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Abstract

Energy balance climate models of Budyko type lead to reaction–diffusion equations with slow
diffusion and memory on the 2-sphere. The reaction part exhibits a jump discontinuity (at the snow
line). Here we introduce a Babuška–Duhem hysteresis in order to account for a frequent repetition
of sudden and fast warming followed by much slower cooling as observed from paleoclimate proxy
data. Existence of global solutions and of a trajectory attractor will be established for the resulting
system of a parabolic differential inclusion and an ode.
� 2005 Elsevier Ltd. All rights reserved.

1. Introduction

Throughout most of the paleoclimate proxy data there is a frequent repetition of sudden
and fast warming followed by much slower cooling. We refer to [30] and the references
therein for more details.

In particular, the advance of ice-sheets at the beginning of an ice-age occurs at a rate
which is considerably slower than the rate by which they retreat during the transition to an
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interglacial period. In order to account for such an effect in an energy balance climate model,
one introduces a hysteresis functional for the latent energy flux density of ice formation.
This leads to a functional reaction–diffusion problem of the form

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

�t [c(x)u + w] − ∇ · [k(x)|∇u|p−2∇u] + g(u) = f (t, x, u, v), x ∈ M, t > 0,

w(t, x) = Wx[v(·, x)](t), t > 0, x ∈ M,

v(t, x) := ∫ 0
−T

�(s, x)u(t + s, x) ds, t > 0, x ∈ M,

u(s, x) = u0(s, x), −T �s�0, x ∈ M,

(1)

on the two-sphere M (or, more general, a closed, oriented surface) with linear or slow
diffusion (p�2). Global existence and boundedness of solutions were obtained for a corre-
sponding problem without hysteresis [16]. An extension of these results will be presented
here in case that W is a Duhem hysteresis operator (cf. [36, Chapter V] for some back-
ground). In general, �t and Wx do not commute, but this is the case for Babuška’s ver-
sion of the Duhem hysteresis operator, where the derivative of the output function w is
given by

�tw(t, x) = hI (t, x, v(t, x), w(t, x))[�t v(t, x)]+

− hD(t, x, v(t, x), w(t, x))[�t v(t, x)]− (2)

with v(t, x) := ∫ 0
−T

�(s, x)u(t + s, x) ds for (t, x) ∈ R+ × M . As for the climate model,
one expects that hI and hD are bounded, nonnegative functions, which decrease in v on a
climatologically relevant interval, and have compact support. Moreover, hI is much smaller
than hD near ice-age conditions (cf. the end of the next section for a simple heuristic
consideration).

Throughout, we are going to focus on so-called Budyko-type energy balance models,
which are characterized by the occurrence of a jump discontinuity in the albedo along
the snow line. Mathematically, we handle this discontinuity by understanding the first
equation under (1) as a partial functional differential inclusion (cf. (10) below). Our ap-
proach for treating (10) follows [16], where the approximate selection theorem for upper
semi-continuous multi-valued mappings was used in order to establish approximate solu-
tions, an approach, which is climatologically meaningful, too, since the resulting equations
are (up to parameter selection) those obtained from so-called Sellers-type energy balance
models.

Section 2 contains a brief outline of the climatological background, existence of local
and global solutions are established for Sellers-type equations in Sections 3 and 4, re-
spectively, whereas Section 5 is devoted to global solvability in case of Budyko-type
models. Finally, we prove the existence of a trajectory attractor in a Budyko-type set-
ting in Section 6 under an additional hypothesis which restricts the class of hysteresis
operators.
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2. Climatological background and hypotheses

Eq. (1) arises from a one-layer energy balance climate model (EBM) which is to predict
the evolution of a, say, 10-year mean of atmospheric temperature u = u(t, x) at sea level.
Here x denotes the position on the earth’s surface M and t time in years. Starting point is
the balance equation of energy which can be written in the form

�t e(t, x) − ∇ · �j(t, x) = Rnet(t, x), (3)

where e, �j and Rnet denote the internal energy flux, the flux due to horizontal heat trans-
port and the net radiation flux, respectively. EBMs are designed by heuristically deriving
functional expressions for e, �j and Rnet in terms of u in such a way that the (in the model
context) fundamental feedback mechanisms are accounted for. This approach goes back to
Budyko [8] and Sellers [33] who proposed independently two such models in 1969. The
interested reader is referred to [19] or [21] for an introduction and to the articles in [14] on
EBMs for more recent developments.

Let us briefly discuss the (for us) significant qualitative features of the three flux terms
beginning with the net radiation flux. Rnet is equal to the difference between the absorbed
and emitted radiation fluxes. The absorbed radiation flux is given by Q(t, x)[1−�(x, u, v)]
with Q the (to u) corresponding 10-year average of the incoming solar radiation flux and
� the albedo, i.e. the relative portion of the incoming flux reflected to space. The function
� depends on x due to land-water distribution, orography and vegetations zones, but more
importantly on temperature which is utilized as an indicator for ice- and snow cover. Budyko
and later North and collaborators modeled the temperature dependence by means of a step
function, which assignes a high value for the albedo to all temperatures below a certain
threshold value, usually −10 ◦C (ice- or snow cover occurs in that case), and a lower
value, if u lies above that threshold. Sellers and Ghil used, roughly speaking, a continuous
interpolation of such a step function. In linking the albedo to u alone, one neglects the very
important long response times the cryosphere exhibits. E.g. the expansion or the retreat of
the huge continental ice sheets occurs with response times of thousands of years, a feature,
which Bhattacharya et al. [5] proposed to incorporate by substituting u by a long term
average of u, here called v, e.g. v(t, x) := ∫ 0

−T
�(s, x)u(t + s, x) ds with T ≈ 104 years.

Of course, one can refine this procedure by having independent ice- and snow lines. In that
case, one understands ice-lines as the boundaries of regions that are covered by continental
ice-sheets or huge glaciers (slow response times in comparison with the 10-year mean),
whereas snow lines refer to boundaries of regions where the variations in ice- or snow
cover occur on the time scale of u. This approach was chosen in [25,23,24] and will be
employed here, too. The emitted radiation flux is modelled either according to the Stefan-
Boltzmann law with temperature in Kelvin (Sellers) or by a first order approximation of
empirical radiation data (Budyko). Our qualitative setting, a strictly increasing function g
with |g(y)| → ∞ as |y| → ∞, comprises both cases.

The 10-year mean of the horizontal heat flux is described in EBMs by a diffusive ap-
proximation. Most papers use a linear diffusion operator, however following a suggestion of
Stone [35], some authors have also considered “slow diffusion”, i.e. p > 2 (cf. [13,14,18,15])
which leads to the generalized p-Laplacian appearing in (1).
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Finally, as long as one disregards the latent energy stored in continental ice sheets and
glaciers, the internal energy flux e is given by c(x)u(t, x) with c the heat capacity which
varies considerably with x due to the land–water distribution. However, a more accurate
modeling suggests to set e(t, x) = c(x)u(t, x) + �(v(t, x)) where c denotes the thermal
inertia and �(v(t, x)) stands for the latent energy density due to huge ice accumulations.
This approach is closely related to the one for the Stefan problem (cf. [29] e.g.) with the
obvious change that � should depend on the long-term temperature mean v rather than
on u in view of the long time scale of the latent fluxes. � is a nonnegative bounded de-
creasing function with derivative � having compact support. This modeling idea underlies
[16], where existence and boundedness of global solutions for the resulting problem were
investigated. Clearly, one cannot reproduce another well-known phenomenon in this way,
namely the fact that the transition from an ice-age to an interglacial period occurs con-
siderably faster than the one from a moderate climate to an ice-age. There is no complete
understanding of this phenomenon so far, but variations in the paths of ocean currents and
in vegetation growth are surely among the causes. In order to incorporate such a feature
into an energy balance climate model, we choose here to replace �(v(t, x)) by the out-
put function w of a Duhem–Babuška hysteresis operator as given in (2), i.e. one sets now
e(t, x) = c(x)u(t, x) + w(t, x). Hysteresis phenomena have been widely studied in the
mathematical literature, and we refer to [7,28,36,38], or [27] for differential models, and to
[34], where an m-accretive setting is explored. It is to be noted, though, that the resulting
problem, here, is very different from the typical parabolic (semi-group) setting of the liter-
ature mentioned before, since the hysteresis effect appears on much slower time scales than
the ones resolved by the model. These scales are represented by memory terms or math-
ematically, an average v of the unknown function u replaces u as input of the hysteresis
operator.

