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Abstract. Given a bounded open set Ω ⊂ Rn and a continuous convex func-
tion Φ : L2(Ω)→ R, let us consider the following damped wave equation

(S) utt −∆u+ ∂Φ (ut) 3 0, (t, x) ∈ (0,+∞)× Ω,

under Dirichlet boundary conditions. The notation ∂Φ refers to the subdiffer-

ential of Φ in the sense of convex analysis. The nonlinear term ∂Φ allows to
modelize a large variety of friction problems. Among them, the case Φ = | . |L1

corresponds to a Coulomb friction, equal to the opposite of the velocity sign.
After we have proved the existence and uniqueness of a solution to (S), our

main purpose is to study the asymptotic properties of the dynamical system
(S). In two significant situations, we bring to light an interesting phenomenon

of dichotomy: either the solution converges in a finite time or the speed of
convergence is exponential as t→ +∞. We also give conditions which ensure

the finite time stabilization of (S) toward some stationary solution.

Résumé. Etant donné un ouvert borné Ω ⊂ Rn et une fonction convexe con-
tinue Φ : L2(Ω)→ R, considérons l’équation des ondes amorties suivante:

(S) utt −∆u+ ∂Φ (ut) 3 0, (t, x) ∈ (0,+∞)× Ω,

avec conditions de Dirichlet au bord. La notation ∂Φ désigne le sous-différentiel
de Φ au sens de l’analyse convexe. Le terme non-linéaire ∂Φ permet de modéliser

une grande variété de problèmes avec frottement. Le cas Φ = | . |L1 correspond
au frottement de Coulomb, égal à l’opposé du signe de la vitesse. Après avoir

établi l’existence et l’unicité d’une solution de (S), notre principal objectif est
d’étudier les propriétés asymptotiques du système dynamique (S). Dans deux

situations significatives, on met en évidence un phénomène intéressant de di-
chotomie: la solution converge en temps fini, ou bien la vitesse de convergence

est exponentielle lorsque t → +∞. On donne également des conditions qui
garantissent la stabilisation en temps fini de (S) vers une solution stationnaire.

1. Introduction

Throughout the paper, we denote by Ω a bounded open set in Rn with smooth
boundary Γ. Given a continuous convex function Φ : L2(Ω) → R, let us consider
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the following damped wave equation

(S) utt −∆u+ ∂Φ (ut) 3 0, (t, x) ∈ (0,+∞)× Ω,

under Dirichlet boundary conditions

(1.1) u(t, x) = 0, t ≥ 0, x ∈ Γ,

and satisfying the following initial conditions

(1.2) u(0, x) = u0(x), ut(0, x) = v0(x), x ∈ Ω.

The operator ∂Φ : L2(Ω) → P(L2(Ω)) is the subdifferential of Φ in the sense of
convex analysis: for every u ∈ L2(Ω),

ξ ∈ ∂Φ(u) ⊂ P(L2(Ω)) ⇐⇒ ∀v ∈ L2(Ω), Φ(v) ≥ Φ(u) + 〈ξ, v − u〉L2 .

The nonlinear term ∂Φ allows to modelize a large variety of friction problems. The
question of existence and uniqueness of a solution u satisfying (S) and (1.1)-(1.2)
was settled in the thesis of Brézis [5], over an arbitrary finite time horizon. The
problem of the asymptotic convergence when t→ +∞ is delicate and has interested
many authors. The linear case, corresponding to Φ = | . |2L2 (up to a constant) has
given rise to a very abundant literature and the reader is referred to the classical
textbooks [11, 15, 18, 22] for further details. The nonlinear problem is more subtle
and one can distinguish at least two classes of interesting situations.
For the first one, let us introduce the convex function j : R → R and let us
assume that j(v) ∈ L1(Ω) for every v ∈ L2(Ω). We define the convex function
Φ : L2(Ω) → R by Φ(v) =

∫
Ω
j(v(x)) dx. Following a classical result, we have

f ∈ ∂Φ(v) if and only if f(x) ∈ ∂j(v(x)) for almost every x ∈ Ω (see for example
[6, Proposition 2.16] or also [4, Proposition 2.7]). Setting β := ∂j, equation (S) can
then be rewritten as

(1.3) utt −∆u+ β (ut) 3 0.

Given µc, µv ≥ 0, let us consider the particular case where the function j is defined
by j(r) = µc |r| + µv

2 r2 for every r ∈ R. The differential inclusion (1.3) then
becomes

(1.4) utt −∆u+ µc sgn (ut) + µv ut 3 0,

where sgn : R → P(R) is the set-valued sign function, defined by sgn(x) = 1 if
x > 0, sgn(x) = −1 if x < 0 and sgn(0) = [−1, 1]. In this equation, the term
µc sgn (ut) corresponds to the Coulomb friction while the term µv ut represents a
possible viscous component of the friction.
Coming back to the dynamical system (1.3), results of convergence were obtained
by Haraux [16, 17], who used an argument of Dafermos-Slemrod [12]. Provided
that 0 6∈ int (β−1(0)), he proved the convergence in H1

0 (Ω) of the solution u toward
some stationary solution u∞, along with the convergence in L2(Ω) of the velocity
ut toward 0.

Another class of interest is given by the functions Φ which are positively homo-
geneous and convex. Such functions are not differentiable at the origin, and then
induce a “nonsmooth” friction. Without extra difficulty, we can add a differen-
tiable component in this model. For example, consider the function Φ : L2(Ω)→ R
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defined by Φ = µr | . |L2 + µv
2 | . |2L2 , for some µr, µv ≥ 0. In this case, the dynamical

system (S) can be rewritten as the following global equation

(1.5)

{
utt −∆u +µr ut/|ut|L2 +µv ut = 0 if ut 6= 0,
utt −∆u + µr BL2 3 0 if ut = 0,

where BL2 is the closed unit ball of L2(Ω) centered at 0. In this model the radial
friction ut/|ut|L2 has a non-local nature, due to the term |ut|L2 which is computed
on the whole space Ω. For that reason, system (1.5) will be referred to as the globally
damped wave equation. As we shall mention later (see Remark 4.4) system (1.5)
arises in the study of some control problems.

In Classical Mechanics there are many examples of finite-dimensional systems
for which dry friction implies the stabilization in finite time of the underlying dy-
namics. At the beginning of the seventies, Häım Brézis proposed the conjecture
that the equilibrium position of a system like (1.4) is reached after a finite time
(at least if µv = 0). When the set Ω is one-dimensional (e.g. Ω =]0, 1[), equa-
tion (1.4) modelizes the motion of a vibrating string subject to a friction. In this
case, Cabannes [8, 9] obtained some partial results on finite time stabilization cor-
responding to particular initial data. The case of arbitrary initial data seems to
be still an open problem. Motivated by this, and also suggested by the numerical
approach of solutions, some easier formulations were considered in the literature, as
for instance, the spatially discretized vibrating string via a finite difference scheme
(see for example [3, 14]).

In this paper, we prove first that every solution u to (S) converges in H 1
0 (Ω)

toward some map u∞ ∈ H2(Ω) satisfying ∆u∞ ∈ ∂Φ(0). If, in addition, ∆u∞
belongs to the interior of the set ∂Φ(0), the dynamics is shown to stop definitively
after a finite time. Counterexamples to finite time convergence exist when the
Laplacian ∆u∞ belongs to the boundary of ∂Φ(0). We then focus our attention on
this delicate case. For that purpose, we exhibit two types of asymptotic behaviors,
for which we are able to evaluate the speed of convergence when finite time stabi-
lization fails.
The first one, that we denote by (AE) (from “Asymptotic Expansion”), consists
in assuming that the solution u to (S) can be asymptotically decomposed as the
product of a time-dependent function by a space-dependent one, up to a negligible
term. This hypothesis is satisfied in the overdamped linear case, for example. The
second behavior (NV) (“Normal Velocity”) is observed when the velocity vector
ut(t) is normal to the set ∂Φ(0) at ∆u∞ for t large enough. A careful examination
of (NV) shows that it is equivalent to a condition of uniform boundedness in time
(see paragraph 6.1).
Due to the structural differences of (AE) and (NV), the estimates of the conver-
gence rate rely on distinct arguments in each case. We prove in both situations a
curious phenomenon of dichotomy: either the solution converges in a finite time
or the speed of convergence is exponential. Our results are slightly more precise
under (AE). We establish in this case that, if the excess of the set ∂Φ(v) over the
set ∂Φ(0) tends to 0 sufficiently fast when |v|L2 → 0, then every solution to (S)
stabilizes in a finite time. In concrete situations (cf. for example equation (1.4) or
(1.5)), we obtain the existence of a critical coefficient for the viscous component,
below which every solution stops definitively after a finite time. This critical coef-
ficient is intimately connected with the first eigenvalue of the Laplacian Dirichlet
operator −∆.
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We point out that, as it can be easily shown, most of the results of this paper
remain true in a more general framework (case of a general second order elliptic
operator, different boundary conditions, etc.) but we shall not present it here for
the sake of the exposition.

