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We consider some Bernoulli free boundary type problems for a general class of
quasilinear elliptic (pseudomonotone) operators involving measures depending on
unknown solutions. We treat those problems by applying the Ambrosetti-Rabinowitz
minimax theorem to a sequence of approximate nonsingular problems and passing to
the limit by some e priori estimates. We show, by means of some capacity results,
that sometimes the measures are regular. Finally, we give some qualitative properties
of the solutions and, for a special case, we construct a continuum of solutions.

1. Introduction

Although there are several connections between the problem considered and some
formulations arising in different physical applications, the main motivation of this
paper comes, initially, from a mathematical question. We have observed that most
semi-linear problems, of the form —Au(z) = F(z,u(z)), z € 2 (where 2 is a
given open bounded set in RY), with some boundary conditions on 82, have been
studied intensively in the literature when F' is a given function from 2 x R into R.
Nevertheless, some relevant models in physics can be expressed as —Au(z) = p(z, u)
in D'(§2), where u{z,u) is a Radon measure depending on z but also on its own
solution u.

One example of the above-mentioned problems, involving u-dependent measures,
corresponds to the so-called interior Bernoulli problem on {2. We recall that a
‘classical’ formulation of this problem is usually given as finding a.set A C 2 C RV
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and a function v : 2 = R such that
—Apu=0 in 2\ A4,
w=0 on df2,
=1 on JA,
—|Vu|P2Vu-n=q ondA,

(IBP)

where Apu := div(|Vu|P~2Vu), ¢ is a given continuous function on 2, N > 2
and 1 < p < oc. This problem arises, for instance (for p = 2), in the study of
an inviscid incompressible irrotational horizontal flow in stationary regime. The
vector velocity v is given through its stream function u by v = (9u/dy, —du/0z).
The incompressibility of the flow implies that « is a harmonic function. If we assume
that the fluid circulates in §2 around a bubble of air A (of unknown location in §2),
since 812 and A are streamlines, after a normalization we can assume that u =1
on A and u = 0 on 802. Moreover, the (Daniel) Bernoulli principle holds on 9A,
leading to

v+ P 4 gz = const.
p

and so |Vu| must be constant on JA. For a mathematical treatment of the prob-
lem, see, for example, [1,2,9,20] and [18], in which a long list of references and
some applications to electrolytic drilling and galvanization can be found. Some
other references, dealing with the case p # 2, are given in [20]. A different context
leading to the formulation (IBP) is plasma physics, particularly the so-called sharp
problem, in which a magnetically confined ideal fusion plasma is modelled by the
Grad-Safranov equation under the constitutive law that the pressure is piecewise
constant [11,19].

In order to state the problem considered here, we note that we can reformulate
problem (IBP) in terms of a measure with support on the subset 8(u~'(1)), the
boundary of the set {x € 2 : u(z) = 1}, in the following way. Find v € C(2) N
Wy'P(£2) such that

/ |VulP=2Vu - Vodz = (u(,u),9) for all p € C(2) N WyP(£2),

“ (IPB - pz)

o) = [ aly)el) dHw-a0).
u=1(1))

As usual, if £2 is an open bounded smooth set of RN, N > 1 (as we shall assume
in the rest of the paper), 8(A) denotes the boundary of a subset A in {2 (that is
d(A) = A — A, where A is the closure of A in £ and A is its interior). We also
use the notation ©=1(1) = {zx € 2 : u(z) = 1} := {u = 1}. Here, H,, denotes the
m-dimensional Hausdorff measure and, in general, we denote by (,-) the duality
product between some functional space V' and its dual space V.

The main result of this paper is to show that it is possible to carry out a math-
ematical treatment of this type of problem for suitable second- and higher-order
quasilinear partial differential equations. For instance, more general second-order
operators arise when the physical problem is formulated in terms of some special
curvilinear coordinates. The price one has to pay by considering a larger generality
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on the partial differential operator comes from the question of the regularity of the
solution » (and thus from the nature of the measure u(z,u)). Indeed, some spatial
coefficients or nonlinear terms depending on the solution u and its derivatives may
arise at the operator, presenting some singularities different from the term u(z, u).
Because of this, we must relax the notion of solution, allowing the presence of
measures p(z, ) more general than that given by

W= [ et dHx- )

More precisely, in this paper, we shall consider the following general formulation.