Observing for sufficiently smooth u that �t v(t, x) = ∫ 0
−T

�(s, x)�1u(t + s, x) ds, one
obtains

�tw(t, x) = hI (t, x, v(t, x), w(t, x))[�t v(t, x)]+

− hD(t, x, v(t, x), w(t, x))[�t v(t, x)]−

= hI (t, x, v(t, x), w(t, x))

×
[
�(0, x)u(t, x) −

∫ 0

−T

[�s�(s, x)u(t + s, x)] ds

]+

− hD(t, x, v(t, x), w(t, x))

×
[
�(0, x)u(t, x) −

∫ 0

−T

[�s�(s, x)u(t + s, x)] ds

]−

in view of �(−T , ·) ≡ 0 with T the memory span of the system, e.g. T ≈ 104 years.
Clearly, w should be nonnegative and bounded. This can be achieved by assuming that
hJ (t, x, v, w) = 0 for J ∈ {I, D} whenever w /∈ [w, w̄], where 0 < w < w̄ < ∞.
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Collecting all terms apart from that for the absorbed radiation flux and a technical cor-
rection term in case of Budyko–North-type models on the left-hand side, one is led to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c(x)�t u(t, x) − ∇ · [k(·)|∇u(t, ·)|p−2∇u(t, ·)](x)

+hI (t, x, v(t, x), w(t, x))
[
�(0, x)u(t, x) − ∫ 0

−T
[�s�(s, x)u(t + s, x)] ds

]+
−hD(t, x, v(t, x), w(t, x))

[
�(0, x)u(t, x) − ∫ 0

−T
[�s�(s, x)u(t + s, x)] ds

]−
+g(u(t, x)) = f (t, x, u(t, x), v(t, x)), t > 0, x ∈ M a.e.,

v(t, x) = ∫ 0
−T

�(s, x)u(t + s, x) ds, t > 0, x ∈ M,

�tw(t, x) = hI (t, x, v(t, x), w(t, x))

×
[
�(0, x)u(t, x) − ∫ 0

−T
[�s�(s, x)u(t + s, x)] ds

]+
− hD(t, x, v(t, x), w(t, x))

×
[
�(0, x)u(t, x) − ∫ 0

−T
[�s�(s, x)u(t + s, x)] ds

]−
t > 0, x ∈ M,

u(s, x) = u0(s, x), s ∈ [−T , 0], x ∈ M,

w(0, x) = w0(x), x ∈ M.

(4)

Throughout we will employ the following basic hypotheses which cover the various model
settings.

(H0) M C∞ two-dimensional, compact, oriented Riemannian manifold without boundary;
T > 0;

(H1) c, k ∈ C2(M) positive, p�2, � ∈ C1([−T , 0]×M, R+), �(−T , ·) ≡ 0, �(s, x) > 0
for s ∈ (−T , 0] and x ∈ M ,

∫ 0
−T

�(s, x) ds = 1 for x ∈ M;
(H2) (a) hJ ∈ C1−(R+ × M × R2, R) bounded for J ∈ {I, D},

(b) g ∈ C1(R), g(0)= 0, g strictly increasing and odd, limy→∞ g(y)=∞, addition-
ally, if p = 2, there exists a r > 0 with lim|y|→∞ g(y)/|y|r = 0;

(c) f : R+ × M × R × R → R bounded.

Of course, we have to supply regularity hypotheses for f, e.g. one can consider f to be C1

in case of a Sellers-type model.
Finally, let us mention a simple-minded heuristic consideration for a diffusion problem

�t u + hI [�t v]+ − hD[�t v]− − �u = 0, which indicates the effect of the hysteresis term.
If hI = hD , then we are in a situation without hysteresis effect, which corresponds to
problem studied in [16]. Comparison with �t u − �u = 0 shows that hI �0 has the effect of
slowing down the temperature increase when �t v > 0 (leaving an ice-age regime) as well
as the temperature decrease when entering such a regime �t v < 0. Clearly, the global sign
condition for �t v is unrealistic for both cases, but hopefully instructive. Next, fix a function
� = �(t, x) > 0 and let u, u, and ū be solutions of �t u − �u = 0, �t u − hD�(t, x) − �u = 0,
and �t u+hI �(t, x)−�u= 0, respectively, which are, all, equal at t = 0. Then u− ū fulfils
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�ũ − �ũ = hI �, whereas u − u satisfies �ũ − �ũ = hD�. Thus, 0 < hI < hD would result
in a slow decrease of temperature, but more rapid increase.

3. Existence of local solutions for Sellers-type problems

Sellers-type refers to models with “Lipschitz-smooth” albedo functions. Here, we assume
(H0)–(H2) and that

(H3) f ∈ C1−
loc (R+ × M × R × R, R).

We follow the approach of Section 2.2. of [16] and realize (4) as an functional evolution
equation in the phase space C := C([−T , 0], C(M)). To this end, let us recall some well-
known facts and concepts.

3.1. The degenerate diffusion operator in C(M)

Let Jp(�) := 1
p

∫
M

k|∇�|p for � ∈ W 1,p(M) and p ∈ (2, ∞). We leave the simpler
case p = 2 (linear diffusion, analytic semi-groups) to the reader and refer to [4] for Sobolev
spaces on manifolds. Jp is Gateaux differentiable with J ′

p(�)(�)=∫
M

k(·)|∇�|p−2∇�·∇�
for �, � ∈ W 1,p(M). Setting Jp ≡ ∞ on L2(M)\W 1,p(M) one can extend Jp to a proper
convex lower semi-continuous functional J̄p on L2(M). The subdifferential �J̄p(�) of J̄p at
� ∈ L2(M) is nonempty, iff there exists a � ∈ L2(M) with

∫
M

k(·)|∇�|p−2∇�·∇�=∫
M

��
for all � ∈ W 1,r (M). Then �J̄r (�) = {�}. Set Ãp� = �. It is well known that the closure
of the domain of the subdifferential is equal to the closure of the effective domain of the
functional, thus dom(Ãp) is dense in L2(M) and of course a subset of W 1,p(M). Define
Ap by dom(Ap) := {� ∈ dom(Ãp): Ãp� ∈ C(M)} and Ap� = Ãp� for � ∈ dom(Ap). It
is well known that Ap is m-accretive and generates a compact semi-group of nonexpansive
mappings on C(M).

3.2. Mild solvability

Next, recall the concept of a mild solution U of the nonhomogeneous evolution equation

U̇ (t) + A U(t) = z(t) (5)

on a nondegenerate interval I := [a, b] ⊂ R, where A : D → X is an m-accretive operator
in a Banach space X and z ∈ L1(I, X). We refer to Vrabie’s monograph [37] for details
on this concept and henceforth for results from the theory of m-accretive operator which
will be employed freely throughout. Let � > 0. D(�, t0, t1, . . . , tn, z1, . . . , zn) is called an
�-discretization of z on [a, b] iff

• a� t0 � t1, . . . , tn �b, t0 − a��, tj − tj−1 �� for 1�j �n, b − tn ��;
• z1, . . . , zn ∈ X;
• ∑

1� j �n

∫ tj
tj−1

∥∥z(s) − zj

∥∥∞ ds��.