The paper is organized as follows. In section 2 we start with a general result of
existence and uniqueness of solution for the inclusion (S) under the conditions (1.1)-
(1.2). Section 3 is devoted to some spatially discretized version of (S). In this finite
dimensional framework, we recall the main results of stabilization in finite time.
We conclude the section by some numerical experiments illustrating the motion of
a vibrating string (resp. membrane). In section 4 we prove that, if the function u∞
fulfills some interior-like conditions, then the solution u stabilizes in a finite time.
Sections 5 and 6 are devoted to the asymptotic analysis of (S), respectively in cases
(AE) and (NV). These sections contain the major results of the paper, specially the
phenomenon of dichotomy between finite time convergence and exponential decay
rate.

2. General framework

Throughout the paper, we use the standard notations of convex analysis and the
reader is referred to [21] for the general features relative to these notions.

2.1. Existence and uniqueness. Let Ω be a bounded open set in Rn with smooth
boundary Γ. Given a continuous convex function Φ : L2(Ω) → R, let us consider
the following damped wave equation

(S) utt −∆u+ ∂Φ (ut) 3 0, (t, x) ∈ (0,+∞)× Ω,

under Dirichlet boundary conditions (1.1) and initial conditions (1.2). Any solution
u to (S) can be considered, either as a function u : [0,+∞)×Ω→ R or as a function
of time taking its values in a suitable functional space (such as H 2(Ω) or H1

0 (Ω) for
example). Throughout the paper, we will essentially adopt the second point of view,
so that the dependance with respect to the space variable x will be often omitted.
We start with a general result of existence and uniqueness for the inclusion (S)
under the conditions (1.1)-(1.2). Recall that, if C is a closed convex set of L2(Ω),
then C0 denotes the element of minimal norm of C.

Theorem 2.1. Let Φ : L2(Ω)→ R be a continuous convex function. Assume that
the initial data satisfy respectively u0 ∈ H2(Ω) ∩ H1

0 (Ω) and v0 ∈ H1
0 (Ω). Then,

the following assertions hold true:
(i) There exists a unique map u ∈ C([0,+∞) : H1

0 (Ω)), with ut ∈ C([0,+∞) :
L2(Ω)), such that:

(a) ut ∈ L∞(0,+∞ : H1
0 (Ω)) and utt ∈ L∞(0,+∞ : L2(Ω)). More precisely,

the following estimate holds for almost every t ∈ (0,+∞)

|∇ut(t)|2L2 + |utt(t)|2L2 ≤ |∇v0|2L2 + |(−∆u0 + ∂Φ(v0))0|2L2 .

(b) (S) is satisfied for almost every t ∈ (0,+∞).
(c) u(0) = u0 and ut(0) = v0.

(ii) The map u satisfies u ∈ L∞(0,+∞ : H2(Ω)).
(iii) The map ut is right differentiable on (0,+∞) and we have, for almost every
t ∈ (0,+∞)

d+ut
dt

(t) + (−∆u(t) + ∂Φ(ut(t)))
0 = 0.
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Proof. (i) is an immediate consequence of [5, Theorem III.1].
(ii) Since ut ∈ L∞(0,+∞ : H1

0 (Ω)) and since the imbedding H1
0 (Ω) ↪→ L2(Ω) is

compact, the set {ut(t), t ∈ [0,+∞)} is relatively compact in L2(Ω). On the
other hand, we recall that the maximal monotone operator ∂Φ is bounded on every
compact set of L2(Ω) (see for example Brézis [6, §II. 5]). Then, we derive that
the set ∂Φ(ut(t)) is uniformly bounded in L2(Ω) when t ∈ [0,+∞). Since utt ∈
L∞(0,+∞ : L2(Ω)), we conclude in view of (S) that ∆u ∈ L∞(0,+∞ : L2(Ω)).
(iii) is an immediate consequence of [5, Remark III.2]. �
We denote by I the subset of [0,+∞) on which the map ut is derivable and the in-
clusion (S) is satisfied. Since the function ut is absolutely continuous, it is clear that
the set [0,+∞) \ I is negligible. A key tool in the asymptotic analysis of (S) is the
existence of a Lyapounov function emanating from the mechanical interpretation
of (S). Indeed, we define the energy-like function E by

(2.1) E(t) =
1

2
|ut(t)|2L2 +

1

2
|∇u(t)|2L2 .

The decay rate of the function E is given by the following proposition.

Proposition 2.2. Let Φ : L2(Ω) → R be a continuous convex function such that
0 ∈ argminΦ. Let u be the unique solution to (S) defined at Theorem 2.1. Then
for every t ∈ I, we have

(2.2) Ė(t) ≤ −(Φ(ut(t))− Φ(0)) ≤ 0.

Proof. By differentiating the expression of E, we find

∀t ∈ I, Ė(t) = 〈ut(t), utt(t)〉L2 + 〈ut(t),−∆u(t)〉L2

= 〈ut(t), utt(t)−∆u(t)〉L2 .

Since −utt(t) + ∆u(t) ∈ ∂Φ(ut(t)), it suffices now to write the adequate subdiffer-
ential inequality. �
2.2. Convergence toward a stationary solution. We are going to prove that
the solution u to (S) converges in H1(Ω) and that its limit u∞ is a stationary
solution to (S), i.e. ∆u∞ ∈ ∂Φ(0). In a finite dimensional setting, a similar result
has been established in [1, Theorem 3.1].

Theorem 2.3. Let Φ : L2(Ω) → R be a continuous convex function such that
argminΦ = {0}. Let u be the unique solution to (S) defined at Theorem 2.1. Then,
the following assertions hold true
(i) There exists u∞ ∈ H1

0 (Ω) such that

lim
t→+∞

|u(t)− u∞|H1 = 0 and lim
t→+∞

|ut(t)|L2 = 0.

(ii) We have limt→+∞ u(t) = u∞ weakly in H2(Ω).
(iii) The limit u∞ is a stationary solution to (S), i.e. ∆u∞ ∈ ∂Φ(0).

Proof. (i) Let us set H = H1
0 (Ω) × L2(Ω) and let us define the operator A : H →

P(H) by

D(A) =
(
H2(Ω) ∩H1

0 (Ω)
)
×H1

0 (Ω), A(u, v) = (−v,−∆u+ ∂Φ(v)) .

Setting U(t) = (u(t), ut(t)), it is immediate that the inclusion (S) can be rewritten
as the following first-order in time system

(2.3) Ut(t) +AU(t) 3 0, t ≥ 0.
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Let us recall that, from Theorem 2.1 we have

u ∈ L∞(0,+∞ : H2(Ω)) and ut ∈ L∞(0,+∞ : H1
0 (Ω)).

This implies that the set {U(t), t ≥ 0} is precompact in the space H. By using an
argument of Dafermos-Slemrod (see for example [12, Theorem 1] or [16, Theorem
1]), we derive the existence of some almost periodic solution ξ to (2.3) such that

(2.4) lim
t→+∞

|U(t)− ξ(t)|H = 0.

By arguing as in [16, proof of Theorem 5], it is easy to check that

ξt(t) ∈ argminΦ = {0} a.e. on (0,+∞).

It ensures that ξt ≡ 0 and hence the vector function ξ is constant on [0,+∞). The
conclusion is then an immediate consequence of (2.4).
(ii) Since u ∈ L∞(0,+∞ : H2(Ω)), there exists u ∈ H2(Ω) along with a sequence
(sn) ⊂ (0,+∞) tending to +∞ such that limn→+∞ u(sn) = u weakly in H2(Ω),
hence weakly in H1(Ω). From (i) and the uniqueness of the limit, we derive that
u∞ = u ∈ H2(Ω). Since u∞ is the unique limit point of the map t 7→ u(t) for the
weak topology of H2(Ω), we conclude that limt→+∞ u(t) = u∞ weakly in H2(Ω).
(iii) Let us argue by contradiction and assume that the set ∂Φ(0)−∆u∞ does not
contain 0. It is then possible to strictly separate the convex compact set {0} from
the closed convex set ∂Φ(0) − ∆u∞. More precisely, there exist p ∈ L2(Ω) and
m > 0 such that

(2.5) ∀ξ ∈ ∂Φ(0)−∆u∞, 〈 ξ, p〉 > m.

Recall that the set {utt(t), t ∈ I} is bounded for the norm topology of L2(Ω). Let
h ∈ L2(Ω) and let (tn) ⊂ I be a sequence tending to +∞ such that limn→+∞ utt(tn) =
h weakly in L2(Ω). Since u is solution to (S), we have

−utt(tn) + ∆u(tn) ∈ ∂Φ(ut(tn)).

