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We consider some Bernoulli free boundary type problems for a general class of 

quasilinear elliptic (pseudomonotone) operators involving measures depending on 

unknown solutions. We treat those problems by applying the Ambrosetti-Rabinowitz 

minimax theorem to a sequence of approximate nonsingular problems and passing to 

the limit by some a priori estimates. We show, by means of some capacity results, 

that sometimes the measures are regular. Finally, we give some qualitative properties 

of the solutions and, for a special case, we construct a continuum of solutions. 

1. Introduction 

Although there are several connections between the problem considered and some 

formulations arising in different physical applications, the main motivation of this 

paper comes, initially, from a mathematical question. We have observed that most 

semi-linear problems, of the form — Au(x) = F(x,u(x)), x 6 Q (where Í2 is a 

given open bounded set in IR^), with some boundary conditions on dí2, have been 

studied intensively in the literature when F is a given function from Q x R into ÍL 

Nevertheless, some relevant models in physics can be expressed as — Au(x) = fj,(x, u) 

in V(Q), where ¡x{x,u) is a Radon measure depending on x but also on its own 

solution u. 

One example of the above-mentioned problems, involving i¿-dependent measures, 

corresponds to the so-called interior Bernoulli problem on Í2. We recall that a 

'classical' formulation of this problem is usually given as finding a set A C Q C HÜN 
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and a function u : Q -* R such that 

-Apu = 0 in Ü \ A 

u = 0 on díi. 

u = 1 on dA, 

-|Vu|p~2Ví/ n = q on dA. 

(IBP) 

where Apu := div(|Vu|p 2Vu), g is a given continuous function on J?, N > 2 

and 1 < p < oc. This problem arises, for instance (for p = 2), in the study of 

an inviscid incompressible irrotational horizontal flow in stationary regime, The 

vector velocity v is given through its stream function u by v = {du/dy, —du/dx). 

The incompressibility of the flow implies that u is a harmonic function. If we assume 

that the fluid circulates in Q around a bubble of air A (of unknown location in Í2). 

since dQ and dA are streamlines, after a normalization we can assurae that u = 1 

on A and u = 0on dQ. Moreover, the (Daniel) Bernoulli principie holds on dA, 

leading to 

and so | Vu| must be constant on dA. For a mathematical treatment of the prob 

lem, see, for example, [1,2,9,20] and [18], in which a long list of references and 

some applications to electrolytic drilling and galvanization can be found. Some 

other references. dealing with the case p ̂  2, are given in [20]. A different context 

leading to the formulation (IBP) is plasma physics, particulaxly the so-called sharp 

problem, in which a magnetically confined ideal fusión plasma is modelled by the 

Grad-Safranov equation under the constitutive law that the pressure is piecewise 

constant [11,19]. 

In order to state the problem considered here, we note that we can reformulate 

problem (IBP) in terms of a measure with support on the subset 9(ia~1(1))} the 

boundary of the set {x £ Q : u(x) = 1}} in the following way. Find u € C{Q) D 

^ such that 

.«)> V> ^ all <p £ C(ñ) n W 

q(y)(p(y)dHN-i(y). 

í \Vu\ 

As usual, if Q is an open bounded smooth set of RN, JV ^ 1 (as we shall assume 

in the rest of the paper), d(A) denotes the boundary of a subset A in Q (that is 

9(^4) = A — Á, where Á is the closure of A in Q and Á is its interior). We also 
use the notation u~x(l) = {x € J? : u{x) = 1} := {u = 1}. Here. /fm denotes the 

m-dimensional Hausdorff measure and, in general, we denote by {•, •) the duality 

product between some functional space V and its dual space V. 

The main result of this paper is to show that it is possible to carry out a math 

ematical treatment of this type of problem for suitable second- and higher-order 

quasilinear partial differential equations. For instance, more general second-order 

operators arise when the physical problem is formulated in terms of some special 

curvilinear coordinates. The price one has to pay by considering a larger generality 
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on the partial differential operator comes from the question of the regularity of the 

solution u (and thus from the nature of the measure //(#, u)). Indeed, some spatial 

coefñcients or nonlinear terms depending on the solution u and its derivatives may 

arise at the operator, presenting some singularities different from the term fi(x, u). 

Because of this, we must relax the notion of solution, allowing the presence of 

measures //(re, u) more general than that given by 

More prccisely, in this paper, we shall consider the following general formulation. 

Problem 1.1. Given a Banach space V (of functions defined on Í2), a 'pseudo-

monotone operator' A mapping V into its dual V (see §2 for details and some 

examples) and a function q € C{Q) with q > 0, find a function u G V vvith a non-

void set d{u~l{\)) and find a bounded Radon measure f.t whosc support is included 

in the set ¿^(u"1^)) such that 

(Au, v?) = / q{x)<p{x) áfi.(x) for all p € V n C{Q). 