Note, the symbol ‖·‖∞ is indiscriminately used for the maximum norm on various
spaces, e.g., on C(M) and C(I, X), throughout the paper. Next, we fix an �-discretization
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D(�, t0, t1, . . . , tn, z1, . . . , zn) of z on [a, b]. A step function v: [t0, tn] → X which satisfies
v|(tj−1, tj ] to be constant for 1�j �n, is called an approximate solution of (5) on [a, b]
with respect to D(�, t0, t1, . . . , tn, z1, . . . , zn) iff ran(v) ⊂ dom(A) and

v(tj ) − v(tj−1)

tj − tj−1
+ Avj = zj , 1�j �n.

Finally, a functionU ∈ C(I, X) is said to be a mild solution of (5), iff for each � > 0 there is an
�-discretization D(�, t0, t1, . . . , tn, z1, . . . , zn) of z on [a, b] and an approximate solution v

of (5) on [a, b] with respect to D(�, t0, t1, . . . , tn, z1, . . . , zn) such that ‖U(t) − v(t)‖X < �
for all t ∈ [t0, tn].

Results by Benilan, Crandall-Evans or Kobayashi guarantee a unique mild solution U =
U(t; a, U0, z) of (5) on [a, b] in case that U0 ∈ X and z ∈ L1((a, b), X). Noting that a
mild solution of (5) is also an integral solution of (5), one obtains thanks to a theorem of
Benilan that

‖U(t; a, U0, z) − U(t; a, Ǔ0, ž)‖∞

�
∥∥∥U(s; a, U0, z) − U(s; a, Ǔ0, ž)

∥∥∥∞+

+
∫ t

s

[U(	; a, U0, z) − U(	; a, Ǔ0, ž), z(	) − ž(	)]+ d	 (6)

for a�s� t �b, U0, Ǔ0 ∈ X and z, ž ∈ L1((a, b), X), where [·, ·]+ : X × X → R denotes
the normalized upper semi-inner product given by

[x, y]+ := lim
h→0+

‖x + hy‖ − ‖x‖
h

. (7)

3.3. A functional evolution equation induced by (4)

Let b > 0, w0 ∈ C(M), u ∈ C([−T , b], C(M)) and v(t, x) := ∫ 0
−T

�(s, x)u(t +s, x) ds.
Fix x ∈ M , and consider the ordinary differential equation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�tw(t, x) = hI (t, x, v(t, x), w(t, x))

×
[
�(0, x)u(t, x) − ∫ 0

−T
[�s�(s, x)u(t + s, x)] ds

]+
− hD(t, x, v(t, x), w(t, x))

×
[
�(0, x)u(t, x) − ∫ 0

−T
[�s�(s, x)u(t + s, x)] ds

]−
,

w(0, x) = w0(x).

(8)

Hypothesis (a) of (H2), the uniform boundedness of u and v, and standard existence and
uniqueness results imply that (8) has a global solution W = W(t, x; w0, u) on [0, b].
More precisely, the right-hand side of (8) satisfies a linear growth estimate of the form
�const[1 + sup	∈[0,b]‖u(	, ·)‖∞ + |w|][1 + ‖u(	, ·)‖∞]. Employing the following ele-
mentary Gronwall’s inequality:
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3.3.1. Let � : [0, b] → R be continuous and piecewise continuously differentiable. If there
are nonnegative constants 
, � with |�̇(t)| �
 |�(t)|+� for t ∈ [0, b], then |�(t)| � exp(
t)

(|�(0)| + �t) for t ∈ [0, b].
One has that supt∈[0,b] supx∈M |W(t, x; w0, u)| < ∞, uniformly for w0 in bounded sub-

sets of C(M) and u in bounded subsets of C([T , b], C(M)). Also, if one assumes u ∈
Cb([−T , ∞), C(M)) (Banach space of uniformly bounded continuous functions from
[−T , ∞) into C(M) under the supremum norm), this linear growth estimate guarantees
global solvability on R+ of (8). There are standard techniques to utilize 3.3.1. or Gron-
wall’s lemma in order to derive “Lipschitz-dependence” of solutions on parameters assum-
ing Lipschitz-dependence of the “right-hand side” of ode-systems. Here we also need

Claim 1. W(t, ·; w0, u) is continuous.

Fix w0 ∈ C(M) and u ∈ C([−T , b], C(M)). One has for t ∈ [0, b] and x, x̂ ∈ M:∣∣�t [W(t, x; w0, u) − W(t, x̂; w0, u)]∣∣
�
∣∣∣∣∣hI (t, x, v(t, x), W(t, x; w0, u))

[
�(0, x)u(t, x) −

∫ 0

−T

[�s�(s, x)u(t + s, x)] ds

]+

−hI (t, x̂, v(t, x̂), W(t, x̂; w0, u))

[
�(0, x̂)u(t, x̂) −

∫ 0

−T

[�s�(s, x̂)u(t + s, x̂)] ds

]+∣∣∣∣∣
+
∣∣∣∣∣hD(t, x, v(t, x), W(t, x; w0, u))

[
�(0, x)u(t, x) −

∫ 0

−T

[�s�(s, x)u(t + s, x)] ds

]−

−hD(t, x̂, v(t, x̂), W(t, x̂; w0, u))

[
�(0, x̂)u(t, x̂) −

∫ 0

−T

[�s�(s, x̂)u(t + s, x̂)] ds

]−∣∣∣∣∣ .

Consider the first term:∣∣∣∣∣hI (t, x, v(t, x), W(t, x; w0, u))

[
�(0, x)u(t, x) −

∫ 0

−T

[�s�(s, x)u(t + s, x)] ds

]+

−hI (t, x̂, v(t, x̂), W(t, x̂; w0, u))

[
�(0, x̂)u(t, x̂) −

∫ 0

−T

[�s�(s, x̂)u(t + s, x̂)] ds

]+∣∣∣∣∣
�C

(
‖�‖∞,1, sup

	∈[−T ,b]
‖u(	, ·)‖∞

)
|hI (t, x, v(t, x), W(t, x; w0, u))

−hI (t, x̂, v(t, x̂), W(t, x̂; w0, u))
∣∣

+ sup
	∈[0,b]

sup
z∈M

|hI (	, z, v(	, z), W(	, z; w0, u))|

×
[∣∣�(0, x)u(t, x) − �(0, x̂)u(t, x̂)

∣∣
+
∣∣∣∣
∫ 0

−T

[�s�(s, x)u(t + s, x)] ds −
∫ 0

−T

[�s�(s, x̂)u(t + s, x̂)] ds

∣∣∣∣
]
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�C

(
‖�‖∞,1, sup

	∈[−T ,b]
‖u(	, ·)‖∞

)

× Lip(hI )

[
distM(x, x̂) + ∣∣v(t, x) − v(t, x̂)

∣∣
+ ∣∣W(t, x, w0, u) − W(t, x̂, w0, u)

∣∣]
+ sup

	∈[0,b]
sup
z∈M

|hI (	, z, v(	, z), W(	, z; w0, u))|

×
[

sup
	∈[−T ,b]

‖u(	, ·)‖∞
∣∣�(0, x) − �(0, x̂)

∣∣
+ ‖�(0, ·)‖∞

∣∣u(t, x) − u(t, x̂)
∣∣

+ T sup
s∈[−T ,0]

∥∥�1�(s, ·)∥∥∞ sup
s∈[−T ,b]

∥∥u(s, x) − u(s, x̂)
∥∥∞

+ sup
	∈[−T ,b]

‖u(	, ·)‖∞

× ∥∥�1�(·, x) − �1�(·, x̂)
∥∥

L1

]
.