In view of (ii), the left-hand side of the above inclusion weakly converges to −h+
∆u∞ in L2(Ω). On the other hand, we have limn→+∞ ut(tn) = 0 strongly in L2(Ω)
and using the graph-closedness property of the operator ∂Φ in s−L2(Ω)×w−L2(Ω),
we conclude that −h+∆u∞ ∈ ∂Φ(0). In view of (2.5) we derive that 〈h, p〉L2 < −m.
This shows that the limit points of the map t 7→ 〈utt(t), p〉L2 when t → +∞ are
contained in the interval ]−∞,−m[. We deduce the existence of t∗ ≥ 0 such that,
for almost every t ≥ t∗, 〈utt(t), p〉L2 ≤ −m. By integrating this inequality, we
immediately infer that limt→+∞〈ut(t), p〉L2 = −∞, a contradiction with the fact
that ut ∈ L∞(0,+∞ : L2(Ω)). �

When ∂Φ(0) = {0} the stationary condition of Theorem 2.3 (iii) gives ∆u∞ = 0
and since u∞ ∈ H1

0 (Ω), we conclude that u∞ = 0. Suppose now that the function
Φ is defined by Φ(v) =

∫
Ω
j(v(x)) dx for every v ∈ L2(Ω). In this case, the set

∂Φ(0) equals {f ∈ L2(Ω), f(x) ∈ ∂j(0) for a.e. x ∈ Ω}, so that Theorem 2.3 (iii)
implies that ∆u∞(x) ∈ ∂j(0) for almost every x ∈ Ω. Finally, in the case of the
globally damped wave equation (1.5), we have ∂Φ(0) = µr BL2 and the stationary
condition becomes |∆u∞|L2 ≤ µr.
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3. Stabilization in finite time via some discretized problem.
Numerical illustrations

Motivated by the numerical approach of solutions, we consider in this section
some discretized version of (S). To fix the ideas, suppose that we deal with the
following one-dimensional equation, modelizing the motion of a vibrating string
under friction:

(3.1) utt − uxx + µ sgn(ut) + g(ut) 3 0, (t, x) ∈ (0,+∞)× (0, 1),

where µ > 0, sgn : R → P(R) is the set-valued sign function and g : R → R is
a Lipschitz continuous function such that r g(r) ≥ 0 for every r ∈ R. The term
µ sgn(ut) represents the Coulomb friction while g(ut) represents another type of
friction such as the one due to the viscosity of a possible surrounding fluid. The
reader is referred to [7, 20] for general features about the Coulomb model. By using
a finite differencing scheme, the spatial discretization of (3.1) leads to
(3.2)

üi −
ui+1 − 2ui + ui−1

h2
+ µ sgn(u̇i) + g(u̇i) 3 0, t ∈ (0,+∞), i = 1, 2, . . . , n,

where h = 1/(n + 1) denotes the space step. The previous inclusion can be
rewritten as a vectorial problem by setting U(t) := (u1(t), . . . , un(t))T . For that
purpose, let us define the function Sgn : Rn → P(Rn) by Sgn(u1, . . . , un) :=
(sgn(u1), . . . , sgn(un))T and the function G : Rn → Rn by G(u1, . . . , un) :=
(g(u1), . . . , g(un))T . We also define the symmetric positive definite matrix A ∈
Mn(R) by

A :=
1

h2




2 −1 0 · · · 0

−1 2 −1 0
...

0
. . .

. . .
. . . 0

... 0 −1 2 −1
0 · · · 0 −1 2



.

With these notations, inclusion (3.2) is equivalent to

(3.3) Ü(t) + AU(t) + µ Sgn(U̇(t)) + G(U̇(t)) 3 0, t ∈ (0,+∞).

This system also arises in the study of the vibration of n particles of equal mass.
In fact, it was by passing to the limit in the number of particles (in absence of any
friction) how the wave equation was obtained in 1746 by Jean Le Rond d’Alembert.
The stabilization in a finite time, in absence of viscous friction (G = 0) was proved
by Bamberger and Cabannes [3]. It was shown by Dı́az and Millot [14] that the
presence of a viscous friction (with a suitable behaviour of G near 0) may originate
a qualitative distinction among the orbits in the sense that the state of the system
may reach an equilibrium state in a finite time or merely in an asymptotic way (as

t → +∞), according to the initial data U(0) = U0 and U̇(0) = U̇0. In the recent

work [10], the author studies the general case of a friction equal to −∂Ψ(U̇(t)), for
some convex function Ψ : Rn → R. The same phenomenon of dichotomy as above
is observed and it is shown that either the solution converges in a finite time or the
speed of convergence is exponential. Let us finally mention that a fully discretized
version of (S) has been studied by Baji and Cabot [2], thus giving rise to an inertial
proximal algorithm.
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Figure 1. Vibrating string under Coulomb friction. Plotting of
the solution x 7→ u(t, x) at successive instants: t = 0, 0.1, 0.2, . . .

We end this paragraph with a few numerical experiments in the case of a pure dry
friction (see equation (3.1) with g = 0). We use a finite differencing scheme, both
in time and space. The plotting on Figure 1 corresponds to the initial conditions
u0(x) = 3x (1− x)2 and v0(x) = 0; the friction coefficient is taken equal to µ = 3.
We observe that the map t 7→ u(t) stabilizes after t = 1 toward a stationary solution
satisfying |u′′∞|L∞ ≤ 3.
Let us now turn to a two-dimensional example with Ω = (0, 1)× (0, 1). We choose
the initial conditions u0(x, y) = 9x y (1 − x)2 (1 − y)2 and v0(x, y) = 0, and the
friction coefficient equals µ = 2. Figure 2 shows the evolution of the map t 7→ u(t)
and it suggests the finite time convergence of u(t) toward some stationary solution
u∞ satisfying |∆u∞|L∞ ≤ 2.

Remark 3.1. As pointed out in [14], the finite time stabilization can be also observed
by using the finite element method.

4. Stabilization in a finite time under some interior-like conditions

In this section, we will assume that, for large values of t, the Laplacian ∆u(t)
satisfies some interior condition with respect to the set ∂Φ(0). In a finite dimen-
sional setting [1], this kind of condition implies the finite time stabilization of the
dynamics. The extension of such a result to the damped wave equation leads us to
the following theorem.

Theorem 4.1. Let Φ : L2(Ω) → R be a continuous convex function and let u be
the unique solution to (S) defined at Theorem 2.1. Assume that there exists ε > 0
and t0 ≥ 0 such that

(4.1) ∆u(t) + εBL2 ⊂ ∂Φ(0), for a.e. t ≥ t0.

Then u(t) = u∞ for every t ≥ t0 + |ut(t0)|L2/ε.
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Figure 2. Vibrating membrane under Coulomb friction. Plotting
of the map (x, y) 7→ u(t, x, y) at different instants: t = 0, t = 0.25,
t = 0.5 and t→ +∞.

Proof. For almost every t ≥ t0 and for every v ∈ BL2 , we have ∆u(t)+ ε v ∈ ∂Φ(0).
Thus, for almost every t ≥ t0, we deduce

Φ(ut(t))− Φ(0) ≥ 〈∆u(t) + ε v, ut(t)〉L2 , ∀v ∈ BL2 .

Taking the supremum over v ∈ BL2 , we obtain for almost every t ≥ t0,

(4.2) Φ(ut(t))− Φ(0) ≥ 〈∆u(t), ut(t)〉L2 + ε |ut(t)|L2 .

On the other hand, the inequality (2.2) of energy decay can be rewritten as:

(4.3)
1

2

d

dt
|ut(t)|2L2 − 〈∆u(t), ut(t)〉L2 + Φ(ut(t))− Φ(0) ≤ 0 a.e. on (0,+∞[.

By combining (4.2) and (4.3), we get

(4.4)
1

2

d

dt
|ut(t)|2L2 + ε |ut(t)|L2 ≤ 0.

By setting h(t) := |ut(t)|2L2 , it is clear that relation (4.4) can be rewritten as the
following differential inequality:

(4.5) ḣ(t) + 2 ε
√
h(t) ≤ 0 a.e. on (t0,+∞[.

The solution of the differential equation ẏ + 2 ε
√
y = 0 on (t0,+∞[ takes the zero

value for t = t0 +
√
y(t0)/ε. In view of (4.5), a simple comparison argument then

shows that there exists t1 ∈ [t0, t0 +
√
h(t0)/ε] such that h(t1) = 0. From (4.5),

we deduce that ḣ(t) ≤ 0 almost everywhere and hence h(t) ≤ h(t1) = 0, for every
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t ≥ t1. We conclude that |ut(t)|L2 = 0 for every t ∈ [t1,+∞[, i.e. u(t) = u∞ for
every t ∈ [t1,+∞[. �

We now derive two corollaries from the previous theorem. In the first one, we
impose some interior-like condition on the limit u∞. In the second one we will find
suitable initial conditions ensuring that (4.1) is satisfied.

Corollary 4.2. Let Φ : L2(Ω) → R be a continuous convex function and let u be
the unique solution to (S) defined at Theorem 2.1. Assume that limt→+∞ |u(t) −
u∞|H2 = 0 for some u∞ ∈ H2(Ω). If ∆u∞ ∈ intL2(∂Φ(0)), then there exists t1 ≥ 0
such that u(t) = u∞ for every t ≥ t1.

Proof. The assumption ∆u∞ ∈ intL2(∂Φ(0)) implies the existence of ε > 0 such
that

∆u∞ + 2 εBL2 ⊂ ∂Φ(0).

On the other hand, since limt→+∞ |u(t)− u∞|H2 = 0, there exists t0 ≥ 0 such that
for every t ≥ t0, we have

∆u(t) ∈ ∆u∞ + εBL2 .

Hence,

∆u(t) + εBL2 ⊂ ∆u∞ + 2 εBL2 ⊂ ∂Φ(0).