Our niain result (theorem 2.8) shows that, under suitable assumptions on V, 

A and q, the above problem possesses at least one solution (w, //) (we also obtain 

the additional information that // ^ 0 and that (Aíi,il) > 0). This is done by 

introducing a sequence of approximate quasilinear (non-singular) non-monotone 

equations 

Aun =qFn(un) 

for some suitable functions Fn. Wc prove the applicability of the Ambrosetti-

Rabinowitz minimax theorem, for each natural n and we pass to the limit by mcans 

of suitable a priori estimatcs. 

In a sepárate step, by obtaining some capacity results we show (see proposi-

tion 3.2) that when u is more regular (for example, Lipschitz continuous) the mea 

sure //(•, u) is also more regular (with respect to the Hs-\ measure) in the sense that 

there exists a function g, //.y-i-integrable on d(u~l(l)). such that d^ = gdH¡\-i. 

Note that in that case the problem satisfied by (u, ¡i) can be formulated in a similar 

way to the interior Bernoulli-typc problem (IBP) (but replacing the operator Apu 

by Au). 

We point out that the dependence on u of the measure //(-,u) leads to very 

important differences with respect to the case of quasilinear problems involving 

prescribed measure data (independent of u) as source terms on the right-hand 

side of (IPB — /i). As shown in the large literature on this case (see, for example, 

[3.5-8.22,23]), it is possiblc to deal with more singular measures. 

Note that the requircment that any solution must have a non-void set d(u~l(l)) 

allows us to classify the problem studied in the class of frve-boundary problems 

since the location of the set d(u~l(l))) is also unknown (see also remark 2.1 for 

the interpretation of problem 1.1 as a limit of some singular dead core problems). 

Notice also that, in some sense. the Radon measure // can be viewcd as a Lagrange 

multiplier associate to the constraint 9(t¿~1(l)) ^ 0. 
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As it is natural, it is possible to get a sharper description of the solution (u, fx) 

when we know some additional information about the problem. So, in particular, 

we consider in §5 the one-dimensional case, obtaining a complete description of 

(u, ¡x) when we also assume some symmetry conditions. This special formulation 

allows us to show that, in general, we cannot expect to have uniqueness of solutions 

for the formulation of problem 1.1, since when q is a positive constant we construct 

a continuum of solutions (u\, (.tx) depending on a parameter A. 

2. Statement of the main results 

Let Q be an open bounded smooth set of MjV and for 1 ^ p < oo let the usual 

Lebesgue space Lp(ü) be endowed with its norm (denoted by | • |p). Let the Sobolev 

space Wm'p(Ü) = {v £ LP{Í2), Dav € Lp(/2), \a\ ^ m} for m € N. We also 

recall the classical spaces C°(/2) = C{Q) = {v : Q —> R, a continuous function}. 

|ü|oo = maxx€ñ \v{x)\, Ck{Q) = {v e C{Q) : Dav e C{Ü), |q|< k} for k ̂  1 and 

C£°(f2) = {v is indefinitely differentiable with compact support in Í2}. 

We denote by (V, \\ • ||) a reflexive Banach space of dual V. We assume that 

V <-> C(Ü) with compact embedding. 

Remark 2.1. This assumption is not useful in the fundamental lemma 3.1. In the 

next paper in this series, [17], we will treat the case without this compact embed 

ding. 

We define 

K = inf ||v|| > 0. (2.1) 

Concerning the operator A and function q arising in problem 1.1, we shall assume 

the following conditions. 

Assumption 2.2. The mapping A : V -» V is 

(i) bounded (it maps bounded sets of V into bounded sets of V), 

(ii) strongly-weakly continuous (with the respective topology of V and V), 

(iii) pseudomonotone (i.e. if Vj -*■ v weakly in V and lim sup^,(Avj , Vj — v) ^ 0, 

then Vj —> v strongly in V). 

Assumption 2.3. For any v € V such that there is an open relatively compact 

set O in i? with v = 1 on O, we have (Av,¡p) = 0 for all y? € V with support 

(ip) C O. (Formally, we can state analogously that the restriction of A on any 

relatively compact set O in Q to v = 1 is zero, i.e. .4(1 )|o =0.) 

Assumption 2.4. If Av = 0 for some v € V, then v = 0. 

Assumption 2.5. There exists a Gáteaux differentiable function J : V -> R such 

that 

(i) {Au,<p) = {J'{u),<p) ( := lim J(u + t{P)~J(u)\ for all y € v 
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(ii) J is coercive in the sense that there exist non-negative constants a1; i = 

0,1,2,3, such that, for all v e V, 

ao\\v\\ - ai ^ J(v) < Ck2||v||p + <*3 for somc p ̂  1, 

and atoK > 2a\ + a^ (K given by (2.1)), 

(iii) J(0) < 0. 

