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Abstract. We study the “finite extinction phenomenon” for solu-
tions of parabolic reaction-diffusion equations of the type

∂u

∂t
−∆u+ b(t)f(u(t− τ,x)) = 0, (t,x) ∈ (0,+∞)×Ω,

with a delay term τ > 0. Here Ω is an open and bounded set in

RN , b ≥ 0, f is a continuous function, u(t,x) satisfies a homoge-
neous Neumann or Dirichlet boundary condition on (0,+∞)×∂Ω
and some functional initial condition u(s,x) = u0(s,x) on

(−τ, 0) × Ω for a given function u0 ∈ C([−τ, 0] : Lp(Ω)),
for some p ∈ [1,+∞] . The ”reaction term” b(t)f(u(t − τ,x))
can be understood as a delayed feedback control.

Keywords. Finite extinction time, delayed feedback controls, lin-
ear heat equation, quenching in time-delay equations.
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1 Introduction

In the last years the “finite extinction phenomenon”
(there exists te ≥ 0 such that u(t,x) ≡ 0 ∀t ≥ te,
and a.e. x∈ Ω) has been proved for solutions of suit-
able parabolic reaction-diffusion equations (usually in-
volving some non-Lipschitz nonlinear terms): see, e.g.,
the presentation made in Chapter 2 of Antontsev, Díaz
and Shmarev[1] and its references.
The main goal of this work is to show how the finite

extinction phenomenon may be the result of the mere
presence of a suitable time-delayed reaction term. More
precisely, given an open and bounded set Ω in RN , we
consider the Neumann problem

(PN )

⎧⎨⎩
∂u
∂t −∆u+b(t)f(u(t− τ,x)) = 0 (0,+∞)×Ω,
∂u
∂n (t,x) = 0 (0,+∞)× ∂Ω,
u(s,x) = u0(s,x) (−τ, 0)×Ω,

and the Dirichlet problem

(PD)

⎧⎨⎩
∂u
∂t −∆u+b(t)f(u(t− τ,x)) = 0 (0,+∞)×Ω,
u(t,x) = 0 (0,+∞)× ∂Ω,
u(s,x) = u0(s,x) (−τ, 0)×Ω,

where we assume that u0 ∈ C([−τ, 0], Lp(Ω)) for some
p ∈ [1,+∞] and the following structural conditions

f is a continuous function, f : R→ R, f(0) = 0, (1)

b ∈ L1loc(0,+∞), b ≥ 0. (2)

We recall that if b(t) ≡ 0 the “finite extinction phenom-
enon” cannot hold because of such well-known properties
for linear parabolic equations as the unique continuation
property or the strong maximum principle. We also men-
tion here that, in the case of zero delay τ = 0, extinction
in finite time is typical of equations containing a strong
absorption term. For instance, in the case of reaction-
diffusion equations of the type

∂u

∂t
−∆u+ λ |u|m−1 u = 0 (3)

for some λ,m > 0 it is well-known (see e.g. Antontsev,
Díaz and Shmarev[1] and its references) that the finite
extinction phenomenon takes place if and only if

m ∈ (0, 1) . (4)

We point out that a sistematic study about under which
non local terms G(t, ut) (with the usual notation in fuc-
tional equations ut(s,·) := u(t + s,·) for s ∈ [−τ, 0]) the
solutions of equations of the type