It suffices then to use Theorem 4.1. �

Let us now apply the previous corollary to the situation corresponding to Φ =
µr | . |L2 + µv

2 | . |2L2 (see equation (1.5)). Recall that in this case we have ∂Φ(0) =
µr BL2 . Under the hypotheses of Corollary 4.2, we deduce that

|∆u∞|L2 < µr =⇒ u stabilizes in a finite time.

Suppose now that the function Φ is defined by Φ(v) =
∫

Ω
j(v(x)) dx for every

v ∈ L2(Ω). In this case, the interior of the set ∂Φ(0) = {f ∈ L2(Ω), f(x) ∈ ∂j(0)
for a.e. x ∈ Ω} is empty, so that Corollary 4.2 cannot be applied.

Let us now state another consequence of Theorem 4.1, which is more specifically
devoted to the globally damped wave equation (cf. inclusion (1.5)).

Corollary 4.3. Given µr > 0, µv ≥ 0, we define the function Φ : L2(Ω) → R by
Φ = µr | . |L2 + µv

2 | . |2L2. Let u be the unique solution to (S) defined at Theorem
2.1. If the initial conditions (u0, v0) satisfy |∆u0|L2 + |∇v0|L2 < µr/C, for some
C ≥ 1, then we have u(t) = u∞ for every

t ≥ |v0|L2

µr − C (|∆u0|L2 + |∇v0|L2)
.

Proof. From [5, Theorem III.2], the following estimate holds true for almost every
t ≥ 0

|∆u(t)|L2 ≤ C (|∆u0|L2 + |∇v0|L2),

for some C ≥ 1. Recalling that ∂Φ(0) = µr BL2 , we deduce that condition (4.1) is
satisfied with

ε = µr − C (|∆u0|L2 + |∇v0|L2) > 0 and t0 = 0.

It suffices then to apply Theorem 4.1. �



ASYMPTOTICS FOR SOME NONLINEAR DAMPED WAVE EQUATION 11

Remark 4.4. The above mentioned results of finite time stabilization may have
interesting applications in control theory. Indeed, let T > 0, u0 ∈ H1

0 (Ω) ∩H2(Ω)
and v0 ∈ H1

0 (Ω) be given. Consider the H2(Ω)-approximate controllability question
stated in the following terms: given ε > 0 (arbitrarily small) find a feedback type
control f(t, x) such that the solution u(t, x ; f) of the linear wave equation





utt −∆u = f in (0, T )× Ω,
u = 0 on (0, T )× ∂Ω,
u(0, x) = u0(x) on Ω,
ut(0, x) = v0(x) on Ω,

satisfies

ut(T, . ; f) = 0 on Ω and |u(T, . ; f)|H2 ≤ ε.
Then, if the finite time stabilization result for the globally damped wave equation
(1.5) holds, the desired control function can be chosen as follows:

f(t, x) = −µr
ut(t, x)

|ut(t, .)|L2

,

with µr = ε
C and C = C(Ω) given as the constant such that |h|H2 ≤ C |∆h|L2 , for

any h ∈ H1
0 (Ω) ∩ H2(Ω). In contrast with other problems dealing with the exact

controllability for the wave equation with globally distributed controls (see, e.g. [19]
and [13]), this result does not hold for any arbitrary T > 0 but only for some T > 0
large enough depending on the initial data u0 ∈ H1

0 (Ω) ∩H2(Ω) and v0 ∈ H1
0 (Ω).

5. On the dichotomy phenomenon under some expansion condition

5.1. Illustration of the dichotomy phenomenon. Given µc, µv > 0, let us
consider the following damped wave equation

(5.1) utt −∆u+ µc sgn (ut) + µv ut 3 0,

where the friction term is decomposed as the sum of a dry component and a viscous
one. Let us assume that µv ≥ 2

√
λ1 , with λ1 > 0 the first eigenvalue of the

Dirichlet-Laplacian operator −∆. Then we can find some solutions to (5.1) which
exponentially converge toward their limit and also some solutions which stabilize
in a finite time. We construct the first type of solutions in the form

u(t, x) = ξ(x) + a(t) e1(x),

where e1 ∈ H1
0 (Ω) is an eigenfunction of −∆ associated to λ1 such that e1 > 0 in

Ω, the function ξ ∈ H1
0 (Ω) is the solution to ∆ξ = µc in Ω and a(t) is a solution of

the ODE

(5.2) ä+ µvȧ+ λ1 a = 0,

such that ȧ(t) > 0 for every t ≥ 0 (which is possible since µv ≥ 2
√
λ1). Then, we get

a solution u which tends toward u∞ = ξ and the convergence rate is exponential.
By the contrary, if we choose b(t) as a solution of (5.2) such that ḃ(t) > 0 for all

t ∈ [0, 1), ḃ(1) = 0 and b(1) = K > 0 with K ≤ µc
λ1|e1|L∞ and take a(t) = b(t) if

t ≤ 1 and a(t) = K for t ≥ 1 we get a solution which attains the stationary state
u∞(x) = ξ(x) +Ke1(x) after t = 1.
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5.2. Assumption (AE) and preliminary results. Inspired by the previous
paragraph, we assume from now on that the solution u to (S) admits the following
asymptotic expansion when t→ +∞
(AE) u(t, x) = u∞(x) + a(t)w(x) + R(t, x),

where the functions a, u∞, w and R satisfy the following set of hypotheses:

(H)





• The map a : [0,+∞)→ [0,+∞) is differentiable, nonincreasing and
limt→+∞ a(t) = limt→+∞ ȧ(t) = 0.

• The map u∞ satisfies u∞ ∈ H1
0 (Ω) ∩H2(Ω).

• The map w satisfies w ∈ H1
0 (Ω) \ {0}.

• The map R is such that R ∈W 1,∞(0,+∞ : H1
0 (Ω)) and

|R(t)|H1 = o(a(t)) and |Rt(t)|L2 = o(ȧ(t)) when t→ +∞.
The terminology (AE) stands for “Asymptotic Expansion”. Let us justify the
assumption (AE) in the case of the following linear damped wave equation with
the forcing term h ∈ L2(Ω)

utt −∆u+ µut = h, µ > 0.

We assume that µ > 2
√
λ1 (overdamped case), where λ1 > 0 is the first eigenvalue

of the Dirichlet-Laplacian operator −∆. Let e1 ∈ H1
0 (Ω) be an eigenfunction of −∆

associated to λ1 and define the function ξ ∈ H1
0 (Ω) as the solution to −∆ξ = h in Ω.

By using the Fourier decomposition of solutions on the basis of the eigenfunctions
associated to the Laplacian operator, one can check that

u(t, x) = ξ(x) + Ae(−µ+
√
µ2−4λ1) t2 e1(x) +R(t, x),

where A ∈ R and the function R satisfies

|R(t)|H1 = o
(
e(−µ+

√
µ2−4λ1) t2

)
and |Rt(t)|L2 = o

(
e(−µ+

√
µ2−4λ1) t2

)
.

Therefore assertion (AE) holds true with u∞(x) = ξ(x), a(t) = e(−µ+
√
µ2−4λ1) t2

and w(x) = Ae1(x) (provided that A 6= 0).
Coming back to the general case, let us now study the topological structure of the
set D = {t ∈ (0,+∞), |ut(t)|L2 = 0}.
Proposition 5.1. Let Φ : L2(Ω) → R be a continuous convex function and let u
be the unique solution to (S) defined at Theorem 2.1. Then, either the set D equals
the interval [t0,+∞[ for some t0 ≥ 0 or the set D is discrete and countable (hence
of zero measure).

Proof. Assume that D is not equal to any interval [t0,+∞[ with t0 ≥ 0. Consider
any t∗ > 0 satisfying |ut(t∗)|L2 = 0 (if such an element does not exist, the conclusion
is trivial) and let us prove that it is an isolated point of D. Let us first remark that
we necessarily have ∆u(t∗) 6∈ ∂Φ(0). Indeed, if ∆u(t∗) ∈ ∂Φ(0), then the constant
function equal to u(t∗) on [t∗,+∞[ is solution to (S), and from the uniqueness
property we derive that u(t) = u(t∗) for every t ≥ t∗, a contradiction.
Since ∆u(t∗) 6∈ ∂Φ(0), it is possible to strictly separate the convex compact set {0}
from the closed convex set ∂Φ(0)−∆u(t∗). More precisely, there exist p ∈ L2(Ω)
and m > 0 such that:

(5.3) ∀ξ ∈ ∂Φ(0)−∆u(t∗), 〈 ξ, p〉 > m.
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From Theorem 2.1 (i), the set {utt(t), t ∈ I} is bounded for the norm topology
of L2(Ω). Let h ∈ L2(Ω) and let (tn) ⊂ I be a sequence tending to t∗ such that
limn→+∞ utt(tn) = h weakly in L2(Ω). Since u is solution to (S), we have

−utt(tn) + ∆u(tn) ∈ ∂Φ(ut(tn)).