We recall that an iraportant subclass of pseudomonotone operators A is consti-

tuted by monotone operators satisfying some extra conditions. For instance, it is 

the case when A is monotone (i.e. {Au—Av, u—v) ̂  0 for all u, v), hemi-continuous 

(limt_>o (>4(i¿ -f- t<p), v) = {Au, v) for all u, ip, v) and bounded. In that case A is also 

strongly-weakly continuous [21]. On the other hand, if V = V is a Hilbert space 

and A is a maximal monotone operator, then A is strongly-weakly continuous. This 

is a consequence of a well-known property [10] for maximal monotone operators: if 

xn -»■ x, yn -»■ y and Axn = yn, liminfn(í/n,a;n) < (y,x), then Ax = y. 

We now give some examples of operators A and spaces V to which we can apply 

our result. 

Example 2.6. V = WqP{í2), p > N, Av = -div(Q(x)|Vv|P-2Vv)í q- e L°°{(2), 

a(x) ^ qq > 0, or 

Av = - V -^-
dv 

Pi-2 
dv 

for at e I°°(/2), ai{x) ^ a0 > 0, pi > N. 

Note that the operators satisfy assumptions 2.2-2.5 with 

J(v) = - í a(x)\Vv\páx 
P Ja 

or 

— 

tn l dxi 
dx for v E V = 

respectively, and that, frora Sobolev embedding, WlyP(í2) c-> C{Q) if p > N with 

compact injection. 

Example 2.7. V = W^p{Q)y p > |iV, Av = A{\Av\p~2Av) + b{x)<p(v{x)) for 
v e V, where be L°°(í?) and ó € C(K) nL°°(M) satisfy some additional conditions 

(see (2.2)). 

It is easy to see that the operators given in the example satisfy assumptions 2.2-

2.5 with 

J(v) = - f \Av\p áx+ f b{x) ( f 4>{<j) áu\ dx for v 6 V = W02'P(Í2), 
P Jn Jn \ Jo ) 

where ||v|| = |Au|p, and to see that, from Sobolev embedding, W2>P(J?) e-> C(ü) if 

p > i¿N (this injection is compact). 
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A detailed proof of the pseudomonotonicity of the operators given in examples 2.6 

and 2.7 can be found, for example, in [21]. The smallness condition 

p\bU<p\oo < sup ' LHn) (2.2) 

on b and 0 and the growth of J imply condition 2.4. Assumption 2.3 holds, since 

Our main existence result is the following. 

Theorem 2.8. Suppose that assumptions 2.2-2.5 hold. Then there exists a (u, /¿) 

solution of problem 1.1 vñth u € V and \i a non-negative bounded Radon measure 

whose support is non-void and contained in d(u~l(l)) such that 

(Au. ip) = / q(x)ip{x) d//(ar) for all ip 6 V. (2.3) 
Jd(u-HD) 

Moreover, 

{Au..u)>0. (2.4) 

Remark 2.9. Problem 1.1 is (sometimes) regarded as some kind of limit case of sin 

gular dead core problems. Indeed, some relevant problems in chcmical engineering 

lead to the formulation 

-Apv + qv~a = 0 in J?. 

v = 1 on dí2, 

for some a € (0,1) (see, for example, [13] and references thcrein). Note that function 

u = 1 — v satisfies 

u = 0 on dQ. 

The variational formulation leads to the minimization of the functional 

J(u) = - f \Vu\pdx+—?— í (l-u)I-°dar. 

Making a —> 1. we (formally) obtain the problem of minimizing 

J(u) = - [ \Vu\pdx + q í H(\-u)dx, 
P Jq Jn 

with H(u) the Hcaviside function, which is another formulation of the Bernoulli 

problem [1]. 

3. Proof of the main theorem and its corollaries 

In order to show the existence result we shall use an Ambrosetti-Rabinowüz mini-

maz-type argument: we shall introduce an approximate sequence of functionals, we 

shall prove the existence of a critical point for each one of then and, finally, using 

some a priori estimates on these critical points, we shall pass to the limit. 
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To construct an approximate sequence for equation (2.3), let uj CC Q be an open 

relatively compact subset of Í2. Let z\ € V be such that 0 ^ z\ ^ 1, z\ = 1 on lj 

and let 6 = 6(üj,z\) > 0 be such that J{z\) ^ S J^qdx < oc. 

For n ^ <5, we shall consider the following non-negative continuous function Fn 

on K, for any a € K: 

[n if<r = l, 

Fn^ 10 if<T<l--ora>l -
I """ n "" r¿' 

and such that 

/ Fn{a)da= / Fn{a)da = 5. 
J-oc J\ 

Note that the cxact valué of Fn on [1 — (S/n), 1 + (S/n)] is not relevant here. 

We consider the sequence of functionals mapping Jn : V —>■ R by setting, for 

ve v, 
r / Mx) \ 

Ju(v) = J(v)- I q(x)[ I Fn(a)da)dx. 
Jn \Jo / 

We have the following lemma. 

Lemma 3.1 (fundamental sequence). Suppose that assumptions 2.2-2.5 hold and 

that V is only compactly embeddcd in LX(Q). Then there is a sequence un € V such 

that 

Aun = qFn(un) inV. (3.1) 

Moreover, 

0 < ̂ oíqK — a\ ^ Jn(un) ^ a^H^ill7' +«3 +26 i qdx. (3.2) 
Jn 

The proof will again rely on the Ambrosetti-Rabinowitz minimax theorem [4]. 