∂u

∂t
−∆u+G(t, ut) + λ |u|m−1 u = 0,

was made in Redheffer and Redlinger[9] but always under
condition (4). Our point of view is different since we are
interested in the pure memory effects, and no condition
of the type (4) will be required here.
Most of our results deal with the linear case f(s) = λs

for some λ > 0. We show that if b(t) becomes extinct after
a “small” time tb = 2τ (typical of switched controls), b(t)
being inactive (i.e. zero) on [0, τ ], then the solution u(t,x)
becomes extinct after the finite time tb.
We also studied there the way in which the solutions

behaves near the extinction time and proved that, at least
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in some cases, extinction takes place globally in Ω in con-
trast with some well-known results in the literature con-
cerning extinction processes for reaction-diffusion equa-
tions as (3) under (4).
For instance, we prove that if we consider the linear

heat equation with memory⎧⎨⎩
∂u
∂t −∆u+ λb(t)u(t− τ,x) = 0 (0,+∞)×Ω,
u(t,x) = 0 (0,+∞)× ∂Ω,
u(s,x) = u0(s,x) (−τ, 0)×Ω,

with λ > 0 and u0 ∈ C([−τ, 0] : Lp(Ω)), then the solution
vanishes in finite time once we assume that b(t) becomes
extinct after some finite time tb = 2τ, being also zero on
[0, τ ], and satisfies

1 = λ

tbZ
0

b(s)ds. (5)

Moreover, if u0(s,x) = μ(s)ϕn(x) a.e. x ∈ Ω and for
any s ∈ [−τ, 0], μ ∈ C([−τ, 0]), where ϕn is n-th eigen-
function, n ≥ 1, of the −∆ operator with homogeneous
Dirichlet boundary conditions, i.e.½

−∆ϕn = λnϕn in Ω,
ϕn = 0 on ∂Ω.

.

and if we replace (5) by the condition

1 = λ

2τZ
τ

b(s)eλnsds, (6)

then there exists a function W (t) with W (t) ≡ 0 ∀t ∈
[2τ,+∞) such that the solution u of problem (PD) sat-
isfies u(t,x) = W (t)ϕn(x) a.e. x ∈ Ω and for any
t ∈ [0, 2τ ].
We finish this section by pointing out that problems

(PN ) and (PD) can be understood in the framework of
Control Theory (see Remark 8).

2 Existence and uniqueness of so-
lutions

Concerning existence and uniqueness we have
Theorem 1. Let u0 ∈ C([−τ, 0] : Lp(Ω)) for some
p ∈ [1,+∞]. Assume (2) and that one of the following
conditions holds:

p = +∞ and f is merely continuous, (7)

or

p < +∞ and f is globally Lipschitz continuous. (8)

Then there exists a unique mild solution u which belongs
to C([−τ,∞), Lp(Ω)) for both (PN ) and (PD).
Remark 1. The existence part of the above theorem

(for instance for the case of (PD)) can be obtained as
in Ha[6] (see the abstract Theorem 2.4.1) by using the
well-known results that the operator A : D(A) → Lp(Ω)

is m-accretive in Lp(Ω), where D(A) = {w ∈ W 1,p
0 (Ω) :

∆w ∈ Lp(Ω)} and D(A) = Lp(Ω) (see, e.g. Bénilan,
Crandall and Pazy[3]). The modifications for the case of
the Neumann problem are obviuos and we shall not enter
into the details here. We recall that, given the abstract
problem

(AP )

½
du
dt +Au 3 G(t, ut, u) t ∈ (0, T ),
u(s) = u0(s) s ∈ (−τ, 0) ,

where T > 0, A : D(A) → P(X) is an m-accretive oper-
ator on the Banach space X and G : [0, T ) × C([−τ, 0] :
X)×X → X (where ut(s,·) := u(t+ s,·) for s ∈ [−τ, 0]),
a function u : [−τ,∞) : X is called an integral solution
of (AP ) if u ∈ C([−τ, T ] : X), u(s) = u0(s) for any
s ∈ (−τ, 0) and it satisfies

ku(t)− vk ≤ ku(s)− vk

+

Z t

s

[G(h, uh, u(h))− w, u(h)− v]+dh

for any [v, w] ∈ A and s, t ∈ [0, T ], where [., .]+ denotes
the semi-inner product on the space X. See Ha[6] for
details of the relation of the integral solution with the
notions of classical, strong and mild (also called as limit)
solutions of (AP ).
Notice that under conditions (7) or (8) we can ensure that
the function G : [0,+∞)×C([−τ, 0] : Lp(Ω))× Lp(Ω)→
Lp(Ω) defined by