PROBLEM 1.1. Given a Banach space V (of functions defined on £2), a ‘pseudo-
monotone operator’ A mapping V into its dual V' (see §2 for details and some
examples) and a function ¢ € C(£2) with ¢ > 0, find a function « € V with a non-
void set 8(u~'(1)) and find a bounded Radon measure  whose support is included
in the set &(u~!(1)) such that

(Au, p) = / g(z)e(x)du(z) for all p € V NC(2).
O(u-t(1))

Our main result (theorem 2.8) shows that, under suitable assumptions on V,
A and ¢, the above problem possesses at least one solution (u, u) (we also obtain
the additional information that g > 0 and that {Au,u) > 0). This is done by
introducing a sequence of approximate quasilinear (non-singular) non-monotone
equations

Aty = qFp(un)

for some suitable functions F,. We prove the applicability of the Ambrosetti-
Rabinowitz minimax theorcem, for each natural n and we pass to the limit by means
of suitable a priori estimates.

In a scparate step, by obtaining some capacity results we show (sce proposi-
tion 3.2) that when u is more regular (for example, Lipschitz continuous) the mea-
sure p(-,u) is also more regular (with respect to the Hy _ measure) in the sense that
there exists a function g, Hy _-integrable on &(u~'(1)), such that dp = gdHx_,.
Note that in that case the problem satisfied by (u, #) can be formulated in a similar
way to the interior Bernoulli-type problem (IBP) (but replacing the operator Apu
by Au).

We point out that the dependence on u of the measure p(-,u) leads to very
important differences with respect to the case of quasilinear problems involving
prescribed measure data (independent of u) as source terms on the right-hand
side of (IPB — y). As shown in the large literature on this case (see, for example,
[3.5-8,22,23]), it is possible to deal with more singular measures.

Note that the requirement that any solution must have a non-void set d(x~"'(1))
allows us to classify the problem studied in the class of free-boundary problems
since the location of the set d(u~!(1))) is also unknown (sce also remark 2.1 for
the interpretation of problem 1.1 as a limit of some singular dead core problems).
Notice also that, in some sense, the Radon measure g can be viewed as a Lagrange
multiplier associate to the constraint d(u=1(1)) # 0.
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As it is natural, it is possible to get a sharper description of the solution (u, u)
when we know some additional information about the problem. So, in particular,
we consider in §5 the one-dimensional case, obtaining a complete description of
(u, 1) when we also assume some symmetry conditions. This special formulation
allows us to show that, in general, we cannot expect to have uniqueness of solutions
for the formulation of problem 1.1, since when ¢ is a positive constant we construct
a continuum of solutions (uy, i£x) depending on a parameter A.

2. Statement of the main results

Let £2 be an open bounded smooth set of RV and for 1 < p < oo let the usual
Lebesgue space LP(£2) be endowed with its norm (denoted by |-|,). Let the Sobolev
space W™?(2) = {v € LP(2), D*v € LP(2), |a| < m} for m € N. We also
recall the classical spaces C%(2) = C(2) = {v : 2 — R, a continuous function},
[v]oo = max,eg |v(z)|, C*¥(2) = {v e C(2): D*v € C(), |a| <k} for k > 1 and
Cg°(92) = {v is indefinitely differentiable with compact support in 2}.

We denote by (V, ] - ||) a reflexive Banach space of dual V’'. We assume that

V — C(£2) with compact embedding.

REMARK 2.1. This assumption is not useful in the fundamental lemma 3.1. In the
next paper in this series, [17], we will treat the case without this compact embed-
ding.
We define
K= I |inf 1 ll]l > 0. (2.1)
.

Concerning the operator A and function g arising in problem 1.1, we shall assume
the following conditions.
AsSUMPTION 2.2. The mapping A:V = V' is

(i) bounded (it maps bounded sets of V' into bounded sets of V'),

(ii) strongly—weakly continuous (with the respective topology of V and V),

(iii) pseudomonotone (i.e. if v; = v weakly in V and lim sup; (Av;j, v; — v) €0,
then v; — v strongly in V).