We first have the following proposition. 

Proposition 3.2. Jn(zi) ^ 0. 

Proof of proposition 3.2. Since z\ ^ 0 aud Fn ^ 0 we have 

/ q[x) ( f Fn(a) da) dx ̂  f q(x) ( í Fn(a) da] dx = 5 [ q(x) dx. 
Jn \Jo ) Jui \Jo ) Ju 

Then, we obtain 

Jn(zi) = J(zi) - f q(x) ( f ' Fn(a) da) dx < J(Zl) -S f q(x) dx ̂  0. 
JÍ2 \ ./O / Ju 

D 

Proof of lemma 3.1. We consider the set of ñinctions 
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and define 

Since J(0) < 0 (see assumption 2.5), we then have max(Jn(2i), Jn(0)) ^ 0. Let us 

show that 7n > 0 forn ̂  26. Let 0 < \i < A7(2||zi||) and /Gf. Then there exists 

Sf e]0.1[ such that ||/(s/)|| = i¿\\zi\\ (note that /i- < ¿). By the definition of K, we 

deduce that 

|/(*/)U<£lNI^<l-£ ifn>25. 

Moreover, from the definition of Fn. we have Jn{f(sf)) = J{f($/))• Thus, we have 

max Jn(f(s)) ^ max ( min J(v)). 
8€(o,i] /ie[o,íf/(2||*1||)]V||w||=M||»1|| v V 

By the growth assumption on J, we deduce that 

mgx JB(/W) J, ^ ™«|)Ií«*í*ll«ill " Qi) - é«o^ - «i > 0. 

Thus. 

7n ^ \qqK - a\ > O = max(Jn(2i). ./„(())). (3.3) 

Next, we want to show that for a fixed n ^ 28 the functional Jn satisfies the 

Palais-Smale condition (here denoted by (PS)-y) for any valué 7 € M. Let (vj)j be 

a sequence in V such that 

JnVj > 7, 

and 

J'nVj -> 0 strongly in V''. 

Then there is a constant pn > 0 such that |«/n(v¿)| ^ Pn for all j 6 N. By the 

growth condition on J and the definition of Fn, there exists a constant P'n>0 

(also depending on S) such that \\vj\\ < /3^ for all j. Since V is reflexive and the 

embedding V <-> Ll(Q) is compact, we deduce that there is a function v € V and 

a subsequence (still labelled as Vj) such that 

Vj —^ v weakly in V and Vj —> v in L1(Í2). 

Since J'n{vj) = Avj - qFn(vj), we then have 

/(</^| • <y . y\ ^ / pFn (Vi) [Vi V) Ó.X ~\~ \3 \1)i] Vi — V) 

Jn 

from which we deduce that 

\{Avj, Vj - v)\ ^ cn\vj -v\i + \J'n{vj)\v\vj - v\v (3.4) 

with Cn = \q\oo maxff |Fn(cr)| < 00. Since (vj)j remains in a bounded set of V, with 

the condition that linij IJnfjlv" = 0, we then have limsupJ_>+oo{./4'i;j,Uj — v) ^ 

0. The fact that A is pseudomonotone implies that v¿ —>• v strongly in V. This 

shows that we have the (PS)7 condition for Jn. So, by the Ambrosetti-Rabinowitz 

mountain-pass lemma [4] we deduce that 7n is a critical valué, i.e. there exists 

Un G V such that Jn{un) = jn and J'n{un) = 0. This last statement implies (3.1). 
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From relation (3.3), we have Jn(««) = 7« ^ \otQK—ot\.. Since the map g : [0.1] ->■ V 

defined by g(s) = sz\ belongs to F, we then have 

7n ^ max Jn(#(s)) ^ «2||zi ||p + a3 + / ^(.t) ( / Fn(<r) d<r J da;. 
8 Jn \J-oc ) 

í.e. 

Jn{Un) ^ «2||2l||P + &3 + 26 I q(x)ÚX. 
Jn 

D 

COROLLARY 3.3. 

(i) The sequence un is uniformly bounded in V for any n € N. 

(ii) Fn(un) remains in a bounded set of Ll+(Q) for any n € N. 

Proof. The first statement is a consequence of the growth assumption (assump 

tion 2.5), the construction of Fn and (3.2). On the other liand, since inf& q = m > 0, 

for n ̂  25 we have 

0<— / Fn{un) ^ / qunFn(un)áx = (Aun,un). 
¿ Jn Jn 

Thus, 

0 ̂  f Fn{un)áx < —|.4unMK||. (3-5) 
Jn "» 

Since A is a bounded operator, thcre exists a constant c > 0 (independent of n) 

such that 

C 0 < /" Fn(«n) ^ -c. (3.6) 

D 

Prom now, we assume that V *-+ C(i?) with compact embedding. 

