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Abstract. We study the “finite extinction phenomenon” for solu-

tions of parabolic reaction-diffusion equations of the type

9% Nt b{) f(ut — 7,%)) = 0,

T (t,x) € (0,400) x Q,

with a delay term 7 > 0. Here ) is an open and bounded set in
RN, b>0, f is a continuous function, u(t,x) satisfies a homoge-
neous Neumann or Dirichlet boundary condition on (0, +OO) x 0N
and some functional initial condition ’U,(S,{E) = UO(S,LE) on
(—=7,0) X Q for a given function ug € C([—7,0] : LP(f2)),
for some p € [1,400]. The "reaction term” b(¢) f(u(t — 7,z))
can be understood as a delayed feedback control.
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1 Introduction

In the last years the “finite extinction phenomenon”
(there exists to > 0 such that u(t,z) = 0 V¢ > ¢,
and a.e. z€ Q) has been proved for solutions of suit-
able parabolic reaction-diffusion equations (usually in-
volving some non-Lipschitz nonlinear terms): see, e.g.,
the presentation made in Chapter 2 of Antontsev, Diaz
and Shmarev([1] and its references.

The main goal of this work is to show how the finite
extinction phenomenon may be the result of the mere
presence of a suitable time-delayed reaction term. More
precisely, given an open and bounded set Q in RY, we
consider the Neumann problem

9u — Autb(t) f(u(t —7,x)) =0 (0, +00) x Q,
(Pn)q 5r(t,x) =0 (0, 400) x 99,

u(s,x) = uo(s, x) (—7,0) x Q,
and the Dirichlet problem

9 Autb(t) f(u(t —7,x)) =0 (0,+00) x 2,
(Pp)q u(t,x)=0 (0, +00) x 99,

u(s,x) = up(s,x) (—7,0) x Q,

where we assume that ug € C([—7,0], LP(Q)) for some
p € [1,+00] and the following structural conditions

f is a continuous function, f : R — R, f(0) =0,

(1)
(2)

We recall that if b(¢t) = 0 the “finite extinction phenom-
enon” cannot hold because of such well-known properties
for linear parabolic equations as the unique continuation
property or the strong maximum principle. We also men-
tion here that, in the case of zero delay 7 = 0, extinction
in finite time is typical of equations containing a strong
absorption term. For instance, in the case of reaction-
diffusion equations of the type

be L. (0,400), b>0.

0 _
—u—Au+)\|u|m Yu=0

ot ®)

for some A\,m > 0 it is well-known (see e.g. Antontsev,
Diaz and Shmarev[l] and its references) that the finite
extinction phenomenon takes place if and only if
m € (0,1). (4)
We point out that a sistematic study about under which
non local terms G(t,u;) (with the usual notation in fuc-
tional equations wu(s,) := u(t + s,:) for s € [—7,0]) the
solutions of equations of the type

% — Au+ Gt u) + Au|™ u=0,

was made in Redheffer and Redlinger[9] but always under
condition (4). Our point of view is different since we are
interested in the pure memory effects, and no condition
of the type (4) will be required here.

Most of our results deal with the linear case f(s) = As
for some A > 0. We show that if b(t) becomes extinct after
a “small” time ¢, = 27 (typical of switched controls), b(t)
being inactive (i.e. zero) on [0, 7], then the solution u(t,z)
becomes extinct after the finite time ;.

We also studied there the way in which the solutions
behaves near the extinction time and proved that, at least



in some cases, extinction takes place globally in € in con-
trast with some well-known results in the literature con-
cerning extinction processes for reaction-diffusion equa-
tions as (3) under (4).

For instance, we prove that if we consider the linear
heat equation with memory

QU — Au+ Mb(t)u(t —7,x) =0  (0,+00) x €,
u(t,x) =0 (0, 400) x 09,
u(s,x) = uo(s,x) (—7,0) x Q,

with A > 0 and ug € C([—7,0] : LP(2)), then the solution
vanishes in finite time once we assume that b(¢) becomes
extinct after some finite time ¢, = 27, being also zero on
[0, 7], and satisfies

ty

1= )\/b(s)ds.