ASSUMPTION 2.3. For any v € V such that there is an open relatively compact
set O in 2 with v = 1 on O, we have {Av,») = 0 for all p € V with support
(¢) € O. (Formally, we can state analogously that the restriction of .A on any
relatively compact set O in 2 to v = 1 is zero, i.e. A(1)|o = 0.)

ASSUMPTION 2.4. If Av = 0 for some v € V, then v = 0.

ASSUMPTION 2.5. There exists a Gateaux differentiable function J : V — R such
that

(i) (Au, ) = <J'(u),qa>( = lim

t—0

J(u+tﬂp)—J(u)) forallge Vandallue V,
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(ii) J is coercive in the sense that there exist non-negative constants oy, i =
0,1,2,3, such that, forallv eV,

|||l — ey < J{v) € as||v||P + a3z for some p = 1,
and agK > 207 + a3 (K given by (2.1)),
(ii)) J(0) < 0.

We recall that an important subclass of pseudomonotone operators A is consti-
tuted by monotone operators satisfying some extra conditions. For instance, it is
the case when A is monotone (i.e. (Au—Av,u—v) > 0 for all u,v), hemi-continuous
(limg0(A(u + tp), v) = (Au, v} for all u, ¢, v) and bounded. In that case A is also
strongly-weakly continuous [21]. On the other hand, if V = V' is a Hilbert space
and A is a maximal monotone operator, then A is strongly—weakly continuous. This
is a consequence of a well-known property [10] for maximal monotone operators: if
Tp = T, yp — y and Az, = y,, liminf,(y,, z,) < (y.z), then Az = y.

We now give some examples of operators .4 and spaces V to which we can apply
our result.

EXAMPLE 2.6. V = Wy?(2), p > N, Av = —div(a(z)|Vo|P~2Vv), o € L=(£2),

a(z) 2 ap >0, or
LN, 72 By
Av——;é—m—i(ai *5;?"),

for o; € L>(02), a;(z) 2 ap > 0, p; > N.
Note that the operators satisfy assumptions 2.2-2.5 with

ov

dz;

J(v) = l/ a(z)|Vv|P dz
PJa
or
J(v)—i—l—/ @] 25" dz for ve v = wie(a)
=N A 2 -0

respectively, and that, from Sobolev embedding, W'?(£2) — C(Q) if p > N with
compact injection.

EXAMPLE 2.7. V = W2P(Q), p > iN, Av = A(|Av|P"2Av) + b(z)¢(v(z)) for
v € V, where b € L>(£2) and ¢ € C(R)N L*®(R) satisfy some additional conditions
(see (2.2)).

It is easy to see that the operators given in the example satisfy assumptions 2.2-
2.5 with

3 1 v(x) .
J(v) = 5/{; |Av[? dz + /Qb(:z:)( A o(a) da) dz forv eV =W;P(12),

where ||v]| = |Av|p, and to see that, from Sobolev embedding, W2P(£2) < C(£2) if
p > 1N (this injection is compact).
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A detailed proof of the pseudomonotonicity of the operators given in examples 2.6
and 2.7 can be found, for example, in [21]. The smaliness condition

|Avl?
Pbloo|ploo < sup ——B

2.2
v#0,ueV I'U[]_,l(g) ( )

on b and ¢ and the growth of J imply condition 2.4. Assumption 2.3 holds, since
6(1) = 0.

Our main existence result is the following.
THEOREM 2.8. Suppose that assumptions 2.2-2.5 hold. Then there exists a (u, p)

solution of problem 1.1 with u € V and u e non-negative bounded Radon measure
whose support is non-void and contained in d(u~"'(1)) such that

()= [ @@ dut) forallpeV. (2.3)
B(u—1(1))
Moreover,
(Au,u) > 0. (2.4)

REMARK 2.9. Problem 1.1 is (sometimes) regarded as some kind of limit case of sin-
gular dead core problems. Indeed, some relevant problems in chemical engineering
lead to the formulation
—Apr+gu*=0 in £,
v=1 on 02,

for some o € (0, 1) (see, for example, [13] and references therein). Note that function
u = 1 — v satisfies
q .
—Apu = (1——’11.)0' mn Q,
u=0 on 9f2.