G(t, ψ, ϕ) = −b(t)f(ψ(τ, ·))

for any (ψ,ϕ) ∈ C([−τ, 0] : Lp(Ω))× Lp(Ω) and so

G(t, ut, u) = −b(t)f(ut(τ, ·)) = −b(t)f(u(t− τ, ·))

are well defined. For an existence result in the class of
Hölder continuous funcions Cα(Ω), instead of the above
Lp(Ω) spaces, see Redheffer and Redlinger[9]. We also
mention that once we assume that A : D(A) → X is a
linear m-accretive operator on the Banach space X we
know that A generates a semigroup of contractions S(t) :
D(A)→ X and the nonhomogeneous Cauchy problem

(NHCP )

½
du
dt +Au 3 g(t) t ∈ (0, T ),
u(s) = u0 s ∈ (−τ, 0) ,

can be solved by the variation of constants formula

u(t) = S(t)u0 +

Z t

0

S(t− s)g(s)ds. (9)

Remark 2. The above Theorem 1 remains true for
other boundary conditions leading to accretive operators.
It also can be obtained under more general conditions:
cuasilinear operators, other functional expressions of the
type G(t, ut, u), etc., see Vrabie[10], and Casal, Diaz and
Vegas[4].
Remark 3. Since the function b(t) which will be used

in the next section has the property that b(t) ≡ 0 for t ∈
[0, τ ], one has the following interesting fact: The solutions
of the problems (PN ) and (PD) do not depend on the



whole initial history, u0(s,x), s ∈ [−τ, 0) , but only on
u0(0,x). In particular, the problems

(P ∗N )

⎧⎨⎩
∂u
∂t −∆u+b(t)f(u(t− τ,x)) = 0 (0,+∞)×Ω,
∂u
∂n (t,x) = 0 (0,+∞)× ∂Ω,
u(0,x) = U0(x) Ω,

(P ∗D)

⎧⎨⎩
∂u
∂t −∆u+b(t)f(u(t− τ,x)) = 0 (0,+∞)×Ω,
u(t,x) = 0 (0,+∞)× ∂Ω,
u(0,x) = U0(x) Ω,

are well posed under the condition U0(x) ∈ Lp(Ω), for
some p ∈ [1,+∞]. Indeed, it is enough to construct the
constant backwards extension, u0(s,x) = U0(x) for any
s ∈ [−τ, 0], and then apply Theorem 1.
Remark 4. It is well known (see, e.g. Pao[8] Chapter

1, Theorem 8.1) that if f is nonincreasing the following
general comparison principle holds: given T > 0, if u, u ∈
C([−τ, T ] : Lp(Ω)) are sub- and supersolutions of (PD),
i.e. such that

∂u
∂t −∆u+b(t)f(u(t− τ,x)) + g(u(t,x)) ≥ 0, (0, T )×Ω,
u(t,x) ≥ 0, (0, T )× ∂Ω,
u(s,x) ≥ u0(s,x), (−τ, 0)×Ω,

(replacing ≥ by ≤ for the case of u) then u ≤ u ≤ u on
[−τ, T ] × Ω. The same result for the Neumann problem
when we replace the boundary inequality by ∂u

∂n (t,x) ≥ 0
on (0, T )× ∂Ω.