0

()

Moreover, if ug(s,x) = p(s)pn(x) a.e. x € Q and for
any s € [—7,0],u € C([—7,0]), where ¢, is n-th eigen-
function, n > 1, of the —A operator with homogeneous
Dirichlet boundary conditions, i.e.

on =0

mn Q,
on Of.
and if we replace (5) by the condition

2T

1= )\/b(s)e/\”sds,

T

(6)

then there exists a function W (t) with W(t) =0 Vt €
[27,400) such that the solution u of problem (Pp) sat-
isfies u(t,x) = W(t)pon(x) ae. x € Q and for any
t €10,27].

We finish this section by pointing out that problems
(Py) and (Pp) can be understood in the framework of
Control Theory (see Remark 8).

2 Existence and uniqueness of so-
lutions

Concerning existence and uniqueness we have

Theorem 1. Let ug € C([-7,0] : LP(Q)) for some
p € [1,400]. Assume (2) and that one of the following
conditions holds:

(7)

p = 400 and fis merely continuous,

or

®)

Then there exists a unique mild solution uw which belongs
to C([—7,00), LP(Q)) for both (Py) and (Pp).
Remark 1. The existence part of the above theorem
(for instance for the case of (Pp)) can be obtained as
in Ha[6] (see the abstract Theorem 2.4.1) by using the
well-known results that the operator A : D(A) — LP(Q)

p < 400 and fis globally Lipschitz continuous.

is m-accretive in LP(Q), where D(A) = {w € WyP(Q) :
Aw € LP(Q)} and D(A) = LP(Q) (see, e.g. Bénilan,
Crandall and Pazy[3]). The modifications for the case of
the Neumann problem are obviuos and we shall not enter
into the details here. We recall that, given the abstract

problem

du + Aus Gt u,u)
u(s) = uo(s)

t € (0,7),
(AP) { s€(—1,0),
where T' > 0, A : D(A) — P(X) is an m-accretive oper-
ator on the Banach space X and G : [0,T) x C([—7,0] :
X) x X — X (where us(s,") :=u(t+ s,) for s € [-7,0]),
a function w : [—7,00) : X is called an integral solution
of (AP) if u € C([-7,T] : X), u(s) = ug(s) for any
s € (—7,0) and it satisfies

[u(t) — ol < [lu(s) -]

+/ [G(h, up, u(h)) — w,u(h) — v];dh

for any [v,w] € A and s,t € [0,T], where [.,.]+ denotes
the semi-inner product on the space X. See Ha[6] for
details of the relation of the integral solution with the
notions of classical, strong and mild (also called as limit)
solutions of (AP).

Notice that under conditions (7) or (8) we can ensure that
the function G : [0, 4+00) x C([—7,0] : LP(Q2)) x LP(Q2) —
L?(Q) defined by

G(t,1, ) = =b(t) f(i(7,+))
for any (¢, ) € C([—7,0] : LP(2)) x LP(Q) and so

G(t,ug,u) = —b(t) f(u(7,+)) = =b(t) f(ult — 7,+))

are well defined. For an existence result in the class of
Holder continuous funcions C%(9), instead of the above
LP(Q) spaces, see Redheffer and Redlinger[9]. We also
mention that once we assume that A : D(A) — X is a
linear m-accretive operator on the Banach space X we
know that A generates a semigroup of contractions S(t) :

D(A) — X and the nonhomogeneous Cauchy problem

,(11_7; + Au > g(t)
u(s) = ug

te(0,7),

(NHCP) { seor),

can be solved by the variation of constants formula

t
u(t) = S(t)ug +/ S(t—s)g(s)ds. (9)
0

Remark 2. The above Theorem 1 remains true for
other boundary conditions leading to accretive operators.
It also can be obtained under more general conditions:
cuasilinear operators, other functional expressions of the
type G(t, us, u), ete., see Vrabie[10], and Casal, Diaz and
Vegas[4].

