − G�(x
′, z′, p′) = (z − z′) + 〈p − p′, n〉 + (	′ − 	),

where

	 =
√

� + (g2(x) − |pt |2)+
and

	′ =
√

� + (g2(x′) − |p′
t |2)+.

We may consider different possibilities. If |pt |2 �g2(x) and |p′
t |2 �g2(x′), then 	′ − 	 = 0.

If |pt |2 �g2(x) and |p′
t |2 �g2(x′), then for some constant K we have

|	′2 − 	2| = (g(x′) − |p′
t |)(g(x′) + |p′

t |)�2‖g‖∞(g(x′) − |p′
t |)

�2‖g‖∞(g(x′) − |p′
t | + |pt | − g(x))

= 2‖g‖∞(g(x′) − g(x)) + 2‖g‖∞(|pt | − |p′
t |)

�K(|x − x′| + |pt − p′
t |)�K(|x − x′| + |p − p′|).
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The same estimate is obtained if |pt |2 �g2(x) and |p′
t |2 �g2(x′). Finally, if |pt |2 �g2(x)

and |p′
t |2 �g2(x′) we get

	′2 − 	2 = (g2(x′) − g2(x)) + (|pt |2 − |p′
t |2)

�K|x − x′| + (|p′
t | + |pt |)(|p′

t | − |pt |)
�K(|x − x′| + |p′ − p|).

We also have the same estimate for (	2 − 	′2), and the proof is complete simply observing
that 	 + 	′ ��. �

Assuming that g has been appropriately extended so that G� ∈ C0,1(� × R × R3), the
other sufficient conditions in [19, Corollary 7.7; conditions G2 and G3] are also satisfied.
In fact we have the following technical result.

Lemma 3.11. There are constants C and C′ such that:

(a) |G�(x, z, pt )|�C
(|z|) where 
(t) = 1 if t �1 and 
(t) = t if t > 1;
(b) |G�,p|, |G�,z|, |G�,x |�C′.

(Here G�,p, G�,z and G�,x denote the (weak) partial derivatives of G� with respect to p,
z and x, respectively.)

Proof. Since

G�(x, z, pt ) = z −
√

� + (g2(x) − |pt |2)+
then

|G�(x, z, pt )|� |z| +
√

� + ‖g‖2∞

and we have proved (a), where C = 1 +√
� + ‖g‖2∞.

Since

G�(x, z, p) = z + 〈p, n〉 − √
�

if |pt |�g(x), and

G�(x, z, p) = z + 〈p, n〉 −
√

� + g2(x) − |pt |2
if |pt | < g(x), then we have

G�,p =
{

n if |pt |�g(x),

n − pt√
� + g2(x) − |pt |2

if |pt | < g(x).

Hence we get the estimate

|G�,p|�1 + ‖g‖∞√
�

.
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Differentiating G� with respect to z we get G�,z = −1. Finally,

G�,x =
{0 if |pt |�g(x),

g∇g√
� + g2(x) − |pt |2

if |pt | < g(x),

so

|G�,x |� 1√
�
‖g‖∞‖∇g‖∞. �

Summing up, from Lemmas 3.7, 3.9, 3.10, 3.11 and [19, Corollary 7.7] we can conclude
the following.

Theorem 3.12. Let � > 0 and g ∈ C0,1(��), g�0. Then problem (3.16) has a unique
solution in C1,�(�̄) ∩ C2(�) for some � > 0.

Now let {�n} be a sequence of nonnegative real numbers going to 0 as n → ∞, and let
v�n be the unique classical solution of (3.16) for � = �n.

Theorem 3.13. The sequence {v�n} contains a subsequence converging uniformly on �̄ to
a harmonic function v. In addition, v ∈ C�(�̄) for some � ∈ (0, 1].

Proof. By Lemma 3.9, parts (a) and (b), the sequence {v�n} is uniformly bounded on �̄.
From a theorem of Nadirashvili (see [26, Theorem 1.1]) there exist positive constants C and
� (not depending on n) such that

‖v�n‖C�(�̄)
�C(‖v�n‖C(�) + ‖�v�n/�n‖L∞(��)).

Therefore, by Lemma 3.9 and this estimate we can conclude that for all n there exist positive
constants C and � such that

‖v�n‖C�(�̄)
�C

and this implies that the sequence {v�n} is equicontinuous at each point of �̄. By the Ascoli
theorem and since the limit of a uniformly convergent sequence of harmonic functions is
harmonic we then conclude the first part of this theorem. Finally, since

|v�n(x) − v�n(y)|�C |x − y|�

and since v�n(x) → v(x) and v�n(y) → v(y) as n → ∞, then v ∈ C�(�̄). �

Theorem 3.14. The function v in Theorem 3.13 is a viscosity solution of (3.1).

For convenience we here recall the definition of viscosity solution of a boundary value
problem of the form{

F(x, u, ∇u, D2u) = 0 in �,

G(x, u, ∇u) = 0 on ��.
(3.20)
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(The following definition of viscosity solution is the one given by Barles in [5,
Definition I.1].)