As consequence of the above result, we may assume that there exist a subse-

quence, still denoted un, and Frt («.„), a function u G V and a non-negative measure 

(i such that Fn(un) —^ ¿i, vaguely in the set of bounded Radon measures and weakly 

in V and un —*• « weakly in V (and with \un— w|oo ^^ 0 by the compact embedding). 

We then have the following corollary. 

COROLLARY 3.4. 

(i) supp(/i)C {w. = 1}. 

(ii) un —> u strongly in V. 

(iii) q¡i G V, Au = qfi in V and (Au,u) ^ 0. 

Proof. To prove (i) we first will show that supp(//) C [u = 1}. Let <p G CC(Q) such 

that supp<¿> C {u < 1} and x\¡ € suppv? such that 

= max{u(ar), x € supp<^}. 
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Choosing 0 < 7] < |(1 — u(xm))i for sufficiently large n, n^ n^.s, we have 

suppv? C {un < 1 - ?/} C < un < 1 L 

Thus, 

r 

<pqFn(un)dx = 0. /„< 
This implies that {l¿)tpq) = 0, since q > 0 on Q and g E C(/5); thus, supp(/i) C 

{u ̂  1}. Considering ip G Cc(í?) such that supp('^) C {u > 1}. we have m\n{u(x) : 

x € supp(^)} > 1. Then. for large n, supp(^) C {un ^ 1 4- (5/n)}. Thus. 

(/i,#) =0 

implies that 

supp(/i) C {ü = 1}. 

To prove part (ii)} we point out that 

{Aun, Un - u) = / qFn(Un)(un ~ u) ÚX ̂  c\un - «loo 

and thus 

limsup{^4«w,«T1 - u) ^ 0, 
H 

since A is pseudomonotone. Then, wn —> i/ strongly in V. 

Finally, since A maps 1/-strong into V'-weak, we then have Aun —^ Au in V-

weak. ThuSj {Aunyun) = §QqFn{un) ^ 0 implies that (Au, u) ^ 0 and Au = <?/x, 

which proves (iii). D 

The proof of theorem 2.8 is a consequence of the above results together with the 

following properties. 

Lemma 3.5. 

(i) supp¡i c {u = 1} \ {u = 1} = d(u-l{l)). 

(ii) supp(/u) ¿5 non-void and (Au.u) = L.^^d/i > 0. 

Proof. Let 97 E C£°({u = 1}). Since u = 1 on the open set O = {w = 1}. Thus. 

(¿líz.íp) = 0 (by assumption 2.4), i.e. (ft,<pq) = 0. which implies that /¿ = 0 on O, 

This shows (i). Moreover, if aupp/i = 0, then Au = 0, u E V and. according 

to assumption 2.4, we will have u = 0. However, from lemma 3.1 and the strong 

convergence of corollary 3.4, from the growth condition in assumption 2.5 we have 

0 < potóle - ai - a3 ^ a2||íxn||p. This implies that 0 < \a0K - a\ - q3 ̂  a2||«||p, 

which contradicts the fact that u = 0. D 
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4. Some qualitative properties of u and \x 

We can now summarize the estimates obtained in the above section. 

COROLLARY 4.1. Let u be the solution of the main problem given by theorem 2.8. 

Then 

0 < Mo ̂  ||u|| ^ Mi, 

where 

Mq = í — — (X\ — a.% 

wüh ai, i = 0,1,2,3,4, and K given in assumption 2.5; and 

1 í fi f 1 
1 ~ «o|_ Ja1 ^ Zl ^ ^J 

for some 5 > 0. 

To go further in our study, we shall assume some additional properties on the 

operator A. 

Assumption 4.2. Assume that, for all v,<pinV, 

(i) {A<p, v?) -^ 0, 

(ii) (Av, ¡p) ^ (Av.v)1^'(Aip, <p)lfp, - + — = 1. 

Definition 4.3. We define the .A-capacity of a set E c Q by 

c&pA(E) = inf{(A<p,v), <peV, ip^lonE}. 

Proposition 4.4. Suppose that assumptions 2.2-2.5 and 4-2 hold and let (u,(j) be 

a solution of problem 1.1 wüh fj, ^ 0. Then, for any set E C Q, 

wüh rn = inf^ q > 0. 

Proof of proposition 4-4- Let íp £ V such that <p ^ 1 on E c O. Then 

mn{E) < f qpdfi = {Au,<p) ^ (Au.u)1 
Ja 

Thus, 

^Au^1/P , <p),<peV,íp> 

D 

COROLLARY 4.5. Under the same assumptions as proposition 4-4¡ we have 

l 0. 
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Definition 4.6 (máximum principie property). We will say that the couple (A, V) 

satisfies the máximum principie property if, from the inequality (Av,(f>(v)) < 0 (for 

any 0 : IR —>• IR non-decreasing globally Lipschitz continuous and v G V such that 

4>{v) G V). we obtain v(x) ^ supp(<£>') almost everywhere (a.e.) x G O. 

Proposition 4.7. Let 

Lip°(]R) = {<£>: IR —> R, globally Lipschitz continuous with 0(0) = 0}. 