Remark 3. Since the function b(¢) which will be used
in the next section has the property that b(t) =0 for ¢t €
[0, 7], one has the following interesting fact: The solutions
of the problems (Py) and (Pp) do not depend on the



whole initial history, ug(s,z), s € [—7,0), but only on
uo(0,z). In particular, the problems

6—7: — Au+b(t) f(u(t —7,x)) =0  (0,400) x Q,
(PN) 4§ Sa(t,x)=0 (0, 4+00) x 09,
u(0,%x) = Up(x) Q,
%1; — Autb(t) f(u(t —7,%x)) =0  (0,+00) x Q,
(P5) R wu(t,x) = (0, +00) x 09,
u(0,x) = Up(x) Q,

are well posed under the condition Uy(z) € LP(2), for
some p € [1,400]. Indeed, it is enough to construct the
constant backwards extension, ug(s,x) = Up(z) for any
s € [-7,0], and then apply Theorem 1.

Remark 4. It is well known (see, e.g. Pao[8] Chapter
1, Theorem 8.1) that if f is nonincreasing the following
general comparison principle holds: given T" > 0, if u, u €
C([-7,T] : LP(Q2)) are sub- and supersolutions of (Pp),
i.e. such that

9w Au+b(t) f(u(t — 7,%)) + g(u(t, x)) > 0,(0,T) x Q,
u(t,x) > 0, (0,T) x 99,
u(s,x) > ug(s,x), (—=71,0) x Q,

(replacing > by < for the case of u) then u < u <@ on
[—7,T] x Q. The same result for the Neumann problem

when we replace the boundary inequality by %(t,x) >0
n (0,7) x 0Q.

3 On the finite extinction phe-
nomenon

The main result of this section shows that if b(t) becomes
extinct after a finite time ¢, > 0 then the same happens
for the solution of “small enough” bounded initial data.
Theorem 2. Assume the conditions of Theorem 1 as well
as the following additional conditions:

f(r) = Ar, for some A > 0, (10)

b(t) = 0 for almost all t € [0, 7] U [2T, 4+00), (11)
2T

/b(s)ds = % (12)

Then, for any uy € C([—7,0] : LP(Q)), for some p €
[1,4+00], the corresponding solution u of (Pp) or (Pn)
satisfies

u(t,x) =0 Vt>27, ae xefd

Before presenting the proof of Theorem 2 we must an-
alyze the situation for the simpler case of the ordinary
differential equation with memory (or ordinary delay-
differential equation)

{ U'(t) +b(t)f (Ut —7)) =0,
U(s) =Uy(s) for se(—,0].

We begin by considering the case of constant initial
data:

(13)

Lemma 1. Let f be a increasing function and b(t) such
that

b(t) =0 for a.a. t € [ty, +00) for some t, € (0,7]. (14)
Assume that
Up(s) =K forallse (—,0],

with
ty

K= f(K)/b(s)ds
0
Then, the unique solution U of (13) verifies that

Ut)=0 Vt>t,.

Proof of the Lemma 1. The existence and uniqueness of
a strong solution to (13) can be found in classical books
as, for instance, Hale[7]. Integrating on (0,t) for ¢ € (0, 7]
we get

/U'(t)dt =U(ty) — K =—f(K) /b(s)ds.
0 0

But from (15) we get that U(t,) = 0 and as U’(¢) = 0 for
a.e. t € [tp, +00) we obtain the result.g
Remark 5. If we assume, for instance,

Ffu) = Nu|™ " u,  for some m >0,

then we see that (15) leads to different type of conditions
according the values of m. Thus, (15) can be equivalently

written as
tp

K—m=1) = /\/b(s)ds,

[}

ifm>1,

[}

if m € (0,1) and (which is remarkable) it applies for any
K if we asume that

1=X [ b(s)ds, (16)
0
ifm=1.
Remark 6. If Uy(s) is not constant but satisfies the
condition

T 0
UO(O):—/O b(s)Uo(s—T)ds:/ b(s + 7)Us(s)ds

—T

then the conclusion of Theorem 2 holds in the linear case
f(uw) = du. Notice that the class of such initial data is a
linear subspace of C([—,0]) which contains the constant
functions.

Proof of Theorem 2. From the equation we see that



— Au = =Ab(t)u(t — 7).