It is immediate to check that limt→t∗ ∆u(t) = ∆u(t∗) weakly in L2(Ω). Hence the
left-hand side of the above inclusion weakly converges to −h+∆u(t∗) in L2(Ω). On
the other hand, we have limn→+∞ ut(tn) = ut(t∗) = 0 strongly in L2(Ω) and using
the graph-closedness property of the operator ∂Φ in s − L2(Ω) × w − L2(Ω), we
conclude that −h+ ∆u(t∗) ∈ ∂Φ(0). In view of (5.3) we derive that 〈h, p〉L2 < −m.
This shows that the limit points of the map t 7→ 〈utt(t), p〉L2 when t → t∗ are
contained in the interval ] − ∞,−m[. We deduce the existence of ε > 0 such
that, for almost every t ∈]t∗ − ε, t∗ + ε[, 〈utt(t), p〉L2 ≤ −m. Let us integrate this
inequality on [t∗, t] to obtain:

∀t ∈]t∗ − ε, t∗ + ε[, |〈ut(t), p〉L2 | ≥ m |t− t∗|.
Therefore, we have |ut(t)|L2 6= 0 for every t ∈]t∗ − ε, t∗ + ε[ and hence D∩ ]t∗ −
ε, t∗+ε[= {t∗}, i.e. t∗ is isolated in D. Since this is true for every t∗ ∈ D, the set D
is discrete. On the other hand, the set D is clearly closed in view of the continuity
of the map t 7→ |ut(t)|L2 . We infer that every bounded subset of D is finite. We
conclude that the set D is countable as a countable union of finite sets. �
By differentiating expression (AE) with respect to time, we obtain ut(t) = ȧ(t)w+
Rt(t). Since |Rt(t)|L2 = o(ȧ(t)), it is immediate that for t large enough, |ut(t)|L2 = 0
if and only if ȧ(t) = 0. If the solution u does not converge in a finite time, we infer
from Proposition 5.1 that the set D = {t ∈ (0,+∞), ȧ(t) = 0} is discrete and
countable. In this case, we have

(5.4) lim
t→+∞, t6∈D

ut(t)

ȧ(t)
= w strongly in L2(Ω).

We now establish that the function w must be normal to the set ∂Φ(0) at ∆u∞.
Let us recall that, for a convex subset C ⊂ L2(Ω) and u ∈ C, the normal cone of
C at u is defined by NC(u) = {ξ ∈ L2(Ω), 〈ξ, v − u〉L2 ≤ 0 for all v ∈ C}.
Proposition 5.2. Let Φ : L2(Ω) → R be a continuous convex function and let u
be the unique solution to (S) defined at Theorem 2.1. Assume that assertion (AE)
holds with the functions a, u∞, w and R satisfying hypotheses (H). If the solution
u does not converge in a finite time, then we have −w ∈ N∂Φ(0)(∆u∞).

Proof. First recall that, since the solution u does not converge in a finite time, the
set D = {t ∈ (0,+∞), |ut(t)|L2 = 0} is discrete and countable (see Proposition
5.1). Let us argue by contradiction and assume that −w 6∈ N∂Φ(0)(∆u∞). This
implies the existence of ξ ∈ ∂Φ(0) such that the quantity m := 〈ξ −∆u∞,−w〉L2

is positive. From Theorem 2.1 (i), the set {utt(t), t ∈ I} is bounded for the
norm topology of L2(Ω). Let h ∈ L2(Ω) and let (tn) ⊂ I \ D be a subsequence
tending to +∞ such that limn→+∞ utt(tn) = h weakly in L2(Ω). Since −utt(tn) +
∆u(tn) ∈ ∂Φ(ut(tn)) and ξ ∈ ∂Φ(0), we deduce from the monotonicity of ∂Φ
that 〈−utt(tn) + ∆u(tn)− ξ , ut(tn)〉L2 ≥ 0. Recalling that ȧ(t) < 0 for every
t ∈ (0,+∞) \ D, we derive that

〈
−utt(tn) + ∆u(tn)− ξ , ut(tn)

ȧ(tn)

〉

L2

≤ 0.
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Since limt→+∞∆u(t) = ∆u∞ weakly in L2(Ω), the first term of the above bracket
weakly converges in L2(Ω) toward −h+∆u∞−ξ. In view of (5.4), the right member
of the same bracket strongly converges in L2(Ω) toward w. Hence, we obtain at the
limit when n→ +∞

〈−h+ ∆u∞ − ξ, w〉L2 ≤ 0,

or equivalently 〈h,w〉L2 ≥ m > 0. This shows that the limit points of

{〈utt(t), w〉L2 , t ∈ I \ D} when t→ +∞
are contained in the interval [m,+∞[. Since the set D is negligible, we deduce the
existence of t∗ ≥ 0 such that, for almost every t ≥ t∗, 〈utt(t), w〉L2 ≥ m/2. By
integrating this inequality, we immediately infer that limt→+∞〈ut(t), w〉L2 = +∞,
a contradiction with the fact that ut ∈ L∞(0,+∞ : L2(Ω)). �
5.3. Convergence rate estimates. The next result shows that under assumption
(AE), either the solutions to (S) converge in a finite time or the convergence rate
is exponential. This result is an extension of [10, Theorem 5.2], which has been
established in a finite dimensional setting. Given a subset A ⊂ L2(Ω), we denote
by d(., A) the distance function to the set A: d(x,A) = infy∈A |x − y|L2 for every
x ∈ L2(Ω). Given another subset B ⊂ L2(Ω), we define the excess e(A,B) of A
over B by: e(A,B) = supx∈A d(x,B).

Theorem 5.3. Let Φ : L2(Ω) → R be a continuous convex function and suppose
that there exist η > 0 and α ≥ 0 such that

(5.5) |v|L2 ≤ η =⇒ e
(
∂Φ(v), ∂Φ(0)

)
≤ α |v|L2 .

Let u be the unique solution to (S) defined at Theorem 2.1. Assume that assertion
(AE) holds with the functions a, u∞, w and R satisfying hypotheses (H). Then,
one of the following cases holds:
(i) There exists t0 ≥ 0 such that u(t) = u∞ for every t ≥ t0.
(ii) There exist t1 ≥ 0, A, B > 0, and γ, δ > 0 such that for every t ≥ t1,

(5.6) |u(t)− u∞|L2 ≥ Ae−γt and

∫ +∞

t

|u(s)− u∞|L2 ds ≤ B e−δt.

Denoting by λ1 the first eigenvalue of the operator −∆, any positive exponent γ
(resp. δ) such that γ > α (resp. δ < λ1/α) satisfies the previous estimate. If
moreover α <

√
λ1, then case (i) necessarily occurs.

Proof. Let us assume that case (i) does not hold, i.e. the solution u does not
converge toward u∞ in a finite time. For every t ∈ I, we have: −utt(t) + ∆u(t) ∈
∂Φ(ut(t)). Let us define ξ(t) as the unique element of ∂Φ(0) such that

d
(
− utt(t) + ∆u(t), ∂Φ(0)

)
= |ξ(t) + utt(t)−∆u(t)|L2 .

Let us write that

〈utt(t), w〉L2 = 〈ξ(t) + utt(t)−∆u(t), w〉L2 + 〈ξ(t)−∆u∞,−w〉L2(5.7)

+ 〈∆u(t)−∆u∞, w〉L2 ,

and let us evaluate each term of the right member. From the definition of ξ(t) we
have for every t ∈ I:

|ξ(t) + utt(t)−∆u(t)|L2 ≤ sup
v∈∂Φ(ut(t))

d(v, ∂Φ(0)) = e
(
∂Φ(ut(t)), ∂Φ(0)

)
.
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Since limt→+∞ |ut(t)|L2 = 0, there exists t0 ≥ 0 such that |ut(t)|L2 ≤ η for every
t ≥ t0. Hence we deduce from assumption (5.5) and the previous inequality that

(5.8) ∀t ∈ [t0,+∞[∩ I, |ξ(t) + utt(t)−∆u(t)|L2 ≤ α |ut(t)|L2 .

In view of Proposition 5.2, we have −w ∈ N∂Φ(0)(∆u∞) and since ξ(t) ∈ ∂Φ(0),
we infer

(5.9) 〈ξ(t)−∆u∞,−w〉L2 ≤ 0.

Let us evaluate the term 〈∆u(t)−∆u∞, w〉L2 by using the assumption (AE)

〈∆u(t)−∆u∞, w〉L2 = −〈∇u(t)−∇u∞,∇w〉L2

= −|∇w|2L2 a(t)− 〈∇R(t),∇w〉L2

≤ −λ1 |w|2L2 a(t)− 〈∇R(t),∇w〉L2 .(5.10)

The last inequality is a consequence of the Poincaré inequality |∇v|2L2 ≥ λ1 |v|2L2

for every v ∈ H1
0 (Ω). By assumption, we have |∇R(t)|L2 = o(a(t)) when t → +∞

and therefore inequality (5.10) can be rewritten as:

(5.11) 〈∆u(t)−∆u∞, w〉L2 ≤ −λ1 |w|2L2 a(t) + o(a(t)).

In view of (5.7), we deduce from (5.8), (5.9) and (5.11) that

〈utt(t), w〉L2 ≤ α |w|L2 |ut(t)|L2 − λ1 |w|2L2 a(t) + o(a(t)).

Since the differentiation of expression (AE) gives

(5.12) ut(t) = ȧ(t)w + Rt(t) with |Rt(t)|L2 = o(ȧ(t)),

the above inequality yields

(5.13) 〈utt(t), w〉L2 ≤ −α |w|2L2 ȧ(t) + o(ȧ(t))− λ1 |w|2L2 a(t) + o(a(t)).