The variational formulation leads to the minimization of the functional

/[Vu|pd:r+——/ )~ de.

Making a — 1, we (formally) obtain the problem of minimizing

=—/ |Vu|pdx+q/ H(1 — u)dz,
PJq [r]

with H(u) the Heaviside function, which is another formulation of the Bernoulli
problem [1].

3. Proof of the main theorem and its corollaries

In order to show the existence result we shall use an Ambrosetti-Rabinowitz mini-
maz-type argument: we shall introduce an approximate sequence of functionals, we
shall prove the existence of a critical point for each one of then and, finally, using
some a priori estimates on these critical points, we shall pass to the limit.
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To construct an approximate sequence for equation (2.3}, let w CC 2 be an open
relatively compact subset of 2. Let z) € V besuchthat 0 € 2; < 1,21 =1 onw
and let § = §(w, 21) > 0 be such that J(z;) <6 [ qdx < >c.

For n > 4, we shall consider the following non-negative continuous function £,
on R, for any o € R:

n ife=1,

F.(o) =
n() 0 ifasl—ﬁora>1+£,
n n

and such that
1 +oc
/ F,(o)do = F,(o)do = 4.

oc 1

Note that the exact value of F}, on [1 — (6/n).1 + (6/n)] is not relevant here.
We consider the sequence of functionals mapping J,, : V — R by setting, for

veV,
v(x)
Ju(v) =J(v) - /Q q(:v)(/o F, (o) da) dz.

We have the following lemma.

LEMMA 3.1 (fundamental sequence). Suppose that assumptions 2.2-2.5 hold and
that V is only compactly embedded in L'(£2). Then there is a sequence u,, € V such
that

Au, = qF,(un) in V' (3.1)

Moreover,
0< %Q()I{ —a; £ Ju(’ll,n) < &2]'21”1) + 3 +25/ (]dil?. (3.2)
i

The proof will again rely on the Ambrosetti-Rabinowitz minimax theorem [4].
We first have the following proposition.

PROPOSITION 3.2. J,(z) £ 0.

Proof of proposition 3.2. Since z; 2 0 and F,, 2 0 we have

/gq(;r)(‘ézl(x) F,.(0) do) dr > Lq(x](/ﬂl F,(0) da) de = JLq(x) dr.

Then, we obtain

z1(x)
Ju(z1) = J(21) —f q(:l:)( / F,,(rr)da) de < J(z) - 5/ g{z)dr < 0.
2 JO w

Proof of lemma 3.1. We consider the set of functions

r={feC(0.1.,V): f(0) =0, f(1) = =1}
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and define

Yo : _?’e'}‘s’,?[g"i]'] n(f(s))

Since J(0) < 0 (see assumption 2.5), we then have max(J,(21), J»(0)) < 0. Let us
show that v, > 0 for n > 26. Let 0 < p < K/(2)|z1]]) and f € I'. Then there exists
s5 €]0,1[ such that || f(ss)|| = l|1]| (note that i < 1). By the definition of K, we
deduce that

2 1 5
<Liall<s<1-2 ifn>2s.
|f(3f)‘oo K "zlu 2 <1 - if n > 26
Moreover, from the definition of F,,, we have J,(f(sf)) = J(f(ss)). Thus, we have

Jn mi J .
Srggag] () > unelo, K/(2I|z1 ) (Hvll=;ltllllz1 I (U))
By the growth assumption on J, we deduce that
J, =1aoK —a; > 0.
ferl[%)i] w(f(s) 2 e, K/&” ]”)]( aoptllz1]l — ) 300 1
Thus,
T 2 300K — ay > 0= max(Jn(21), Ja(0)). (3.3)

Next, we want to show that for a fixed n > 28 the functional J, satisfies the
Palais-Smale condition (here denoted by (PS),) for any value v € R. Let (v;); be
a sequence in V such that

Jn"’_) -,
j—o+oo

and

Jhv; — 0 strongly in V',
Then there is a constant 3, > 0 such that |J,(v;)| < 8, for all j € N. By the
growth condition on J and the definition of F,, there exists a constant 3/, > 0
(also depending on &) such that ||v;|| < 8, for all j. Since V is reflexive and the

embedding V < L!(12) is compact, we deduce that there is a function v € V and
a subsequence (still labelled as ;) such that

v; = v weaklyin V and v; — v in L*(£2).