A quite similar estimate can be established for the second term. Thus, if hI and hD are
bounded, one finds constantsCj , j=1, 2, only depending on‖�‖∞,1, sup	∈[−T ,b]‖u(	, ·)‖∞
and the Lipschitz constants of the hJ , J ∈ {I, D}, such that∣∣�t

[
W(t, x; w0, u) − W(t, x̂; w0, u)

]∣∣
�C1

[
distM(x, x̂) + ∣∣u(t, x) − u(t, x̂)

∣∣
+ ∣∣v(t, x) − v(t, x̂)

∣∣+ sup
s∈[−T ,b]

|u(s, x) − u(s, x̂)| + ∣∣�(0, x) − �(0, x̂)
∣∣

+∥∥�1�(·, x) − �1�(·, x̂)
∥∥

L1

]+ C2
∣∣W(t, x, w0, u) − W(t, x̂, w0, u)

∣∣ .

Let � > 0. Since u ∈ C([−T , b], C(M)) is also uniformly continuous as a function on
[−T , b]×M and the same holds for v and �1� as function on [−T , 0]×M , one finds a � ∈
(0, �) such that the first term of the last inequality is less than �, whenever distM(x, x̂) < �.
Observing that W(t, x; w0, u) − W(t, x̂; w0, u) = 0 at t = 0, one obtains from 3.3.1. that∣∣W(t, x; w0, u) − W(t, x̂; w0, u)

∣∣ ��t exp(C2t), which guarantees the uniform continuity
of W(t, ·; w0, u) on M.

We note in passing that t → W(t, ·; w0, u) ∈ C([0, b], C(M)).
In fact, we see from what was stated before, there is a Ĉ ∈ (0, ∞) with∣∣W(t, x; w0, u) − W(t̂, x; w0, u)

∣∣ �Ĉ
∣∣t − t̂

∣∣
for t, t̂ ∈ [0, b] and all x ∈ M . This inequality holds uniformly for w0 and u in bounded
sets.
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Claim 2. w ∈ C1((0, ∞), C(M)),∣∣�t [W(t, x; w0, u) − W(t̃, x; w0, u)]∣∣
� |hI (t, x, v(t, x), W(t, x; w0, u))

×
[
�(0, x)u(t, x) −

∫ 0

−T

[�s�(s, x)u(t + s, x)] ds

]+

− hI (t̃, x, v(t̃, x), W(t̃, x; w0, u))

×
[
�(0, x)u(t̃, x) −

∫ 0

−T

[�s�(s, x)u(t̃ + s, x)] ds

]+∣∣∣∣∣
+ |hD(t, x, v(t, x), W(t, x; w0, u))

×
[
�(0, x)u(t, x) −

∫ 0

−T

[�s�(s, x)u(t + s, x)] ds

]−

− hD(t̃, x, v(t̃, x), W(t̃, x; w0, u))

×
[
�(0, x)u(t̃, x) −

∫ 0

−T

[�s�(s, x)u(t̃ + s, x)] ds

]−∣∣∣∣∣ .

The first term of the right-hand side can be estimated as being

�C

(
‖�‖∞,1, sup

	∈[−T ,b]
‖u(	, ·)‖∞

)
|hI (t, x, v(t, x), W(t, x; w0, u))

−hI (t̃, x, v(t̃, x), W(t̃, x; w0, u))
∣∣

+ sup
	∈[0,b]

sup
z∈M

|hI (	, z, v(	, z), W(	, z; w0, u))|
[
|�(0, x)u(t, x)

− �(0, x)u(t̃, x)| +
∣∣∣∣
∫ 0

−T

[�s�(s, x)u(t + s, x)] ds

−
∫ 0

−T

[�s�(s, x)u(t̃ + s, x)] ds

∣∣∣∣
]

�C

(
‖�‖∞,1, sup

	∈[−T ,b]
‖u(	, ·)‖∞

)
Lip(hI )[|t − t̃ | + ∣∣v(t, x) − v(t̃, x)

∣∣
+ ∣∣W(t, x, w0, u) − W(t̃, x, w0, u)

∣∣]
+ sup

	∈[0,b]
sup
z∈M

|hI (	, z, v(	, z), W(	, z; w0, u))|

×
[
‖�(0, ·)‖∞

∣∣u(t, x) − u(t̃, x)
∣∣+ T sup

s∈[−T ,0]
∥∥�1�(s, ·)∥∥∞

× sup
s∈[−T ,0]

∥∥u(t + s, ·) − u(t̃ + s, ·)∥∥∞

]
.
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Now, arguing like in Claim 1 we get that for every � > 0 there exists � such that if |t− t̃ | < �
then

sup
x∈M

∣∣�t [W(t, x; w0, u(t, x)) − W(t̃, x; w0, u(t̃, x))]∣∣< �.

We have also used that u is uniformly continuous on every compact set of (−T , ∞) to
estimate the term |u(t + s, x) − u(t̃ + s, x)|.

We also have “Lipschitz-dependence” on the various parameters, which, again, can be
derived by means of 3.3.1. We only mention that

Claim 3. Let B ⊂ C([−T , b], C(M)) be bounded. Then there exists  ∈ (0, ∞) with∥∥W(t, ·; w0, u) − W(t, ·; w0, û)
∥∥∞ � sup

	∈[−T ,b]
∥∥u(	) − û(	)

∥∥∞

for all t ∈ [0, b] and all u, û ∈ B.

Finally, the family (t, u) → W(t, ·; w0, u) has the Volterra-property, i.e., it follows for
t ∈ (0, ∞) and u, û ∈ Cb([−T , ∞), C(M)) with u|[−T ,t] = û|[−T ,t] that W(t, ·; w0, u) =
W(t, ·; w0, û).

Now, we can rewrite (4) by introducing the following mappings: A� := 1
c(·)Ap� for

� ∈ dom(Ap); A : C(M) ⊃ dom(A) → C(M) is m-accretive.

R(t, �, �, ϑ)(x) := 1

c(x)

[
f

(
t, x, �(x),

∫ 0

−T

�(s, x)ϑ(s, x) ds

)
− g(�(x))

− hI

(
t, x,

∫ 0

−T

�(s, x)ϑ(s, x) ds, �(x)

)

×
(

�(0, x)ϑ(0, x) −
∫ 0

−T

�1�(s, x)ϑ(s, x) ds

)

+ hD

(
t, x,

∫ 0

−T

�(s, x)ϑ(s, x) ds, �(x)

)

×
(

�(0, x)ϑ(0, x) −
∫ 0

−T

�1�(s, x)ϑ(s, x) ds

)]

for t ∈ [0, b], x ∈ M , �, � ∈ C(M) and ϑ ∈ C([−T , 0], C(M)). Clearly, (H1)–(H3) imply
that R ∈ C1−([0, b]×C(M)2 ×C([−T , 0], C(M)), C(M)). Employing the symbol ut for
s → u(t + s) for t ∈ [0, ∞) and s ∈ [−T , 0], (4) can be rewritten as a functional evolution
equation{

u̇(t) + A u(t) = R(t, u(t), W(t, ·; w0, u), ut ) t > 0,

u(t) = u0(t) t ∈ [−T , 0]. (9)

A mild solution of (9) on [0, b] is a u ∈ C([−T , 0], C(M)) which solves (5) with z(t) =
R(t, u(t), W(t, ·; w0, u), ut ) for t ∈ [0, b] and satisfies u(t) = u0(t) for t ∈ [−T , 0].
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3.4. Existence of local solutions of (9)

If it would not be for the term W(t, x; w0, u), one could just appeal to Theorem 5.3.1. in
[37] for the existence of a local mild solution of (9). However, one realizes by inspection
of the proof that the very same techniques cover the slightly more general case here. Also,
Theorem 5.3.2. of that monograph carries over resulting in the following:

Theorem 3.1. Let (H0)–(H3) be satisfied, u0 ∈ C([−T , 0], C(M)), and w0 ∈ C(M).
Then there exists a noncontinuable mild solution of (9). Moreover, if u is such a noncon-
tinuable solution of (9) and t̄ := sup{t : t ∈ dom(u)} < ∞, then limt→t̄− ‖ut‖∞ = ∞.