Suppose that assumptions 2.2-2.5 hold and let V be such that, for all v G V, 

4>{v) G V whenever 0 G Lip°(IR). Assume that (A, V) satisfies the máximum prin 
cipie property. Then, any solution of problem 1.1 satisfies 

Proof. Let 4>\{a) = (<r - 1)+. It is clear that <¿i € Lip°(lR). Since <¿>i(u) € V for 

any u solution of problem 1.1 and since supp(/Lt) C {u = 1}, we have {Au,é(u)} = 

J <j)(u)qdn = 0, which implies that u(x) ^ supp(0i) a.e. x G i? and equivalently 

u(x) ^ 1 a.e. x € Q. On the other hand, by using $2(0) = — <r_, we deduce that 

(Au. 4>2{u)) = 0 and so u(x) £ supp(<¿>2) a.e. x e Q and equivalently u(x) ^ 0 a.e. 

se Q. D 

Remark 4.8. It is easy to see that if. for F\ C dQ with úFIn-iÍP]) > 0, we 

consider the space V = {v 6 W1:P(O),u = 0onfi}.p> N and the operator 

d du 
P-2 

with oti G L°°(í¿), i = 1,...,JV, Qí(a;) ^ ao > 0 a.e., then (^4, V) satisfies the 

máximum principie property and V is stable under the action of any element of 

Lip°(IR) (i.e. (p(v) e V for any v G V and ó e Lip°(M)). Many variants associated 
with second-order elliptic operators also satisfy the above-mentioned properties. 

To end this section. if we consider the special case of 

Av = -Apv, V = W¿'P(Í2) withp>Ar^2, (4.1) 

the following result allows a better identification of the measure solution /la. 

Proposition 4.9. Assume (4.1) and let (w,/x) be the solution of problem 1.1 such 

that u is Lipschitz continuous in Í2 {i.e. Vu G L°°{Q)N). There is then a function 

g > 0, Hn_ 1 -integrable on d(u~l(l)), such that d/x = gdH4\-]. In particular, 

f \Vu\p-2Vu • V<£dz = [ q<pgdHN-i for all tp G W^ 
Ja Jdiu-^i)) 

Proof. Given a set E C Í2, let us denote by 

\Vip\dx, tp^lonE, *> G C 
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the 1-capacity of E. Then we have 

ti(E) < -i- f q<pdii=- í |V«|p-2V« • V<pdx < !^!~_ f \W\dx 
m Jn m Jo fn Jfi 

whenever E C Í2, \p ^ 1 on E. tp e Q°(í?). This shows that 

\Vv\p~1 

According to Fleming's result [25], we deduce that if Hn-\(E) = 0, then 7i(E) = 0 

and thus ¡i(E) = 0. So the application of the Radon-Nikodym theorem gives the 

result. D 

5. The one-dimensional case: the shape of fi and 

a contimmm of solutions 

In this section we shall present a simple case (the case of Ar = 1 plus some additional 

conditions) for which it is possible to carry out the computation of the measure f¿(u). 

We assume, for simplicity, that the operator A satisfies the following assumption. 

ASSUMPTION 5.1. For any v e V such that v(a) = v(b) and {Av, <p) = 0 for all 

<p £ C^°[a,b], and some [a,b] c]0,1[, we have v(x) = v(a) for all x € [a.b\. 

Remark 5.2. An example of the operator A satisfying assumption 5.1 (and also 

conditions in assumptions 2.2-2.5 and 4.2) is given by 

¿=i 

where 1 < p\ ^ p2 < • • • < pm, «i e £°°(0,1), i = l,...,m. cii(x) ^ a0 > 

0 a.e. Note that a natural choice is then V = {v E Wltpm(0yl) : v(0) = 0} or 

We have the following proposition. 

Proposition 5.3. Suppose that assumptions 2.2-2.5 and 5.1 hold. Then, for any 

solution (u, ¡i) of problem 1.1, there exist two points (ao,ai) £ [0.1] x [0,1] such 

that 

{ii = l} = [ao,ai]g[0,l]. 

In particular, d(u~l{l)) = {ao,ai}. 

Proof. Let ao = min{a; 6]0,1[: u{x) = 1} = min{w = 1} and let ai = max{w = 1}. 