Since J,(vj) = Av; — qFy(v;), we then have

(Av;, v; —v) = /g 4Fa(v7) (25 — v)dz + (T4 (15), 25 — v),

from which we deduce that
[(Avj, v — v)| < enlrj — vli + [ Jn (w) v |vj — vlv (3.4)

with ¢, = |g|e max, |F(0)| < oo. Since (v;); remains in a bounded set of V', with
the condition that lim; |Jjvj|v = 0, we then have limsup;_, , . (Av;,v; — v) <
0. The fact that A is pseudomonotone implies that v; — v strongly in V. This
shows that we have the (PS).,, condition for J,. So, by the Ambrosetti-Rabinowitz
mountain-pass lemma [4] we deduce that v, is a critical value, i.e. there exists
un € V such that J,(u,) = v, and J),{u,) = 0. This last statement implies (3.1).
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From relation (3.3), we have J;, (¢,) = 7, 2 %aoK —q. Since themapg: [0,1] - V
defined by g(s) = sz; belongs to I', we then have

+oc

Yn € max Jn(g(s)) < azllz21]” + a3 +/ q(-T)( Fr(o) da) dz,
s 2

J —oC
ic.
Ju(un) € @)z ||P + a3 + 26/ q(x)dx.
2

COROLLARY 3.3.
(i) The sequence u, is uniformly bounded in V for any n € N.
(ii) Fu(un) remains in a bounded set of L} (12) for any n € N.

Proof. The first statement is a conscquence of the growth assumption (assump-
tion 2.5), the construction of F,, and (3.2). On the other hand, since infg g = m > 0,
for n > 26 we have

Fn(un) < / qunFn(un)dm = (Auvn 'un)-
2 n

Thus,
2
0< [ Fulun)do <~ Aunly-funl. (3.5)
It} m

Since A is a bounded operator, there exists a constant ¢ > 0 (independent of n)
such that

2
Aunlv llunll <e 0< / Falun) < 2e. (3.6)
n m

O

From now, we assume that V < C(£2) with compact embedding.

As consequence of the above result, we may assume that there exist a subse-
quence, still denoted u,,, and F,(u,), a function « € V and a non-negative measure
gt such that Fy (u,) — g, vaguely in the set of bounded Radon measures and weakly
in V' and u,, — u weakly in V (and with |u, —t|eo — 0 by the compact embedding).

We then have the following corollary.

COROLLARY 3.4.
(i) supp(y) C {u =1}.
(1) u, = u strongly in V.
(iii) gu e V', Au=gqu in V’ and (Au,u) 2 0.

Proof. To prove (i) we first will show that supp(y) C {u = 1}. Let € C,(£2) such
that supp¢ C {u < 1} and s € supp @ such that

u(zar) = max{u(z), @ € suppp}.
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Choosing 0 < 7 < %(1 — u(xar)), for sufficiently large n, n > n, 5, we have

é
supp C {u, <1-17} C {un <1l- ;}

Thus,

/ eqF,(u,)dz =0.
Fr)

This implies that {u,pq) = 0, since ¢ > 0 on 2 and g € C(£2); thus, supp(p) C
{u > 1}. Considering ¥ € Cc(£2) such that supp(y) C {u > 1}, we have min{u(z) :
x € supp(#)} > 1. Then, for large n, supp(¢y) C {u, = 1+ (6/n)}. Thus,

(g =0

implies that
supp(p) C {u=1}.

To prove part (ii), we point out that

(-Au-ne Up — 'U') = / qF‘n("'n)(un - u) dz < Clu-n = U|oc
2

and thus
lim sup{At,,, un, — u) < 0,

T

since A is pseudomonotone. Then, u,, — u strongly in V.

Finally, since A maps V-strong into V'-weak, we then have Au, — Au in V'-
weak. Thus, (Atn,un) = [ ¢Fr(us) = 0 implies that (Au,u) > 0 and Au = gqu,
which proves (iii). a0

The proof of theorem 2.8 is a consequence of the above results together with the
following properties.

LeMMA 3.5.
(i) suppu C fu=1}\Tu =1} = d(u=1(1)).