3.5. Uniqueness for (9)

Pretty much standard methods allow to establish unique mild solvability of (9) thanks to
the Volterra property of W.

Theorem 3.2. Let (H0)–(H3) be satisfied, u0 ∈ C([−T , 0], C(M)), and w0 ∈ C(M).
Then there exists at most one noncontinuable mild solution of (9).

Proof. Recall that the normalized upper semi-inner product onC(M) is given by [�, �]+ :=
max{�(x)sgn(�(x)) : x ∈ M, |�(x)| = ‖�‖∞} for �, � ∈ C(M) and � �= 0, and that
[0, �]+ = ‖�‖∞ for � ∈ C(M). Now, let u1 and u2 be noncontinuable mild solution of
(9) for a given pair (u0, w0) ∈ C([−T , 0], C(M)) × C(M). Let t̂ := sup{t ∈ dom(u1) ∩
dom(u2) : u1|[−T ,t] = u2|[−T ,t]}. Note that the Volterra property implies W(t, x; w0, u1) =
W(t, x; w0, u2) for all t ∈ [0, t̂]. If t̂ is not equal to the positive exit time of u1 (and therefore
also of u2), we find a b > t̂ with [−T , b] ⊂ dom(u1) ∩ dom(u2).Employing Eq. (6) one
obtains that ‖u1(t) − u2(t)‖∞ �

∥∥u1(t̂) − u2(t̂)
∥∥∞+∫ t

t̂
[u1(	)−u2(	), R(	, u1(	), W(	, ·;

w0, u1), u1	) − R(	, u2(	), W(	, ·; w0, u2), u2	)]+ d	 for t̂ � t �b, which yields

‖u1(t) − u2(t)‖∞

�
∫ t

t̂

∥∥∥∥ 1

c(·)
[
f (	, ·, u1(	),

∫ 0

−T

�(s, ·)u1(	 + s, ·) ds)

− f (	, ·, u2(	),
∫ 0

−T

�(s, ·)u2(	 + s, ·) ds)

]∥∥∥∥∞
d	

+
∫ t

t̂

∥∥∥∥ 1

c(·)
[
hI

(
	, ·,

∫ 0

−T

�(s, ·)u1(	 + s, ·) ds, W(	, ·; w0, u1)

)

×
(

�(0, ·)u1(	) −
∫ 0

−T

�1�(s, ·)u1(	 + s) ds

)

− hI

(
	, ·,

∫ 0

−T

�(s, ·)u2(	 + s, ·) ds, W(	, ·; w0, u2)

)

×
(

�(0, ·)u2(	) −
∫ 0

−T

�1�(s, ·)u2(	 + s) ds

)]∥∥∥∥∞
d	

+
∫ t

t̂

∥∥∥∥ 1

c(·)
[
hD

(
	, ·,

∫ 0

−T

�(s, ·)u1(	 + s, ·) ds, W(	, ·; w0, u1)

)
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×
(

�(0, ·)u1(	) −
∫ 0

−T

�1�(s, ·)u1(	 + s) ds

)

− hD

(
	, ·,

∫ 0

−T

�(s, ·)u2(	 + s, ·) ds, W(	, ·; w0, u2)

)

×
(

�(0, ·)u2(	) −
∫ 0

−T

�1�(s, ·)u2(	 + s) ds

)]∥∥∥∥∞
d	 t̂ � t �b

Now, one can employ in the usual way the various local Lipschitz-conditions, the uniform
boundedness of the solutions u and v on [t̂ , b] and the Volterra property of W, and conclude
that there exists a C > 0 with ‖u1(t) − u2(t)‖∞ �C(t − t̂ )sup	∈[t̂ ,t] ‖u1(	) − u2(	)‖∞ for
all t ∈ [t̂ , b]. Since C(t − t̂ ) → 0 as t → t̂ , there exists a � > 0 with u1(t) = u2(t) for
t ∈ (t̂ , t̂ + �]. This shows that t̂ cannot be smaller than the positive exit time of u1 and of
u2, hence u1 = u2. �

4. Global solvability and boundedness of solutions for Seller-type problems

In view of Theorem 3.1, it suffices to establish ‖‖∞-boundedness on finite intervals for
noncontinuable solutions of (9) in order to obtain global solvability. In fact, the noncontinu-
able solutions will possess bounds which only depend on the ‖‖∞ of the initial condition
and on the data of (4), if we add the following hypothesis:

(H4) lim supy→∞
g(y)
y

> max{‖hI‖∞, ‖hD‖∞}
[
‖�(0, ·)‖∞+supx∈M

∫ 0
−T

∣∣�1�(s, x)
∣∣ ds

]
.

Theorem 4.1. Let (H0)–(H4) be satisfied. Then, every noncontinuable solution of (9) is
global, i.e. its domain is equal to [−T , ∞), and uniformly bounded. The bound is uniform
for initial conditions u0 in bounded subset of C([−T , 0], C(M)).

Proof. Let r ∈ (0, ∞) so large that

g(y) − max{‖hI‖∞, ‖hD‖∞}
[
‖�(0, ·)‖∞ + sup

x∈M

∫ 0

−T

∣∣�1�(s, x)
∣∣ ds

]

× (y + 1) − ‖f ‖∞ �‖c‖∞
for all y ∈ (r, ∞). Consider u0 ∈ C([−T , 0], C(M)) with ‖u0‖∞ �r . If u is a solution of
(9) with u(t) = u0(t) for t ∈ [−T , 0], then we claim that ‖u‖∞ �r . Otherwise, there exists
an interval [t0, t1] (0� t0 < t1 < ∞) with ‖u(t0)‖∞ = r and ‖u(t)‖∞ > r for t ∈ (t0, t1].
Setting z(t) := R(t, u(t), W(t, ·; w0, u), ut ) for t ∈ [t0, t1], one concludes that u|[t0,t1]
is a mild solution of u̇ + Au(t) = z(t), hence an integral solution (cf. [37, Chapter 1.7]).
Therefore

‖u(t)‖∞ = ∥∥ut0

∥∥∞ +
∫ t

t0

[u(	), R(	, u(	), W(	, ·; w0, u), u	)]+ d	

for t ∈ [t0, t1]. Our choice of r together with (H4) guarantees that the integrand is negative on
(t0, t1], which yields ‖u(t)‖∞ < r for t ∈ (t0, t1] a contradiction. Note that [u(	), z(	)]+ =
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max{z(	)(x)sgn(u(	)(x)) : x ∈ M, u(	)(x)=‖u(	)‖∞} and that−g(u(	)(x))sgn(u(	)(x))

< 0 and sgn(z(	)(x)) = −sgn(g(u(	)(x))) hold for all 	 ∈ [t0, t1] and all x ∈ M with
u(	)(x) = ‖u(	)‖∞. This a priori estimate implies first existence of a global solution and
then uniform boundedness. �

Remark 4.2. The proof actually shows that there exists an absorbing ball B for (9) in
C([−T , 0], C(M)) in the sense that for each bounded subset B ∈ C([−T , 0], C(M)) and
each w0 ∈ C(M) there exist a time tB > 0 such that [U(t; u0, w0)] ∈ B for t > tB . Here
U(·; u0, w0) denotes the unique solution of (9).

Let us reformulate the results we have established so far in terms of Eq. (4).

Definition 4.3. Let (H1)–(H4) be fulfilled. We call (u, w) ∈ C([−T , ∞), C(M)) × C([0,

∞), C(M)) a global (C(M)-)mild solution of (4), iff w =W(t, ·; w0, u) and u satisfies (9).

Corollary 4.4. Let (H1)–(H4) be fulfilled. Then (4) has a unique global mild solution
(u, w). There exists an absorbing ball in C([−T , 0], C(M)) for u with uniform absorbing
time for initial data in bounded subsets of C([−T , 0], C(M)). Moreover, w grows at most
linearly at ∞, and if w is actually unbounded for one initial pair (u0, w0), then this is true
for all solutions (u, w).