Let us show that ]ao,ai[fl{a: : u(x) < 1} = 0. First of all, we note that if ao = 

ai, there is nothing to be proved. Now, assume that ao < ai and suppose that 

]ao,ai[n{?i < 1} t¿ 0. Let Xq G]ao,ai[ such that u(xq) < 1 and let us denote by 

I(xq) the biggest interval containing xo and I(xo) C ]ao, ai[D{u < 1}. Then, on the 

boundary of/(aro), dl(xo), we have u = 1. Thus, since supp(ju) C {u = 1}, from the 
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differential equation we find that u satisfies the boundary-valué problem on I(xq) 

given by 

(Au, tp) = 0 for all tp e C™{I{xQ)), 

u(x) = 1, x e dí(xo)-

Thus, from assumption 5.1, we deduce that u = 1 on I(xo), which is a contradiction 

since u(xo) < 1. This shows that [ao,oi] C {u ̂  1}. A similar argument shows that 

]ao?ai[n{w > 1} = 0. Thus, we have [ao,ai] C {u = 1} and, by the definition 

of oo, ai we have {u = 1} C [ao,ai], i.e. {u = 1} = [ao,ai]. This implies that 

8{u = 1} = {ao,ai}. D 

COROLLARY 5.4. Suppose that assumptions 2.2-2.5 and 5.1 hold. There then exist 

two non-negative constants Ao, Ai with Ao + Ai > 0, such that ¿i = Ao<íao + Ái¿ai. 

Proof. Since /i ^ 0 and supp(¿¿) C d(u~1(l)) = {ao, ̂ 2}, we deduce that there exist 

Ao ^ 0 and Ái ^ 0 such that /¿ = Ao<5ao -f Ai<5ai. Moreover, the fact that \x ^ 0 

implies that Ao + Ai > 0. G 

As we have observed, the shape of \i depends on (A, V). Let us give an example 

for which ai = 1 — ao, Ao = Ái- We first define some set of symmetric functions and 

the notion of a symmetric operator. 

Definition 5.5. 

,1) = {u € Lp(0,1), v(x) = v(l - x) a.e.}, 

Cs[0; l]={v£ C[0,1], v(x) = v{l - x) for all a;}. 

We set Vs = V(~) Cs[0,1]. The elements of L£(0,1) are called 'symmetric' functions. 

An operator A : V —)■ V is called 'symmetric' if, for all tp £ V and all v € Vs, 

(Av.(p) = (Av,tps), where <ps(x) = \{v{x) -\-(p(\— x)) and <ps G Vs. 

Remark 5.6. It is easy to see that if ai € L^°(0,1), the operator A defined in 

remark 5.2 is a symmetric operator (and the conditions in assumptions 2.2-2.5 are 

satisfied, for example, on the space Vs = WQ>Prn(G, 1) n Cs[0,1]). 

According to the results of theorem 2.8 and proposition 5.3, we have the following 

proposition. 

Proposition 5.7. Suppose that assumptions 2.2-2.5 and 5.1 hold, and that q 6 

Cs[0,1] with q > 0. There then exist u € Vs, Ao ^ 0, Ai ^ 0 and üq G [0, |] such 

that 

Au = q(a0) (Ao6an + A16j _ao) in V¡. 

Moreover, if A is symmetric, then 

< u),. . , 

Proof. Since Vs is a reflexive Banach space (since it is a closed subspace of V), by 

applying theorem 2.8 and all the above results, we find the existence of u G Vs, 
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^ <M ^ 1, a; € d(u~l(l)) and Ao ^ 0. Ai ^ 0 such that 

Áu = 

Since u is symmetric, a\ = 1 - oq and then g(a0) = <?(ai), 0 ̂  a0 < \. Finally, if A 

is symmetric, then 

for any <¿> € V. In particular if <¿> = w, then 

(,4u,u) = g(ao)(Áo + Ai). 

Thus, 

ÁU = 1^ U ^ + ¿ 
D 

Remark 5.8. The result of proposition 5.7 shows that the problem can be inter-

preted as a nonlinear problem of eigenvalue type. 

The above result allows us to show that, in general, we cannot expect to nave 

uniqueness of solutions (u, (i) of problem 1.1. Indeed, when q is a positive constant 

the above arguments lead to the explicit construction a family of solutions, as 

follows. 

PROPOSITION 5.9. Assume that q is positive constant. Then, for any X > 2/q, the 

pair (u\,(i\) is a solution of the special problem 1.1, 

( «y da; = / qipdfi for all <p € #¿(0,1), u 6 H¡{0,1), 
./O y¿)(u-'(l)) 

where u\ is given by 

Xqx if 0 ^ x ̂  -—, 
Xq 

1 if — <z s$ 1- —, 
Xq Xq 

Xq{\ - x) if 1 - — < x ̂  1, 
Xq 

u\(x) = 

and [i\ is given by ¡i\ = A(<Sao + ¿i-a0) with ao = 

It is possible to find the uniqueness of solution (u,fi) of problem 1.1, at lcast 

under the simple formulation given in the above proposition, once we add some 

extra condition, for example, by prescribing the valué of 

/ u'2(x)áx 
o 

in the correct way. In particular, the above arguments lead to the following result. 
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PROPOSITION 5.10. Leí Av = —v" and A > 2/q. Then, the following problem pos-

sesses a unique solution. 

Problem 5.11. Find u € #o(0,1) and a measure fi ^ 0 satisfying 

-u" = qn, supp(/i) C d(u-l(l)), 

i rl 
¿- / u/2{x)áx = \. 

Remark 5.12. See [12] for some results on the uniqueness of solutions for suitable 

Bernoulli-type problems. A continuum of solutions also arises in some (non-singular) 

problems with a free boundary (see [14]). 