(ii) supp(y) is non-void and {Au,u) = fn(ﬂ-,(])) gdu > 0.
Proof. Let ¢ € C°({u = 1}). Since © = 1 on the open set O = {u = 1}. Thus,
{Au, ) = 0 (by assumption 2.4), i.c. {it,ip¢) = 0, which implies that x = 0 on O.
This shows (i). Moreover, if suppy = @, then Au = 0, v € V and, according
to assumption 2.4, we will have © = 0. However, from lemma 3.1 and the strong
convergence of corollary 3.4, from the growth condition in assumption 2.5 we have
0< %aOK-— o) — a3 < agl|ty||?. This implies that 0 < %aOK - — a3 € oz,
which contradicts the fact that v = 0. O
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4. Some qualitative properties of v and p
We can now summarize the estimates obtained in the above section.

COROLLARY 4.1. Let u be the solution of the main problem given by theorem 2.8.
Then
0 < Mo < [luf| < My,

1/p
My = (_1_ [O‘_OI.{_ - -‘03])
az| 2

with oz, 1=0,1,2,3,4, and K given in assumption 2.5; and

where

1
M =— [26/ gdz + as||z1||P + a3 + al]
Op 2

for some § > 0.

To go further in our study, we shall assume some additional properties on the
operator A.

ASSUMPTION 4.2. Assume that, for all v, in V,
(i) (Ap,p) 20,
1

(i) (Av, @) < (Av, )7 (A, ) V/P, % +5=1

DEFINITION 4.3. We define the A-capacity of a set £ C 2 by
cap 4(E) = inf{{Ap,¢), ¢ €V, p>1on E}.

PROPOSITION 4.4. Suppose that assumptions 2.2-2.5 and 4.2 hold and let (u, 1) be
a solution of problem 1.1 with u > 0. Then, for any set E C {2,

1/p'
u(E) < PO cop (B,
with m = infg g > 0.

Proof of proposition 4.4. Let p € V such that ¢ 2 1 on £ C §2. Then
mu(E) < / g dp = (Au,0) < (Au, )/ (Ag, p)177.
7]
Thus,

inf{{Ap, 0}, 0 €V, ¢ > 1}/7.

o < (A )
HE) <

COROLLARY 4.5. Under the same assumptions as proposition 4.4, we have

cap 4(8(u~'(1))) > 0.
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DEFINITION 4.6 (maximum principle property). We will say that the couple (A, V)
satisfies the maximum principle property if, from the inequality {Av, ¢(v)) < 0 (for
any ¢ : R — R non-decreasing globally Lipschitz continuous and v € V such that
¢(v) € V), we obtain v(z) ¢ supp(¢’) almost everywhere (a.e.) z € £2.

PROPOSITION 4.7. Let
Lip’(R) = {¢ : R = R, globally Lipschitz continuous with ¢(0) = 0}.

Suppose that assumptions 2.2-2.5 hold and let V be such that, for all v € V,
#(v) € V whenever ¢ € Lip®(R). Assume that (A, V) satisfies the mazimum prin-
ciple property. Then, any solution of problem 1.1 satisfies

0<ugl.

Proof. Let ¢1(0) = (0 — 1)4. It is clear that ¢; € Lip®(R). Since ¢1(u) € V for
any u solution of problem 1.1 and since supp(p) C {u = 1}, we have {Au,d(u)) =
J ¢(u)gdp = 0, which implies that u(z) ¢ supp(¢}) a.e. ¢ € £ and equivalently

u(z) € 1 a.e. z € £2. On the other hand, by using ¢2(c) = —o_, we deduce that
(Au, ¢2(u)) = 0 and so u(z) ¢ supp(¢s) a.e. z € £ and equivalently u(z) > 0 a.e.
z € (2. 0

REMARK 4.8. It is easy to see that if, for I1 C 82 with dHy_;(I7) > 0, we
consider the space V = {v € W1?(2),v =0o0n I}, p> N and the operator

with o; € L®(2), 4 = 1,...,N, a;(z) > ag > 0 a.e., then (A4, V) satisfies the
maximum principle property and V is stable under the action of any element of
Lip®(R) (i.e. ¢(v) € V for any v € V and ¢ € Lip®(R)). Many variants associated
with second-order elliptic operators also satisfy the above-mentioned properties.
To end this section, if we consider the special case of
Av=-Aye, V=WyP(2) withp>N>2, (4.1)

the following result allows a better identification of the measure solution p.