Note, Claim 3 of Section 3 implies the last assertion.

5. Existence of global solutions for Budyko-type models

We adapt the approximation procedure from [16], which has been refined in [26]. From
a mathematical point of view, the distinct feature of a Budyko-type model is a jump-
discontinuity of f which reflects the rapid motion of the snow line relative to the 10-year
mean of temperature. Replacing f by an upper semi-continuous interval-valued function F,
one is led to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c(x)�t u(t, x) − ∇ · [k(·)|∇u(t, ·)|p−2∇u(t, ·)](x)

+hI (t, x, v(t, x), w(t, x))
[
�(0, x)u(t, x) − ∫ 0

−T
[�s�(s, x)u(t + s, x)] ds

]+
−hD(t, x, v(t, x), w(t, x))

[
�(0, x)u(t, x) − ∫ 0

−T
[�s�(s, x)u(t + s, x)] ds

]−
+g(u(t, x)) ∈ F(t, x, u(t, x), v(t, x)) t > 0, x ∈ M a.e.,

v(t, x) = ∫ 0
−T

�(s, x)u(t + s, x) ds t > 0, x ∈ M,

�tw(t, x) = hI (t, x, v(t, x), w(t, x))

×
[
�(0, x)u(t, x) − ∫ 0

−T
[�s�(s, x)u(t + s, x)] ds

]+
−hD(t, x, v(t, x), w(t, x))

[
�(0, x)u(t, x) − ∫ 0

−T
[�s�(s, x)u(t + s, x)] ds

]−
t > 0, x ∈ M,

u(s, x) = u0(s, x), s ∈ [−T , 0], x ∈ M,

w(0, x) = w0(x), x ∈ M.

(10)
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As for F, we assume

(H5) F : R × M × R × R → 2R is bounded and upper semi-continuous. Moreover,
F(t, x, u, v) is a nonempty, compact intervals for every (t, x, u, v) ∈ R×M×R×R.

We need the following fact about such “multis”, which can be found in [2,3,12].

5.1. Envelops

Let (H5) be satisfied. Then there exist an upper semi-continuous function f̄ : R × M ×
R × R → R and a lower semi-continuous function f : R × M × R × R → R with

F(t, x, u, v) = [f (t, x, u, v), f̄ (t, x, u, v)] for all (t, x, u, v) ∈ R × M × R × R.

5.2. Approximate selection theorem

Let X be a metric space, Z be a Banach space and G : X → 2Z be upper semi-
continuous with G(m) nonempty and convex for m ∈ X. Then, given � > 0, there exists a
locally Lipschitz function g� : X → Z such that the range of g� is contained in the convex
hull of the range of G and the graph of g� is contained in an �-neighborhood of the graph
of G.

5.3. The diffusion operator in L2(M)

We cannot expect C(M)-mild solution of (10) in view of the right-hand side of the first
equation under (10). Therefore, we employ the following realization of the slow-diffusion
operator. Let H := L2(M) be equipped with the inner product 〈�, �〉 := ∫

M
��c for

�, � ∈ H . Denote by G the antiderivative of g with G(0) = 0. Using the notations of
3.1, we can define a proper lower semicontinuous functional J̃p on H by setting J̃p(�) :=
Jp(�) + ∫

M
G ◦ � for � ∈ W 1,p(M) and J̃p(�) := ∞ for � ∈ H\W 1,p(M). The

subdifferential Ag of J̃p is an m-accretive operator in H, and a solution u of the differential
equation u̇ + Ag u = z(t) (z ∈ L1((0, b), H), b > 0) corresponds to a mild solution of
c(x)ut − ∇ · [k(x)|∇u|p−2∇u] + g(u) = c(x)z(t)(x).

5.4. Existence

We are going to assume throughout this subsection that (H0)–(H2), (H4), and (H5) are
satisfied.

Definition 5.1. Given b ∈ (0, ∞], w0 ∈ L2(M) and u0 ∈ C([−T , 0], L2(M)). One
calls (u, w) ∈ C([−T , b), L2(M)) × C([0, b), L2(M)) an (L2-)mild solution of (10), iff
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u|[−T ,0] = u0, w(0) = w0 and the following conditions hold:

• w(·, x) ∈ W
1,2
loc ([0, b), R) for a.e. x ∈ M and satisfies

�tw(t, x) = hI (t, x, v(t, x), w(t, x))

×
[
�(0, x)u(t, x) −

∫ 0

−T

[�s�(s, x)u(t + s, x)] ds

]+

− hD(t, x, v(t, x), w(t, x))

×
[
�(0, x)u(t, x) −

∫ 0

−T

[�s�(s, x)u(t + s, x)] ds

]−

t ∈ (0, b), x ∈ M a.e.

• there exists z ∈ L1((0, b), H) such that u|[0,b) is a mild solution of u̇ + Ag u = z(t)
c

and

z(t)(x) + �tw(t, x) ∈ F(t, x, u(t, x),
∫ 0
−T

�(s, x)u(t + s, x) ds) for a.a. t ∈ (0, b) and
x ∈ M .

Theorem 5.2. Let (H0)–(H2), (H4), (H5) be satisfied, u0 ∈ C([−T , 0], C(M)) and w0 ∈
C(M). Then (10) has a global mild solution (u, w) with u ∈ C([−T , ∞), C(M)) uniformly
bounded and w ∈ C(R+, C(M)).

Proof. Invoking 5.2, one finds a uniformly bounded sequence (fj ) of locally Lipschitz-
functions fj : R×M ×R2 → R with dist(Graph(fj ), Graph(F )) → 0, where dist denotes
a product metric on R×M ×R3 (natural identifications). Corollary 4.4 guarantees a unique
global C(M)-mild solutions (uj , wj ) of (4) with f = fj for j ∈ N. Moreover, one has
supt∈R ‖u(t)‖∞ < ∞. Using the notations from Section 3, the uj are solutions of (9) with
R replaced by a suitable Rj . Clearly, setting zj (t) := Rj (t, uj , W(t, ·; w0, uj )(uj )t ), uj

satisfies{
u̇ + A u = zj on (0, ∞),

u(0) = u0(0)
(11)

in the mild sense. Since the (zj ) are uniformly bounded, we can argue as in the proof of
Theorem 3.1 of [16] utilizing a theorem of Baras (cf. [37, Theorem 2.3.2]) and Cantor’s
diagonal argument. We obtain that (uj |R+) possesses a subsequence which converges uni-
formly on compact subsets of R+, hence there exists a subsequence (ulj ) of (uj ) and a
u∞ ∈ C([−T , 0], C(M)) such that supt∈[−T ,n]

∥∥ulj (t) − u∞(t)
∥∥∞ → 0 as j → ∞ for all

n ∈ N. In particular, u∞ is uniformly bounded. By passing to another subsequence, if nec-
essary, and employing once more Cantor’s diagonal procedure, we can assume that there is a
z∞ : R+ ×M → R with zlj |[0,n]×M ⇀ z∞|[0,n]×M (weak convergence) in Lr((0, n)×M)

for all n ∈ N and r ∈ [1, ∞). Noting that wlj (t)(x)=W(t, x; w0, ulj ) for j ∈ N, one con-
cludes by means of Claim 3 of section 3 that (wlj ) is a Cauchy sequence in C(R+, C(M))

with respect to uniform convergence on compacta, hence has a limitw∞ ∈ C(R+, C(M))

in that topology. Rewriting (8) with w = wlj as an Volterra integral equation and passing
to the limit as j → ∞ shows that w∞ is equal to the solution (t, x) → W(t, x; w0, u∞).
Therefore, in order to establish that (u∞, w∞) is an L2-mild solution of (10), it remain to
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conclude that z∞(t, x)+ �tw∞(t, x)+ g(u∞(t, x)) ∈ F(t, x, u∞(t, x), (u∞)t ) for almost
all (t, x) ∈ R × M . But, this follows by quite the same reasoning as in the proof of the
corresponding part of Theorem 3.1 in [16] employing the envelops guaranteed by 5.1. �

Remark 5.3. (i) One cannot expect a uniqueness result as examples by Díaz and Tello in
special cases show. (ii) Obviously, if (u, w) is a solution of (10) as guaranteed in the proof
of Theorem 5.2, one obtains that ‖w(t)‖∞ grows at most linearly at ∞. Also, there exist
a ball B in C(M) and a function t : (0, ∞) → (0, ∞) such that u(t) ∈ B for t � t(�)

whenever ‖u0‖∞ ��. (iii) Quite the same reasoning as in Lemma 3.1 of [26] shows that
every L2-mild solution of (10) belongs to C([−T , ∞), C(M)) × C([0, ∞), C(M)). Note
that if (u, w) is a mild solution of (10), u satisfies an evolution equation of the form{

u̇ + Ag u = z on (0, ∞),

u(0) = u0(0),
(12)

with z ∈ L1
loc(R+, L2(M)).

5.5. Regularity

Again, let (H0)–(H2), (H4), and (H5) be satisfied throughout, and assume that U =(u, w)

is a mild solution of (10) with u0 ∈ C([−T , 0], C(M)) and w(0) ∈ C(M). Then u satisfies
(12) with z ∈ L2

loc(R+, L2(M)), thus, a result of Brezis (cf. [6, Théorème 3.6] or [37,
Theorem 1.9.3]) yields:

Remark 5.4. u is a strong solution of (12) on R+, i.e., u(t) ∈ dom(Ag) ⊂ W 1,p(M) for
a.e. t ∈ (0, ∞), u|(0,∞) ∈ W

1,1
loc((0, ∞), L2(M)) and (12) holds pointwise a.e. in (0, ∞).

Moreover, t → J̄p(u(t) belongs to L1((0, b)) ∩ AC([�, b]) for 0 < � < b < ∞, hence u
is a weak solution of c(x)ut − ∇ · [k(x)|∇u|p−2∇u] + g(u) = �(t, x) − �tw(t, x) with
�(t, x) ∈ F(t, x, u(t, x), v(t, x)) for (t, x) ∈ (0, ∞) × M a.e. in the sense of Chapter II,
Section 1 in [17].

We need the following version of Theorem 1.1, Chapter 3 in [17] which requires the
discussion on “local thrust” in that section.

Theorem 5.5. Let (H0) and (H1) be satisfied,p > 2,� ∈ (0, 1), t̄ ∈ (0, ∞),b ∈ L∞((0, t̄)×
M), u0 ∈ C�(M), and u : [0, t̄] × M → R be a bounded local weak solution of
c(x)ut − ∇ · [k(x)|∇u|p−2∇u] = b(t, x). Then there exist �̂ ∈ (0, �) and � > 0, which
depend on � and t̄ , but not on u such that

|u(t1, x1) − u(t2, x2)| ��‖u‖∞[distM(x1, x2) + |t1 − t2|
p−2
p ]�̂

for all t1, t2 ∈ [0, t̄] and x1, x2 ∈ M .

Proof. Assume that c ≡ 1. Since M is a compact manifold without boundary,
interior estimates (suitable chart-domains in M as bases of time–space cylinders which
cover [0, t̄]×M) suffice. As for reaching the hyperplane t = 0, one consults the last remark
of Section 3.1-(i) in [17]. In order to allow for c as under (H1), one observes that
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ut −∇·[ k(x)
c(x)

|∇u|p−2∇u]−∇ 1
c(x)

·[|∇u|p−2∇u]= b(t,x)
c(x)

satisfies the structural conditions of
Chapter 2.1. in [17] when considered in the framework of charts. We call the reader’s atten-
tion to the fact that “·” in the expression ∇ 1

c(x)
· [|∇u|p−2∇u] denotes the action of the Rie-

mannian metric (inner product on the tangent spaces). The identity ∇·[g Y ]=g∇·Y +∇g·X
for g ∈ W 1,1(M) and X ∈ W 1,1(M, T (M)), T (M) the tangent bundle of M, substitutes
for the traditional identity in Rn. �

We need a version of the following result which is derived in the case p > 2 from the
previous theorem by employing the compact embedding of W 1,p(M) ↪→ C�(M) for � ∈
(0, 1 − 2

p
) and Remark 5.4., which guarantees that one can find a t̃ ∈ (0, t] such that

u(t̃) ∈ C�(M).

Corollary 5.6. Let the hypotheses stated in the beginning of this subsection be satisfied,

p>2 and �∈(0, 1− 2
p
). Then for each t>0 and b>t one has u|[t,b]∈C

�(p−2)
p ([t, b], C�(M)).

We note that the Hölder norm estimate is uniform for ‖‖∞-bounded set of functions u if the
U = (u, w) are mild solutions of (10). As for p =2, one knows u|[t,b] ∈ C

�
2 ([t, b], C�(M))

for � ∈ (0, 1). We refer to 5.3.1 in Chapter II of [1] for linear evolution equations generated
by analytic semigroups.

6. Trajectory attractor

Since one cannot expect unique solvability for (10) under (H0)–(H2), (H4), (H5), we
employ the concept of an trajectory attractor which goes back to Sell [31] and Chepyzhov
and Vishik [9,10] for Navier–Stokes equations and evolution equations, respectively. We
also refer to [11,22] and [26] for trajectory attractors related to energy balance models. As
compared to the earlier papers on EBMs, one has to address two additional difficulties, the
memory of the system and the hysteresis effect. It is well known in the case of functional
differential equations that one cannot expect complete continuity of the time t-shift unless
t is greater than the memory span T of the system. The hysteresis effect complicates the
situation even more, since the ordinary differential equation for w(·, x) does not show any
smoothing effect. The latter forces us to restrict our attention to the special case where
hI and hD do not depend on w. Additionally, the explicit t-dependence does not arise in
our application, and though one could allow “almost periodicity in t”, we also assume for
notational convenience that hI and hD do not depend on t. Thus we consider from now on

(H6) hI and hD do not depend on t and w.

Then system (10) reduces to a functional reaction–diffusion inclusion⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

c(x)�t u(t, x) − ∇ · [k(·)|∇u(t, ·)|p−2∇u(t, ·)](x)

+hI (x, v(t, x))[�(0, x)u(t, x) − ∫ 0
−T

[�s�(s, x)u(t + s, x)] ds]+
−hD(x, v(t, x))[�(0, x)u(t, x) − ∫ 0

−T
[�s�(s, x)u(t + s, x)] ds]−

+g(u(t, x)) ∈ F(t, x, u(t, x), v(t, x)), t > 0, x ∈ M a.e.,

v(t, x) = ∫ 0
−T

�(s, x)u(t + s, x) ds, t > 0, x ∈ M,

u(s, x) = u0(s, x) s ∈ [−T , 0], x ∈ M.

(13)
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Clearly, the results of Section 5 apply to (13), but different from (10), one can introduce a
united trajectory space which does not involve w, hence as we are going to show here, the
shift semiflow on that united trajectory space is completely continuous for t > T . Therefore,
our setting falls into the scope of dissipative dynamical systems which ensures the existence
of a global attractor.

Consider C(R+, C([−T , 0], C(M)) under the metric

d(U, V ) := sup{‖U(t) − V (t)‖∞ : t ∈ [0, 1]}

+
∞∑
l=2

1

2l

sup{‖U(t) − V (t)‖∞ : t ∈ [0, l]}
1 + sup{‖U(t) − V (t)‖∞ : t ∈ [0, l]}

for U, V ∈ C(R+, C([−T , 0], C(M))), then C(R+, C([−T , 0], C(M))) is a Fréchet
space. Mild solutions u ∈ C([−T , ∞), C(M)) of (13) can be identified with certain el-
ements of C(R+, C([−T , 0], C(M))) via U(t)=ut for t ∈ R+. In the sequel, we are going
to understand U and u in this way without explicitly mentioning this relationship each time.