Observing that
∫ +∞

0
a(s) ds < +∞, let us integrate inequality (5.13) on [t,+∞[ to

find:

−〈ut(t), w〉L2 ≤ α |w|2L2 a(t) + o(a(t))− λ1 |w|2L2

„Z +∞

t

a(s) ds

«
+ o

„Z +∞

t

a(s) ds

«
.

From equality (5.12), we infer that

−|w|2L2 ȧ(t)+o(ȧ(t))+λ1 |w|2L2

„Z +∞

t

a(s) ds

«
+o

„Z +∞

t

a(s) ds

«
≤ α |w|2L2 a(t)+o(a(t)).

Since a(t) ≥ 0 and ȧ(t) ≤ 0 for every t ≥ 0, the previous inequality entails

−ȧ(t) + o(ȧ(t)) ≤ αa(t) + o(a(t))(5.14)

λ1

(∫ +∞

t

a(s) ds

)
+ o

(∫ +∞

t

a(s) ds

)
≤ αa(t) + o(a(t)).(5.15)

Consider some positive exponents γ and δ such that γ > α and δ < λ1/α. In view
of (5.14)-(5.15), there exists t1 ≥ t0 such that for every t ≥ t1

−ȧ(t) ≤ γ a(t) and δ

(∫ +∞

t

a(s) ds

)
≤ a(t).

An elementary integration of the previous inequalities on [t1, t] yields respectively:

a(t) ≥ a(t1) e−γ(t−t1) and

(∫ +∞

t

a(s) ds

)
≤
(∫ +∞

t1

a(s) ds

)
e−δ(t−t1).
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Inequalities (5.6) immediately follow from the equivalence |u(t)−u∞|L2 ∼ |w|L2 a(t)
when t→ +∞.
Let us now prove the last assertion of the theorem. Let us argue by contradiction
and assume that case (ii) holds. An immediate integration of the first inequality
of (5.6) on [t,+∞[ shows that

∀t ≥ t1,
∫ +∞

t

|u(s)− u∞| ds ≥
A

γ
e−γ t.

In view of the second inequality of (5.6), the exponents must satisfy the following
relation: δ ≤ γ. Since this is true for every γ > α and δ < λ1/α, we conclude that
λ1 ≤ α2, which contradicts the assumption. �
In this theorem, condition (5.5) plays a central role. We are now going to show
that this condition is satisfied in at least two interesting situations.

Corollary 5.4. Let j : R → R be a convex function and assume that there exists
α ≥ 0 such that

(5.16) ∀r ∈ R, e
(
∂j(r), ∂j(0)

)
≤ α |r|.

Suppose that j(v) ∈ L1(Ω) for every v ∈ L2(Ω), and define the function Φ :
L2(Ω) → R by Φ(v) =

∫
Ω
j(v(x)) dx. Let u be the unique solution to (S) defined

at Theorem 2.1. If assertion (AE) holds, then we have the same conclusions as in
Theorem 5.3.

Proof. Given v ∈ L2(Ω), let us compute the excess e (∂Φ(v), ∂Φ(0)). For every
g ∈ ∂Φ(v) and for almost every x ∈ Ω, let us define g̃(x) as the unique element of
the set ∂j(0) such that |g(x)− g̃(x)| = d(g(x), ∂j(0)). Since g̃(x) ∈ ∂j(0) for almost
every x ∈ Ω, we have g̃ ∈ ∂Φ(0). Hence we deduce

(5.17) d(g, ∂Φ(0)) ≤ |g − g̃|L2 =

(∫

Ω

d(g(x), ∂j(0))2 dx

)1/2

.

Since g ∈ ∂Φ(v), we have g(x) ∈ ∂j(v(x)) for almost every x ∈ Ω. It ensues that

d(g(x), ∂j(0)) ≤ e
(
∂j(v(x)), ∂j(0)

)
and by taking into account assumption (5.16),

we infer that d(g(x), ∂j(0)) ≤ α |v(x)| for almost every x ∈ Ω. In view of (5.17),
we deduce that d(g, ∂Φ(0)) ≤ α |v|L2 . Since this is true for every g ∈ ∂Φ(v), we
conclude that e (∂Φ(v), ∂Φ(0)) ≤ α |v|L2 . Hence condition (5.5) is satisfied and we
can now apply Theorem 5.3. �
Recall that the support function σC : L2(Ω) → R ∪ {+∞} of a set C ⊂ L2(Ω)
is defined by σC(u) = supv∈C〈u, v〉L2 for every u ∈ L2(Ω). Assume that the set
C ⊂ L2(Ω) is closed, convex and bounded for the norm topology of L2(Ω). We let
the reader check that the function σC is then positively homogeneous, convex and
finite-valued (hence continuous). Observe that the support function σBL2 coincides

with the norm | . |L2 . Given a convex function Ψ : L2(Ω)→ R of class C1, we define
the function Φ : L2(Ω)→ R by Φ = σC+Ψ. In this particular framework, condition
(5.5) takes a simplified form, as shown by the following corollary.

Corollary 5.5. Let C ⊂ L2(Ω) be a closed convex subset which is bounded for the
strong topology of L2(Ω). Consider a convex function Ψ : L2(Ω) → R of class C1

such that there exist η > 0 and α ≥ 0 satisfying

(5.18) |v|L2 ≤ η =⇒ |∇Ψ(v)|L2 ≤ α |v|L2 .
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Defining the function Φ : L2(Ω)→ R by Φ = σC + Ψ, let u be the unique solution
to (S) given by Theorem 2.1. If assertion (AE) holds, then we have the same
conclusions as in Theorem 5.3.

Proof. Let us compute the excess e (∂Φ(v), ∂Φ(0)). It is immediate to check that
∂σC(0) = C and ∂σC(v) ⊂ C for every v ∈ L2(Ω). Hence,

e
(
∂Φ(v), ∂Φ(0)

)
≤ e
(
∇Ψ(v) + C,C

)
= sup
w∈C

d(∇Ψ(v) + w,C)

≤ sup
w∈C
|∇Ψ(v) + w − w|L2 = |∇Ψ(v)|L2 ≤ α |v|L2 .

Hence condition (5.5) is satisfied and we can now apply Theorem 5.3. �
Assume that the term Ψ corresponds to a viscous friction, i.e. Ψ = µv

2 | . |2L2 for

some µv ≥ 0. Under assumption (AE), Corollary 5.5 shows that, if µv ∈ [0,
√
λ1[

then the solution u stabilizes in a finite time. This means that the dynamics stops
after a finite time when the viscous component of the friction is small enough.

6. On the dichotomy phenomenon under some condition of normal
velocity

In this section, we study the asymptotic properties of (S) under the following
assumption:

(NV) ut(t) ∈ N∂Φ(0)(∆u∞) for t large enough.

Assertion (NV) says that the velocity ut(t) is normal to the set ∂Φ(0) when t →
+∞. Let us first remark that, if ∂Φ(0) = {0}, we have ∆u∞ = 0 and hence
N∂Φ(0)(∆u∞) = N{0}(0) = L2(Ω). It ensues that (NV) is automatically satisfied in
this case.

6.1. Interpretation of assumption (NV). Let j : R→ R be a convex function
and let us assume that, for every v ∈ L2(Ω), we have j(v) ∈ L1(Ω). The function
Φ : L2(Ω)→ R is defined by Φ(v) =

∫
Ω
j(v(x)) dx, for every v ∈ L2(Ω). Let us set

β := ∂j and assume that 0 ∈ int (β(0)). Suppose that

lim
t→+∞

∆u(t, x) = ∆u∞(x) for almost every x ∈ Ω.

Let us fix x ∈ Ω such that the previous relation is satisfied. Let us write the
inclusion (1.3) with x = x

utt (t, x)−∆u (t, x) + β (ut(t, x)) 3 0.

By arguing as in [14, Lemma 2], we deduce the existence of tx ≥ 0 such that

∀t ≥ tx, ut(t, x) ∈ Nβ(0)(∆u∞(x)).

Without loss of generality, we can assume that tx is the smallest time such that the
previous inclusion holds true. Suppose moreover that x 7→ tx is essentially bounded
on Ω and let T := ess− supx∈Ω tx < +∞. We then have

for every t ≥ T, for almost every x ∈ Ω, ut(t, x) ∈ Nβ(0)(∆u∞(x)).

Recalling that ∂Φ(0) = {f ∈ L2(Ω), f(x) ∈ β(0) for almost every x ∈ Ω} and
using a classical result relative to the subdifferential of convex integral functionals
(see for example [6, Proposition 2.16]), we deduce that ut(t) ∈ N∂Φ(0)(∆u∞) for
every t ≥ T , which is exactly (NV).
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6.2. Minorization by an exponential decay rate. Let us define the energy-like
function F by

(6.1) F (t) =
1

2
|ut(t)|2L2 +

1

2
|∇u(t)−∇u∞|2L2 .

The function F is related to the energy function E by the following formula

F (t) = E(t) + 〈u(t),∆u∞〉L2 +
1

2
|∇u∞|2L2 .