PROPOSITION 4.9. Assume (4.1) and let (u,p) be the solution of problem 1.1 such
that u is Lipschitz continuous in 2 (i.e. Vu € L®(2)N). There is then a function
g = 0, Hy_-integrable on O(u~1(1)), such that du = gdHn_,. In particular,

/ |Vu|P~2Vu - Vodz = / gpgdHn_1 for all p € Wy'P(R).
Q Blu-1(1))
Proof. Given a set E C {2, let us denote by

'/1(E)=inf{/ |V¢|dz, ¢ 2 10n E, :,oEC‘g"(.Q)}
e}
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the 1-capacity of E. Then we have

1 1
W) < = [ apdu= - [ [Vup-2vu- Vg < T / V9] da
mJa mJn
whenever £ C 2, p 2 1 on E, p € C(2). This shows that

HE) < N (E).

According to Fleming’s result [25], we deduce that if Hy_1(E) = 0, then v, (E) =0
and thus g(F) = 0. So the application of the Radon-Nikodym theorem gives the
result. g

[Vulgs*
m

5. The one-dimensional case: the shape of y and
a continuum of solutions

In this section we shall present a simple case (the case of N = 1 plus some additional
conditions) for which it is possible to carry out the computation of the measure p(u).
We assume, for simplicity, that the operator .A satisfies the following assumption.

AssuMPTION 5.1. For any v € V such that v(a) = v(b) and {(Av,¢) = 0 for all
@ € C%[a,b], and some [a,b] C]0, 1], we have v(z) = v(a) for all z € [a,b).

REMARK 5.2. An example of the operator A satisfying assumption 5.1 (and also
conditions in assumptions 2.2-2.5 and 4.2) is given by

m
Av ==Y ('Y,
i=1
where 1 < py < p2 € -+ € Pm, 0 € L®(0,1), i = 1,...,m, o(z) = ap >
0 a.e. Note that a natural chmce isthen V = {v € Wl*”'" (0 1) : »(0) = 0} or

V =Wy (0,1).
We have the following proposition.

PROPOSITION 5.3. Suppose that assumptions 2.2-2.5 and 5.1 hold. Then, for any
solution (u,p) of problem 1.1, there erist two points (ap,a1) € [0,1] x [0,1] such
that

{u=1} = [ao,a1] & [0,1].
In particular, 8(u='(1)) = {ao,a1}.

Proof. Let ap = min{z €0, 1[: u{z) = 1} = min{u = 1} and let a; = max{u = 1}.
Let us show that Jeg,a1[N{z : u(z) < 1} = B. First of all, we note that if ag =
a1, there is nothing to be proved. Now, assume that ay < a; and suppose that
lag,@1[N{u < 1} # @. Let 20 € Jag, 1] such that u(xp) < 1 and let us denote by

I(xp) the biggest interval containing o and f(zo) Clag, a1[N{u < 1}. Then, on the
boundary of I(xo), 8f(zo), we have u = 1. Thus, since supp(y) C {u =1}, from the
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differential equation we find that u satisfies the boundary-value problem on I (z0)
given by

(Au, 0y =0 for all ¢ € C°(1(z0)),
u(z) =1, x € 0l (z).

Thus, from assumption 5.1, we deduce that u = 1 on I(zg), which is a contradiction
since u(zo) < 1. This shows that [ag,a1] C {u > 1}. A similar argument shows that
Jap,a1[N{u > 1} = B. Thus, we have [ag,a1] C {u = 1} and, by the definition
of ag, a; we have {u = 1} C [ap,a1], i.e. {u = 1} = [ag,a1]. This implies that
Hu =1} = {ag,a1}. O

COROLLARY 5.4. Suppose that assumptions 2.2-2.5 and 5.1 hold. There then exist
two non-negative constants Ag, A1 with Ag + A1 > 0, such that p = Agdgy + A1ds, -

Proof. Since y > 0 and supp() C d(u~'(1)) = {ao, a2}, we deduce that there exist
Xo = 0 and A\; > 0 such that = )\0(5a0 + /\15a1 Moreover, the fact that p Z 0
implies that Ag + A; > 0. a

As we have observed, the shape of u depends on (A, V). Let us give an example
for which a1 = 1 —ag, Ao = A,. We first define some set of symmetric functions and
the notion of a symmetric operator.