3 On the finite extinction phe-
nomenon

The main result of this section shows that if b(t) becomes
extinct after a finite time tb > 0 then the same happens
for the solution of “small enough” bounded initial data.
Theorem 2. Assume the conditions of Theorem 1 as well
as the following additional conditions:

f(r) = λr, for some λ > 0, (10)

b(t) ≡ 0 for almost all t ∈ [0, τ ] ∪ [2τ,+∞), (11)

2τZ
τ

b(s)ds =
1

λ
. (12)

Then, for any u0 ∈ C([−τ, 0] : Lp(Ω)), for some p ∈
[1,+∞] , the corresponding solution u of (PD) or (PN )
satisfies

u(t,x) ≡ 0 ∀t ≥ 2τ, a.e. x ∈ Ω.
Before presenting the proof of Theorem 2 we must an-

alyze the situation for the simpler case of the ordinary
differential equation with memory (or ordinary delay-
differential equation)½

U 0(t) + b(t)f (U(t− τ)) = 0,
U(s) = U0(s) for s ∈ (−τ, 0]. (13)

We begin by considering the case of constant initial
data:

Lemma 1. Let f be a increasing function and b(t) such
that

b(t) ≡ 0 for a.a. t ∈ [tb,+∞) for some tb ∈ (0, τ ]. (14)

Assume that

U0(s) = K for all s ∈ (−τ, 0],

with

K = f (K)

tbZ
0

b(s)ds (15)

Then, the unique solution U of (13) verifies that

U(t) ≡ 0 ∀t ≥ tb.

Proof of the Lemma 1. The existence and uniqueness of
a strong solution to (13) can be found in classical books
as, for instance, Hale[7]. Integrating on (0, t) for t ∈ (0, τ ]
we get

tZ
0

U 0(t)dt = U(t0)−K = −f (K)
tZ
0

b(s)ds.

But from (15) we get that U(tb) = 0 and as U 0(t) = 0 for
a.e. t ∈ [tb,+∞) we obtain the result.¥
Remark 5. If we assume, for instance,

f(u) = λ |u|m−1 u, for some m > 0,

then we see that (15) leads to different type of conditions
according the values of m. Thus, (15) can be equivalently
written as

K−(m−1) = λ

tbZ
0

b(s)ds,

if m > 1,

K1−m = λ

tbZ
0

b(s)ds,

if m ∈ (0, 1) and (which is remarkable) it applies for any
K if we asume that

1 = λ

tbZ
0

b(s)ds, (16)

if m = 1.
Remark 6. If U0(s) is not constant but satisfies the
condition

U0(0) = −
Z τ

0

b(s)U0(s− τ)ds =

Z 0

−τ
b(s+ τ)U0(s)ds

then the conclusion of Theorem 2 holds in the linear case
f(u) = λu. Notice that the class of such initial data is a
linear subspace of C([−τ, 0]) which contains the constant
functions.
Proof of Theorem 2. From the equation we see that



ut −∆u = −λb(t)u(t− τ).

So, for t ∈ [0, τ ], since b(t) = 0, we can use the semigroup
notation and write that u(t) = S(t)u0 in X = Lp(Ω),
where S(t) is the semigroup generated by the operator
−∆u with the corresponding boundary conditions and
with u0 = u(., 0). On the other hand , if t ∈ [τ.2τ ], we
can adapt the main idea of the Lemma 1. Indeed, by
using (9) we obtain

u(t) = u(τ)− λ

Z t

τ

S(t− s)b(s)u(s− τ)ds =

= u(τ)− λ

Z t

τ

S(t− s)b(s)S(s− τ)u0ds =

= u(τ)− λ

µZ t

τ

b(s)

¶
S(t− τ)u0,

where we have used a commutation formula which holds
because S(t) is linear. Then, if t = 2τ, from assumption
(12) we get that

u(2τ) = u(τ)− S(τ)u0 = 0 in X.