Since we are interested in the long-term evolution of the climate system, orbital changes
(Milankovitch theory) suggest that the incoming solar radiation flux could be either quasi-
periodic or more general almost periodic. To this end, let us specify (H5) to

(H7) F(t, x, u, v) = Q(t, x) F0(x, u, v) with:
Q ∈ C2(R × M, R) nonnegative and uniformly continuous, Q(·, x) almost periodic
for x ∈ M;
F0 : M × R × R → 2R is bounded and upper semi-continuous, F0(x, u, v) is a
nonempty, compact intervals for every (x, u, v) ∈ M × R × R.

Clearly, (H7) is a special case of (H5). We call the closure Q of {(s, x) → Q(t + s, x) :
t ∈ R, x ∈ M} in the compact open topology the hull of Q. It is well known that Q is

compact under hypotheses (H7) for Q and that
∥∥∥Q̃∥∥∥∞ = ‖Q‖∞ for Q̃ ∈ Q. If Q̃ ∈ Q and

(H7) is satisfied, we write F̃ for the “induced F”, i.e. F̃ (t, x, u, v) := Q̃(t, x) F0(x, u, v).

Definition 6.1. Let (H0)–(H2), (H4), (H6), (H7) be satisfied. Then one calls X := {U ∈
C(R+, C([−T , 0], C(M))) : u solves (13) with F = F̃ for some Q̃ ∈ Q} the united trajec-
tory space associated with (13).

Lemma 6.2. Let (H0)–(H2), (H4), (H6) and (H7) be satisfied. Then X is a closed subset
of C(R+, C([−T , 0], C(M))).

Proof. Assume that (Uj )) ∈ XN converges to U∞ ∈ C(R+, C([−T , 0], C(M))) w.r.t.
d. Let Qj ∈ Q such that uj is a solution of (13) with F = Qj F0. By passing to a
subsequence, if necessary, we can assume that Qj converges uniformly on compact sub-
sets of R to some Q∞ ∈ Q. Now, let b > 0, then it remains to establish that
u∞|[0,b] is a mild solution of u̇ + Agu + 1

c(·)�tw∞(t, x) ∈ Q∞(t, x)F0(x, u∞(t, x),∫ 0
−T

�(s, x)u∞(t + s, x) ds), where �tw stands throughout this proof for hI (t, x, v(t, x))
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[
�(0, x)u(t, x) − ∫ 0

−T
[�s�(s, x)u(t + s, x)] ds

]+ −hD(t, x, v(t, x))
[
�(0, x)u(t, x)−∫ 0

−T
[�s�(s, x)u(t + s, x)] ds

]−
. Let (zj ) ∈ L2

loc(R+, L2(M)) withzj (t)(x) ∈ Qj(t, x)

F0(x, uj (t, x),
∫ 0
−T

�(s, x)uj (t + s, x) ds) for a.a. (t, x) ∈ [0, b] × M . Clearly, (zj ) is
bounded in L2((0, b) × M), hence, by passing to a subsequence, if necessary, we can as-
sume that (zj |[0,b]) converges weakly in L2((0, b) × M) to some (t, x) → z∞(t, x) with
z∞ ∈ L2((0, b), L2(M)) (obvious identification). One concludes as in the proof of Theorem
5.2 that z∞(t, x) ∈ Q∞(t, x)F0(x, u∞(t, x),

∫ 0
−T

�(s, x)u∞(t + s, x) ds) for a.e. (t, x) ∈
[0, b]×M . On the other hand, the “solution operator” E : L2(M)×L1((0, b), L2(M)) →
L2((0, b), L2(M)), which associated with (y, z) ∈ L2(M) × L1((0, b), L2(M)) the so-
lution of u̇ + Ag u = z, u(0) = y, is completely continuous, hence the solution of u̇ +
Ag u = z∞(t) − 1

c(·)�tw∞(t, ·),u(0) = u∞(0) is a limit point of the sequence (uj |[0,b]),
consequently, equal to u|[0,b].

Throughout we consider X as a complete metric space under d|X×X. Define the shift-
semi-flow S̃ : R+ × C(R+, C([−T , 0], C(M))) → C(R+, C([−T , 0], C(M))) by S̃(t)U

is equal to s → U(t + s). Our definition of X guarantees that S̃(t)(X) ⊆ X for t ∈ R+, and
we write S(t) for S̃(t)|X. Note S is a semi-flow on X. One observes that S is a contraction
semi-group on X which implies the joint continuity of (t, U) → S(t)U . �

Remark 6.3. It follows from Remark 5.3. (ii) and (iii) that there exists a ball B ⊂ C([−T ,

0], C(M)) such that for every U ∈ X there exists a finite time 	 ∈ (0, ∞) with S(t)U ∈ B
for t > 	, i.e., S is point dissipative. Actually, 	 depends only on ‖u0‖∞.

Since memory terms are involved, we cannot expect S(t) to be completely continuous
for t > 0, but we have

Lemma 6.4. Let (H0)–(H2), (H4), (H6), (H7) be satisfied. Then S(t) is completely contin-
uous for t > T .

Proof. Let (Uj )j∈N ∈ XN be d-bounded. Then (uj ) is uniformly bounded by Remark
6.3. By definition of X, one finds (Qj ) ∈ QN such that uj is an L2-mild solution of
(13) with F(t, x, y, z) = Qj(t, x)F0(x, y, z) for (j, t, x, y, z) ∈ N × R × M × R × R.
Since Q is almost periodic, one has that

∥∥Qj

∥∥ = ‖Q‖∞ for j ∈ N. We consider the case
p > 2. Let t > T . Then Remark 5.4 and the embedding theorem show that there exists a
� ∈ (0, 1 − 2

p
) and an t ∈ [0, t − T ) such that uj (t) ∈ C�(M) for every j ∈ N. Set

G := {uj : j ∈ N}. Corollary 5.6 implies that {g|[t,b] : g ∈ G} is equicontinuous from
[t, b] into C(M) for every b > t . Also, it implies that {g(	) : g ∈ G} is bounded in C�(M)

for 	 ∈ [t, ∞), hence relatively compact in C(M). Ascoli’s theorem therefore yields G
to be relatively compact in the topology of uniform convergence on compacta on [t, ∞),
hence we can find a subsequence (ulj ) of (uj ) which converges uniformly on compacta of
[t, ∞] to some u∞ ∈ C([t, ∞), C(M)), which is bounded, since G is uniformly bounded.
The sequence (S(t)(Ulj )) therefore converges for each b̃ > t uniformly on intervals [t, b̃] in
C([−T , 0], C(M)) to s → u∞(t + 	 + s) for s ∈ [−T , 0] and 	 ∈ [t, b̃], hence converges
w.r.t. d. As for p = 2, one replaces Corollary 5.6 by the corresponding “linear result”
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mentioned thereafter and follows our reasoning, or “translates” Theorem 1.8 in [41] into
the language of united trajectory spaces. �

Now, we can appeal to Theorem 3.4.8 in [20] and conclude.

Theorem 6.5. Let (H0)–(H2), (H4), (H6), (H7) be satisfied. Then S has a global compact
attractor, the so-called trajectory attractor of (13).

Remark 6.6. The traditional approach to guarantee that the attractor of a semi-flow is
connected, is to establish that the underlying space, here X, is path-connected [32, Lemma
23.6 and footnote]. However, this may not be true for X, if (13) is not uniquely solvable for
all initial conditions. We refer to Remark 7.6.5 in [12] which indicates the problem in case
of a 2 × 2 ode-system.
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