The map F is non increasing; indeed, from (2.2) we deduce that

∀t ∈ I, Ḟ (t) ≤ −(Φ(ut(t))− Φ(0)) + 〈ut(t),∆u∞〉L2 .

In view of Theorem 2.3 (iii), we have ∆u∞ ∈ ∂Φ(0). It ensues that 〈ut(t),∆u∞〉L2 ≤
Φ(ut(t)) − Φ(0) and the announced result follows. The lyapounov function F will
play an essential role throughout this section. The next result asserts that under as-
sertion (NV), either the solutions to (S) converge in a finite time or the convergence
rate is minorized by some negative exponential. Given two subsets A, B ⊂ L2(Ω),
we recall that the excess of A over B is defined by e(A,B) = supv∈A d(v,B).

Theorem 6.1. Let Φ : L2(Ω) → R be a continuous convex function such that
argminΦ = {0}. Suppose that there exist η > 0 and α ≥ 0 such that

(6.2) |v|L2 ≤ η =⇒ e
(
∂Φ(v), ∂Φ(0)

)
≤ α |v|L2 .

Let u be the unique solution to (S) defined at Theorem 2.1 and let u∞ denote its
limit in H1(Ω) as t→ +∞. If assertion (NV) is satisfied, then one of the following
cases holds:
(i) There exists t0 ≥ 0 such that u(t) = u∞ for every t ≥ t0.
(ii) There exist t1 ≥ 0 and A > 0 such that

∀t ≥ t1,
∫ +∞

t

|ut(s)|2L2 ds ≥ Ae−2α t.

If moreover α = 0 then case (i) necessarily holds, i.e. the solution u is stabilized in
a finite time.

Proof. Let us first remark that, if |ut|L2 6∈ L2(0,+∞ : R) then
∫ +∞
t
|ut(s)|2L2 ds =

+∞ for every t ≥ 0, so that item (ii) is trivially satisfied. Hence we can assume
without loss of generality that |ut|L2 ∈ L2(0,+∞ : R). Consider the function F
defined by (6.1); we have for every t ∈ I
(6.3) Ḟ (t) = 〈ut(t), utt(t)−∆u(t) + ∆u∞〉L2 .

For every t ∈ I, we have −utt(t) + ∆u(t) ∈ ∂Φ(ut(t)). Let us define ξ(t) as the
unique element of ∂Φ(0) such that

d
(
− utt(t) + ∆u(t), ∂Φ(0)

)
= |ξ(t) + utt(t)−∆u(t)|L2 .

It is then clear that, for every t ∈ I
|ξ(t) + utt(t)−∆u(t)|L2 ≤ sup

y∈∂Φ(ut(t))

d(y, ∂Φ(0)) = e
(
∂Φ(ut(t)), ∂Φ(0)

)
.

Since limt→+∞ |ut(t)|L2 = 0, there exists t0 ≥ 0 such that |ut(t)|L2 ≤ η for every
t ≥ t0. Hence we deduce from assumption (6.2) and the previous inequality that

(6.4) ∀t ∈ [t0,+∞[∩ I, |ξ(t) + utt(t)−∆u(t)|L2 ≤ α |ut(t)|L2 .
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From assertion (NV), there exists t1 ≥ t0 such that for every t ≥ t1, we have
ut(t) ∈ N∂Φ(0)(∆u∞). Since ξ(t) ∈ ∂Φ(0), we infer that

(6.5) 〈ut(t), ξ(t)−∆u∞〉L2 ≤ 0.

In view of (6.3), (6.4) and (6.5), we conclude that

∀t ∈ [t1,+∞[∩ I, Ḟ (t) ≥ −α |ut(t)|2L2 .

Recalling that |ut|L2 ∈ L2(0,+∞ : R), we can integrate the previous inequality
on [t,+∞[. Since limt→+∞ |ut(t)|L2 = 0 and limt→+∞ |∇u(t) − ∇u∞|L2 = 0, we
obtain:

∀t ≥ t1,
1

2
|ut(t)|2L2 +

1

2
|∇u(t)−∇u∞|2L2 ≤ α

∫ +∞

t

|ut(s)|2L2 ds,

and hence |ut(t)|2L2 ≤ 2α
∫ +∞
t
|ut(s)|2L2 ds, for every t ≥ t1. An immediate inte-

gration on [t1, t] shows that

∀t ≥ t1,
∫ +∞

t

|ut(s)|2L2 ds ≥
(∫ +∞

t1

|ut(s)|2L2 ds

)
e−2α(t−t1).

If
∫ +∞
t1
|ut(s)|2L2 ds = 0, then clearly |ut(t)|L2 = 0 for every t ≥ t1. If

∫ +∞
t1
|ut(s)|2L2 ds >

0, the expected formula is obtained by setting A :=
(∫ +∞

t1
|ut(s)|2L2 ds

)
e2α t1 .

Now assume that α = 0. Let us argue by contradiction and assume that case (ii)

holds, i.e. there exists A > 0 such that
∫ +∞
t
|ut(s)|2L2 ds ≥ A for t large enough.

This clearly contradicts the fact that limt→+∞
∫ +∞
t
|ut(s)|2L2 ds = 0 and we con-

clude that u(t) = u∞ for t large enough. �
It is immediate to apply Theorem 6.1 to the situations corresponding respectively
to equations (1.3) and (1.5).

6.3. Majorization by an exponential decay rate. We are going to prove that
under suitable conditions the convergence rate of |u(t) − u∞|H1 toward 0 is ma-
jorized by some negative exponential. The key assumption of the next theorem is
the existence of a symmetric positive operator L such that1

(6.6) e
(
∂Φ(v), ∂[Φ′(0; .)](v) + Lv

)
= O(|v|2L2) when |v|L2 → 0.

Suppose that the function Φ equals Φ := σC + Ψ for some convex set C ⊂ L2(Ω)
and some convex function Ψ : L2(Ω)→ R of class C3 such that ∇Ψ(0) = 0. In this
case, equality (6.6) is satisfied with L := ∇2Ψ(0). This can be easily obtained from
a second-order Taylor expansion of the function ∇Ψ in the neighborhood of 0.

Theorem 6.2. Let L : L2(Ω)→ L2(Ω) be a symmetric operator satisfying

(6.7) ∀v ∈ L2(Ω), m |v|2L2 ≤ 〈Lv, v〉L2 ≤M |v|2L2 ,

for some m, M > 0. Assume that Φ : L2(Ω)→ R is a continuous convex function
satisfying (6.6) and such that argminΦ = {0}. Let u be the unique solution to
(S) defined at Theorem 2.1 and let u∞ denote its limit in H1(Ω) as t → +∞. If
assertion (NV) holds, then there exist C, γ > 0 and t0 ≥ 0 such that

∀t ≥ t0, |ut(t)|2L2 + |∇u(t)−∇u∞|2L2 ≤ C e−γt.
1Let us recall that the directional derivative Φ′(u; .) of Φ at u ∈ L2(Ω) is defined by Φ′(u;h) =

limt→0+ (Φ(u+ t h)− Φ(u)) /t for every h ∈ L2(Ω).
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Denoting by λ1 the first eigenvalue of the Dirichlet-Laplacian operator −∆, any

positive exponent γ such that γ < m (
√
M2+4λ1−M)

m+
√
M2+4λ1−M satisfies the previous estimate.

Proof. For every t ∈ I, we have: −utt(t) + ∆u(t) ∈ ∂Φ(ut(t)). Let us define ξ(t) as
the unique element of the set ∂[Φ′(0; .)](ut(t)) + Lut(t) such that

d
(
− utt(t) + ∆u(t), ∂[Φ′(0; .)](ut(t)) + Lut(t)

)
= |ξ(t) + utt(t)−∆u(t)|L2 .

In view of assumption (6.6) we have, for every t ∈ I
(6.8)

|ξ(t) + utt(t)−∆u(t)|L2 ≤ e
(
∂Φ(ut(t)), ∂[Φ′(0; .)](ut(t)) + Lut(t)

)
= O(|ut(t)|2L2).

Let us define the auxiliary function G by:

G(t) := 〈ut(t), u(t)− u∞〉L2 +
1

2
〈L(u(t)− u∞), u(t)− u∞〉L2 .

An elementary computation shows that for every t ∈ I
Ġ(t) = |ut(t)|2L2 + 〈utt(t) + Lut(t), u(t)− u∞〉L2

= |ut(t)|2L2 + 〈utt(t) + ξ(t)−∆u(t), u(t)− u∞〉L2

− 〈ξ(t)− Lut(t)− ∆u∞, u(t)− u∞〉L2

+ 〈∆u(t)−∆u∞, u(t)− u∞〉L2 .

Since 〈∆u(t) − ∆u∞, u(t) − u∞〉L2 = −|∇u(t) − ∇u∞|2L2 , the previous inequality
can be rewritten as

Ġ(t) + 2F (t) = 2 |ut(t)|2L2 + 〈utt(t) + ξ(t)−∆u(t), u(t)− u∞〉L2(6.9)

− 〈ξ(t)− Lut(t)− ∆u∞, u(t)− u∞〉L2 ,

where the function F is defined by (6.1). Let us fix some η ∈]0,m[. Since
limt→+∞ u(t) = u∞ strongly in L2(Ω), we obtain in view of inequality (6.8) that
there exists t1 ≥ 0 such that, for every t ∈ [t1,+∞[∩ I
(6.10) |〈utt(t) + ξ(t)−∆u(t), u(t)− u∞〉L2 | ≤ η |ut(t)|2L2 .