Definition 3.1. An upper-semicontinuous (resp. lower-semicontinuous) function u is said
to be a viscosity subsolution of (3.20) (resp. a viscosity supersolution) if the following
property holds: for all � ∈ C2(�̄), at each maximum point x0 ∈ �̄ of u − �, we have

F(x0, u(x0), ∇�(x0), D
2�(x0))�0 if x0 ∈ �,

min(F (x0, u(x0), ∇�(x0), D
2�(x0)), G(x0, u(x0), ∇�(x0)))�0

if x0 ∈ ��. (3.21)

(resp. for all � ∈ C2(�̄), at each minimum point x0 ∈ �̄ of u − �, we have

F(x0, u(x0), ∇�(x0), D
2�(x0))�0 if x0 ∈ �,

max(F (x0, u(x0), ∇�(x0), D
2�(x0)), G(x0, u(x0), ∇�(x0)))�0

if x0 ∈ ��.) (3.22)

A function u is said to be a viscosity solution of (3.20) iff its upper-semicontinuous envelope
(i.e. the smallest upper-semicontinuous function �u) is a viscosity subsolution and its
lower-semicontinuous envelope is a viscosity supersolution.

Remark 3.6. If F ≡ −�, a function u ∈ H(�) is automatically a viscosity solution inside
� (that is to say, the first inequalities of (3.21) and (3.22) are satisfied). If, in addition, u ∈
C(�̄), then u is a viscosity solution of (3.20) (with F ≡ −�) if:

for all � ∈ C2(�̄), at each maximum (resp. minimum) point x0 ∈ �̄ of u − �, we have

G(x0, u(x0), ∇�(x0))�0 if x0 ∈ �� and ��(x0) < 0,

(resp.

G(x0, u(x0), ∇�(x0))�0 if x0 ∈ �� and ��(x0) > 0.)

Proof of Theorem 3.14. Since v ∈ H(�) ∩ C(�̄) we may take into account Remark 3.6,
and then we shall prove that if x0 ∈ �� is a maximum point of v − � (where � is an
arbitrary C2(�̄) function) then G(x0, u(x0), ∇�(x0))�0 if ��(x0) < 0; the proof of “v is
a supersolution” being similar. (The proof that follows is based on ideas of Lions (see [20,
Theorem 1]).) Let  be the function defined as follows:

(x) = 1/2(1 − |x|2), x ∈ �̄.

It should be observed that  ≡ 0 on ��,  > 0 in �, �/�n =−1 on �� and �=−1 in �̄.
For any � > 0, the function v−�−� has as well a maximum point at x0 ∈ ��. Therefore,
for sufficiently large n, the function v�n − � − � has a maximum point at xn ∈ �̄ and
xn → x0 as n → ∞ (here {v�n} denotes the sequence converging uniformly on �̄ to v
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according to Theorem 3.12). In addition, xn ∈ ��. In fact, if on the contrary xn ∈ � then

0� − �(v�n − � − �)(xn) = ��(xn) − �,

but this is not possible if ��(x0) < 0 since, for enough large n, ��(xn) − � < ��(x0), and
this proves our assertion. Therefore, since (at least for enough large n) xn ∈ ��, then

G�n(xn, v�n(xn), ∇�(xn) + �∇(xn))

= v�n(xn) + ��

�n
(xn) − � −

√
�n + (g2(xn) − |∇s� (xn)|2)+

�v�n(xn) + �v�n

�n
(xn) −

√
�n + (g2(xn) − |∇sv�n(xn)|2)+ = 0,

where we have used the following relations:

0� �

�n
(v�n − � − �)(xn) = �v�n

�n
(xn) −

(
��

�n
(xn) − �

)
and

0 = ∇s(v�n − � − �)(xn) = ∇sv�n(xn) − ∇s�(xn).

The proof concludes by letting n go to ∞ and then letting � go to 0. �

Concerning the uniqueness of solution of problem (3.1) we have.

Theorem 3.15. Problem (3.1) has at most one solution v.

Proof. Let us start with the case of classical solutions. Let v and w be two solutions of
(3.1) and let z = v − w. Since z ∈ H(�) ∩ C1(�̄), it takes its maximum value at some
point x0 ∈ �� and its minimum value at some point x̃0 ∈ ��. Moreover, ∇sz = 0 at x0 and
x̃0, so it follows that at x0 and x̃0 we have

z + �z/�n = 0.

Now, we infer that z(x0)�0 and z(x̃0)�0, and this of course implies z ≡ 0. In fact, if
z(x0) > 0 then �z/�n(x0) < 0 but this is not possible at a maximum point; on the other hand,
if z(x̃0) < 0 then �z/�n(x̃0) > 0 which is not possible at a minimum point. This completes
the proof of this lemma for classical solutions. Since the used arguments only use the
maximum principle and the points where the functions attain their maximum the extension
to viscosity solutions is standard. �
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