DEFINITION 5.5.

L?(0,1) = {v € LP(0,1), v(z) = v(l — z) a.e.},
Cs[0,1] = {v € C[0,1], v{z) = »(1 — z) for all z}.

Fe set Vz = VNG5[0, 1]. The elements of L2(0, 1) are called ‘symmetric’ functions.
An operator A : V — V' is called ‘symmetric’ if, for all ¢ € V and all v € V;,
(Av, ) = (Av, ps), where p5(z) = 3(¢(z) + ¢(1 — 2)) and s € V.

REMARK 5.6. It is easy to see that if a; € LZ°(0,1), the operator A defined in
remark 5.2 is a symmetric operator (and the conditions in assumptions 2.2-2.5 are
satisfied, for example, on the space V; = WOI"”“([), 1) N C5[0,1]).

According to the resuits of theorem 2.8 and proposition 5.3, we have the following
proposition.

PROPOSITION 5.7. Suppose that assumptions 2.2-2.5 and 5.1 hold, and that q €
Cs[0,1] with ¢ > 0. There then exist u € Vi, Ag 2 0, Ay 2 0 and ap € [0, %] such
that

Au = g(ao)(Aoday + MO1-ay) in V.

Moreover, if A is symmetric, then

_ Auwy)
~ 2q(ao)

Proof. Since V; is a reflexive Banach space (since it is a closed subspace of V), by
applying theorem 2.8 and all the above results, we find the existence of u € Vj,

(500 + 61 ﬂu)
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0<ap<a; <1,a; €0(u'(1)) and Ao > 0, A\; > 0 such that
Au = Q(G'O):\Oaao + /—\IQ(a'l)dru .

Since u is symmetric, ay = 1 — ag and then g(ap) = g(a;), 0 < ag € % Finally, if A
is symmetric, then

(Au, @) = (Au, @;) = q(ao)(Xo + 5\1)(99(&()) + ;o(l - ao))

for any ¢ € V. In particular if ¢ = u, then
(Au, u) = q{ao)(Mo + A1)

Thus,

(Au,u)

Au = glao) 2q(ao)

(600 + 61—0(1)'
O

REMARK 5.8. The result of proposition 5.7 shows that the problem can be inter-
preted as a nonlinear problem of ecigenvalue type.

The above result allows us to show that, in general, we cannot expect to have
uniqueness of solutions (u, i) of problem 1.1. Indeed, when ¢ is a positive constant
the above arguments lead to the explicit construction a family of solutions, as
follows.

PROPOSITION 5.9. Assume that q is positive constant. Then, for any A > 2/q, the
pair (ux, 1y) is a solution of the special problem 1.1,

1
/ v dx = / gpdu  for all p € H}(0,1), u € H3(0,1),
(] A(u-1(1))

where uy is given by

¢ . 1
Aqzx zfos:rsl\—q,
o1 1
U-,\(.’B)=ﬁ1 ZfA—qg.'ESl—A—q,
1
L/\q(l—:x:) ifl_/\_qs"vgl’

and py, is given by px = AM(8q, + 01-q,) with ag = 1/(Aq).

It is possible to find the uniqueness of solution (u, ) of problem 1.1, at least
under the simple formulation given in the above proposition, once we add some
extra condition, for example, by prescribing the value of

/01 u'?(z) dz

in the correct way. In particular, the above arguments lead to the following result.
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PROPOSITION 5.10. Let Av = —v" and A > 2/q. Then, the following problem pos-
sesses a unique solution.

PROBLEM 5.11. Find v € H}{0,1) and a measure g > 0 satisfying

-u” =qp,  supp(p) C (u~' (1)),

1/1 2
— u“(zx)dz = A.

REMARK 5.12. See [12] for some results on the uniqueness of solutions for suitable
Bernoulli-type problems. A continuum of solutions also arises in some (non-singular)
problems with a free boundary (see [14]).
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