Acknowledgments 

The research of J.I.D. and J.F.P. was partly supported by Project no. MTM2005-

03463 of the DGISGPI (Spain). J.I.D. is a member of the Research Training Netvvork 

HPRN-CT-2002-00274 of the EC. 

References 

1 H. W. Alt and L. A. Caffarelli. Existence and regularity for a mínimum problem with free 

boundary. J. Reine Angew. Math. 325 (1981), 105-144. 

2 H. VV. Alt, L. A. CaffarelH and A. Priedrnan. Variational problems with two phases and 

their free boundaries. Trans. Am. Math. Soc. 282 (1984), 431-461. 

3 H. Amann and P. Quitner. Semilinear parabolic equations involving measures and low 

regularity data. Trans. Am. Math. Soc. 356 (2004), 1045-1119. 

4 A. Ambrosetti and H. Rabinowitz. Dual variational methods in critical point theory and 

applications. J. Funct. Analysis 14 (1973), 349-381. 

5 Ph. Bénilan and H. Brezis. Nonlinear problems related to the Thomas-Fermi equation. 

Dedicated to Philippe Bénilan. J. Evol. Eqns 3 (2003), 673-770. 

6 Ph. Bénilan, L. Boccardo, T. Gallouét, R. Gariepy, M. Pierre and J. L. Vázquez. Ari L1-

theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Scuola 

Norm. Sup. Pisa 22 (1995), 241-273. 

7 L. Boccardo and T. Gallouét. Nonlinear elliptic and parabolic equation involving measure 

as data. J. Funct. Analysis 87 (1989), 149-169. 

8 L. Boccardo. T. Gallouét and L. Orsina. Existence and nonexistence of solutions for some 

nonlinear elliptic equations. J. Analysis Math. 73 (1997), 203-223. 

9 A. Beurling. On free-boundary problems for the Laplace equation. Seminars on Analytic 

Functions, vol. 1, pp. 248-263 (Princeton, NJ: Institute for Advanced Study, 1958). 

10 H. Brézis. Opérateurs maximaux monotones (Amsterdam: North-Holland, 1973). 

11 O. P. Bruno and P. Laurence. Existence of three-dimensional toroidal MHD equilibria with 

nonconstant pressure. Commun. Puré Appl. Math. 49 (1996), 717-764. 

12 P. Cardaliaguet and R. Tahraoui. Some uniqueness results for Bernoulli interior free-

boundary problems in convex domains. Electrón. J. Diff. Eqns 2002 (2002), 1-16. 

13 J. I. Díaz. Nonlinear partial differential equations and free boundaries, Research Notes in 

Mathematics, vol. 106 (London: Pitman, 1985). 

14 J. I. Díaz and J. Hernández. Global bifurcation and continua of nonegative solutions for a 

quasilinear elliptic problem. C. R. Acad. Sci. París Ser. I 329 (1999), 587-592. 

15 J. I. Díaz and J. M. Rakotoson. On a nonlocal stationary free-boundary problem arising in 

the confinement of a plasma in a Stellarator geometry. Arch. Ration. Mech. Analysis 134 

(1996), 53-95. 

16 J. I. Díaz, F. Padial and J. M. Rakotoson. Mathematical treatment of the magnetic con-

fineraent in a current carrying Stellarator. Nonlin. Analysis 34 (1998), 857-887. 



Bernoulli free boundary type problems for general elliptic operators 911 

17 J. I. Díaz, J. F. Padial ancl J. M. Rakotoson. On some Bernoulli free boundary type problems 

without compactness conditions on the difFusion. (In preparation.) 

18 M. Flucher and M. Rumpf. Bernoulli's free-boundary problem. qualitativc theory and 

numérica! approximation. J. Reine Angew. Math. 486 (1997). 165-204. 

19 A. Friedman and Y. Liu. A free boundary problem arising in magnetohydrodynarnic system. 

Ann. Scuola Norm. Sup. Pisa IV 22 (1995). 375-448. 

20 A. Henrot. Subsolutions and supersolutions in a free boundary problem. Ark. Mat. 32 

(1994), 79-90. 

21 J. L. Lions. Quclques méthodes de résolution de problémes aux limites nonlinéaires (Paris: 

Dunod, 1969). 

22 J. M. Rakotoson. Properties of solutions of quasilinear equations in a T-set when the datum 

is a Radon measure. Indiana Univ. Math. J. 46 (1997), 247-297. 

23 J. M. Rakotoson. Propriétés qualitatives de solutions d'équation á donnée mesure dans un 

T-ensemble. C. R. Acad. Sci. Paris Ser. I 323 (1996). 335-340. 

24 J. M. Rakotoson. Gcucralizcd solution in a new type sets for problems with measure as 

data. Diff. Integ. Eqns 6 (1993), 27-36. 

25 W. Ziemer. WeaHy dijferentiable functions (Springer, 1989). 

{Issued 13 Oclober 2007) 