From the definition of ξ(t), we have for every t ∈ I
(6.11) ξ(t)− Lut(t) ∈ ∂[Φ′(0; .)](ut(t)) ⊂ ∂Φ(0).

From assertion (NV), there exists t2 ≥ t1 such that ut(t) ∈ N∂Φ(0)(∆u∞) for every
t ≥ t2. An immediate integration on [t,+∞[ shows that u(t)−u∞ ∈ −N∂Φ(0)(∆u∞)
for every t ≥ t2. In view of (6.11), this implies that, for every t ∈ [t2,+∞[∩ I,

(6.12) 〈ξ(t)− Lut(t)− ∆u∞, u(t)− u∞〉L2 ≥ 0.

By combining (6.9), (6.10) and (6.12), we find

(6.13) ∀t ∈ [t2,+∞[∩ I, Ġ(t) + 2F (t) ≤ (2 + η) |ut(t)|2L2 .

Let us now differentiate the function F ; we find for every t ∈ I
Ḟ (t) = 〈utt(t), ut(t)〉L2 − 〈∆u(t)−∆u∞, ut(t)〉L2

= 〈utt(t)−∆u(t) + ξ(t), ut(t)〉L2 + 〈∆u∞ − ξ(t) + Lut(t), ut(t)〉L2(6.14)

− 〈Lut(t), ut(t)〉L2 .

In view of (6.8), we have

(6.15) |〈utt(t)−∆u(t) + ξ(t), ut(t)〉L2 | = O
(
|ut(t)|3L2

)
when t→ +∞.
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From the definition of ξ(t), we have ut(t) ∈ N∂Φ(0)(ξ(t) − Lut(t)) for every t ∈ I.
Since ∆u∞ ∈ ∂Φ(0), we infer that

(6.16) 〈∆u∞ − ξ(t) + Lut(t), ut(t)〉L2 ≤ 0.

From (6.14), (6.15) and (6.16), we conclude that

Ḟ (t) ≤ −〈Lut(t), ut(t)〉L2 + O
(
|ut(t)|3L2

)
.

Since 〈Lut(t), ut(t)〉L2 ≥ m |ut(t)|2L2 and limt→+∞ |ut(t)|L2 = 0, there exists t3 ≥ t2
such that for every t ∈ [t3,+∞[∩ I,

(6.17) Ḟ (t) ≤ −(m− η) |ut(t)|2L2 .

Let us multiply (6.13) by Aη := (m− η)/(2 + η) and add to (6.17); we obtain

(6.18) Ḟ (t) +Aη Ġ(t) + 2Aη F (t) ≤ 0.

Our purpose now is to deduce from (6.18) a differential equation involving a sin-
gle function. This is made possible owing to the following relations between the
functions G and F

(6.19) ∀t ≥ 0, G(t) ≥ −F (t)/m and F (t) ≥ BG(t),

where B is a positive real that we are going to determine. We classically have, for
all θ > 0,

|〈ut(t), u(t)− u∞〉L2 | ≤ |ut(t)|
2
L2

2θ
+
θ

2
|u(t)− u∞|2L2 .

In view of assumption (6.7), we infer that

(6.20) −|ut(t)|
2
L2

2θ
+
−θ +m

2
|u(t)− u∞|2L2 ≤ G(t) ≤ |ut(t)|

2
L2

2θ
+
θ +M

2
|u(t)− u∞|2L2 .

Taking θ = m in the first inequality of (6.20), we obtain G(t) ≥ −|ut(t)|2L2/(2m) ≥
−F (t)/m, which is the first inequality of (6.19). On the other hand, since λ1 > 0
is the first eigenvalue of the operator −∆, we have |∇v|2L2 ≥ λ1 |v|2L2 for every
v ∈ H1

0 (Ω) and hence

(6.21) F (t) ≥ 1

2
|ut(t)|2L2 +

λ1

2
|u(t)− u∞|2L2 .

Setting τ(θ) := min{θ, λ1/(θ+M)}, we deduce from the second inequality of (6.20)
and (6.21) that

(6.22) F (t) ≥ τ(θ)G(t).

We let the reader check that the function τ : (0,+∞) → R achieves its maximum
at B := (

√
M2 + 4λ1 −M)/2 and that τ(B) = B. Taking θ = B in inequality

(6.22), we obtain the second inequality of (6.19). We deduce from (6.18) and the
second inequality of (6.19) that

(6.23) Ḟ (t) +Aη Ġ(t) + 2Aη BG(t) ≤ 0.

Let us multiply (6.18) by B and (6.23) by Aη; adding the two inequalities and
setting H(t) := F (t) +Aη G(t), this yields:

∀t ∈ [t3,+∞[∩ I, (Aη +B) Ḣ(t) + 2Aη BH(t) ≤ 0.

An elementary integration on [t3, t] gives:

(6.24) ∀t ∈ [t3,+∞[, H(t) ≤ H(t3) e
− 2Aη B

Aη+B (t−t3)
.
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From the first inequality of (6.19), we have H(t) ≥ F (t) − Aη/mF (t). Since
Aη ≤ m/2, we finally obtain H(t) ≥ 1

2 F (t) = 1
4 |ut(t)|2L2 + 1

4 |∇u(t) − ∇u∞|2L2 .

Setting C := 4H(t3) e
2Aη B

Aη+B t3 , we deduce in view of (6.24) that

∀t ∈ [t3,+∞[, |ut(t)|2L2 + |∇u(t)−∇u∞|2L2 ≤ C e−
2Aη B

Aη+B t.

Since

lim
η→0

2Aη B

Aη +B
=

mB
m
2 +B

=
m (
√
M2 + 4λ1 −M)

m+
√
M2 + 4λ1 −M

,

any positive exponent γ such that γ < m (
√
M2+4λ1−M)

m+
√
M2+4λ1−M satisfies the estimate of the

statement. �
Remark 6.3. Assume that ∂Φ(0) = {0}. We have already noticed at the beginning
of this section that assertion (NV) automatically holds in this case. On the other
hand, we have Φ′(0; .) ≡ 0 and hence condition (6.6) can be rewritten as

e
(
∂Φ(v), L v

)
= O(|v|2L2) when |v|L2 → 0.

Finally, since ∆u∞ ∈ ∂Φ(0) = {0}, we have ∆u∞ = 0 and hence the vector
u∞ ∈ H1

0 (Ω) satisfies u∞ = 0. Therefore, the conclusion of Theorem 6.2 becomes:
|ut(t)|2L2 + |∇u(t)|2L2 ≤ C e−γt for t large enough. This remark applies in particular

to the case where the map Φ is defined by Φ(v) = 1
2 〈Lv, v〉L2 . In this case, the

dynamical system (S) reduces to the linearly damped wave equation utt(t)−∆u(t)+
Lut(t) = 0.

Let us notice that the key condition (6.6) of Theorem 6.2 entails condition (6.2) of
Theorem 6.1. This remark gives rise to the following corollary.

Corollary 6.4. Under the assumptions of Theorem 6.2, one of the following cases
holds:
(i) There exists t0 ≥ 0 such that u(t) = u∞ for every t ≥ t0.
(ii) There exist t1 ≥ 0 and C, D, γ, δ > 0 such that for every t ≥ t1,
(6.25)

|ut(t)|2L2 + |∇u(t)−∇u∞|2L2 ≤ C e−γ t and

∫ +∞

t

|ut(s)|2L2 ds ≥ D e−δ t.

Any positive exponent γ (resp. δ) such that γ < m (
√
M2+4λ1−M)

m+
√
M2+4λ1−M (resp. δ > 2M)

satisfies the previous estimate.

Proof. The first inequality of (6.25) results immediately from Theorem 6.2. Since
∂[Φ′(0; .)](v) ⊂ ∂Φ(0) for every v ∈ L2(Ω), we have

(6.26) e(∂Φ(v), ∂Φ(0)) ≤ e
(
∂Φ(v), ∂[Φ′(0; .)](v)

)
.

For every w ∈ ∂Φ(v), we have d
(
w, ∂[Φ′(0; .)](v)

)
≤ |Lv|L2 + d

(
w, ∂[Φ′(0; .)](v) +

Lv
)

and taking the supremum when w ∈ ∂Φ(v), we infer that

(6.27) e
(
∂Φ(v), ∂[Φ′(0; .)](v)

)
≤ |Lv|L2 + e

(
∂Φ(v), ∂[Φ′(0; .)](v) + Lv

)
.

In view of condition (6.6), inequalities (6.26), (6.27) and the fact that |Lv|L2 ≤
M |v|L2 for every v ∈ L2(Ω), we conclude that

e(∂Φ(v), ∂Φ(0)) ≤M |v|L2 + O(|v|2L2).
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Hence condition (6.2) of Theorem 6.1 is satisfied with α := M + ε/2 for any
ε > 0. We deduce that, either the solution u to (S) converges in a finite time

or
∫ +∞
t
|ut(s)|2L2 ds ≥ D e−(2M+ε) t for some positive D and t large enough. �
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