So, for t € [0, 7], since b(t) = 0, we can use the semigroup
notation and write that u(t) = S(t)up in X = LP(Q),
where S(t) is the semigroup generated by the operator
—Au with the corresponding boundary conditions and
with ug = u(.,0). On the other hand , if ¢ € [1.27], we
can adapt the main idea of the Lemma 1. Indeed, by
using (9) we obtain

where we have used a commutation formula which holds
because S(t) is linear. Then, if ¢ = 27, from assumption
(12) we get that
u(27) = u(r) —
Finally, since b(t) = 0 for ¢ € [27, +00) we conclude that
if t € [27,400) then u(t) = S(t)0 = 0.m
Remark 7. The above proof can be applied to many
other linear semigroups. In particular it holds for the sim-
pler case of the (13) giving a different answer from that of
Lemma 1. This proof also shows the way to a great vari-
ety of possible generalizations to other retarded equations
associated to different linear problems as, e.g. the ones
associated to higher order elliptic operators, the Stokes
problem, etc. (see, e.g. Vrabie[10] and Bénilan, Crandall
and Pazy[3]). Some of these extensions are in the work
by Casal, Diaz and Vegas[4] in the framework of a more
abstract setting, which can be used in a broader class of
models and applications.
Remark 8. If we consider the zero controllability prob-
lem

S(T)up =0 in X.

%—Au:v, (0, +00) x Q,
u(t,x) =0, (0, +00) x 09,
u(0,x) = Up(x), Q,

where we want to find a control v such that u(27,2) =0
for a.e. x€ (2, we can use Theorem 2 to construct
v(t,x) = =b(t)u(t — 7,%),

and consider the constant backwards extension of Uy men-
tioned in Remark 3. Since v becomes extinct after a
finite time ¢, > 0 (a typical characteristic of switched
controls), the problems (Py) and (Pp) correspond to
switch-type delayed feedback control problems leading to
global zero controlabillity at instant ¢; for the initial state
up(s,x).

Our next result investigates the way in which the solu-
tion of problem (Pp) reaches identically zero state. We re-
call that in the case of semilinear equations with a strong
absorption term, (3) under (4), it is known that a “dead
core” appears giving rise to a free (or moving) bound-
ary defined as the boundary of the support of u(t,.) (see

Chapter 3 of Antontsev, Diaz and Shmarev[1] and its ref-
erences). In fact, under symmetry assumptions on the ini-
tial data such a dead core ends being the complete domain
Q) except a single point (see Friedman and Herrero[5]).
Our next result shows that, for many cases for which the
finite-time extinction arises just by addition of a delay
term, the decay to zero is spatially uniform on the whole
domain 2.

Theorem 3. Let ug € C([—7,0] : L*>(Q)) be such that

= u(8)n(x), a.e. x € Q (17)

and for any s € [—7,0], u € C([—7,0]), where @, is n-th
etgenfunction, n > 1, of the —A operator with homoge-
neous Dirichlet boundary conditions, i.e.

_A<Pn = An(pn
Pn = 0

uo(s,x)

m  Q,
on Of.

Let f(r) = Ar for some XA >0 and assume b such that

b(t) =0 for a.e. ¢t € [0,7] U[27,+00), (18)
with
2T
1= )\/b(s)eA"Sds, (19)

T

Then, there exists a function W (t) with W(t) =0 V¥t e
[27,4+00) such that the solution u of problem (Pp) satis-
fies that

u(t,x) =

Proof. Consider the function
u(t, x) = on (x) W(2).

It is a routine matter to check that

W(t)pn(x) a.e. x € Q and for any s € [0, 27].

— AutAb(t)u(t — 7,%)) =

Y (W' () + N W (t) + M)W (t — 7))

n (x
So, by takmg W (t) as solution of the ODE with delay

{ (1) + AW (2) + AW
W(s) = pu(s),  for

we find that u is a solution of (Pp) which must coincide
with « by uniqueness of solutions.. It remains to prove
that W(t) =0 Vt € [27,+00). But this is easy: as in the
Proof of Theorem 2, for ¢ € [0, 7], since b(t) = 0, we have
that u(t) = p(0). On the other hand, if ¢ € [, 27], we can
adapt again the main idea of the Lemma 1. Indeed, we
must have

{ W!(t) + AW () = —Ab(1) (0),
W(s) = u(0),

(t_T):Ov
s € (—1,0),

and so
W (t) = p(0)e (1 — )\/b(s)e)‘"sds).

Using assumption (19) and that b(t) = 0 for ¢ € [27, +00)
we conclude that W (t) = 0 for any ¢ € [27,+00) .m
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