Finally, since b(t) = 0 for t ∈ [2τ,+∞) we conclude that
if t ∈ [2τ,+∞) then u(t) = S(t)0 = 0.¥
Remark 7. The above proof can be applied to many
other linear semigroups. In particular it holds for the sim-
pler case of the (13) giving a different answer from that of
Lemma 1. This proof also shows the way to a great vari-
ety of possible generalizations to other retarded equations
associated to different linear problems as, e.g. the ones
associated to higher order elliptic operators, the Stokes
problem, etc. (see, e.g. Vrabie[10] and Bénilan, Crandall
and Pazy[3]). Some of these extensions are in the work
by Casal, Díaz and Vegas[4] in the framework of a more
abstract setting, which can be used in a broader class of
models and applications.
Remark 8. If we consider the zero controllability prob-
lem ⎧⎨⎩

∂u
∂t −∆u = v, (0,+∞)×Ω,
u(t,x) = 0, (0,+∞)× ∂Ω,
u(0,x) = U0(x), Ω,

where we want to find a control v such that u(2τ,x) = 0
for a.e. x∈ Ω, we can use Theorem 2 to construct

v(t,x) = −b(t)u(t− τ,x),

and consider the constant backwards extension of U0 men-
tioned in Remark 3. Since v becomes extinct after a
finite time tb > 0 (a typical characteristic of switched
controls), the problems (PN ) and (PD) correspond to
switch-type delayed feedback control problems leading to
global zero controlabillity at instant tb for the initial state
u0(s,x).
Our next result investigates the way in which the solu-

tion of problem (PD) reaches identically zero state. We re-
call that in the case of semilinear equations with a strong
absorption term, (3) under (4), it is known that a “dead
core” appears giving rise to a free (or moving) bound-
ary defined as the boundary of the support of u(t, .) (see

Chapter 3 of Antontsev, Díaz and Shmarev[1] and its ref-
erences). In fact, under symmetry assumptions on the ini-
tial data such a dead core ends being the complete domain
Ω except a single point (see Friedman and Herrero[5]).
Our next result shows that, for many cases for which the
finite-time extinction arises just by addition of a delay
term, the decay to zero is spatially uniform on the whole
domain Ω.
Theorem 3. Let u0 ∈ C([−τ, 0] : L∞(Ω)) be such that

u0(s,x) = μ(s)ϕn(x), a.e. x ∈ Ω (17)

and for any s ∈ [−τ, 0], μ ∈ C([−τ, 0]), where ϕn is n-th
eigenfunction, n ≥ 1, of the −∆ operator with homoge-
neous Dirichlet boundary conditions, i.e.½

−∆ϕn = λnϕn in Ω,
ϕn = 0 on ∂Ω.

.

Let f(r) = λr for some λ > 0 and assume b such that

b(t) ≡ 0 for a.e. t ∈ [0, τ ] ∪ [2τ,+∞), (18)

with

1 = λ

2τZ
τ

b(s)eλnsds, (19)

Then, there exists a function W (t) with W (t) ≡ 0 ∀t ∈
[2τ,+∞) such that the solution u of problem (PD) satis-
fies that

u(t,x) =W (t)ϕn(x) a.e. x ∈ Ω and for any s ∈ [0, 2τ ].

Proof. Consider the function

u(t,x) = ϕn (x)W (t).

It is a routine matter to check that

ut −∆u+λb(t)u(t− τ,x)) =

ϕn (x) (W
0(t) + λnW (t) + λb(t)W (t− τ))

So, by taking W (t) as solution of the ODE with delay½
W 0(t) + λnW (t) + λb(t)W (t− τ) = 0,
W (s) = μ(s), for s ∈ (−τ, 0) , .

we find that u is a solution of (PD) which must coincide
with u by uniqueness of solutions.. It remains to prove
thatW (t) ≡ 0 ∀t ∈ [2τ,+∞). But this is easy: as in the
Proof of Theorem 2, for t ∈ [0, τ ], since b(t) = 0, we have
that u(t) = μ(0). On the other hand, if t ∈ [τ, 2τ ], we can
adapt again the main idea of the Lemma 1. Indeed, we
must have½

W 0(t) + λnW (t) = −λb(t)μ(0),
W (s) = μ(0),

.

and so

W (t) = μ(0)e−λnt(1− λ

tZ
τ

b(s)eλnsds).

Using assumption (19) and that b(t) = 0 for t ∈ [2τ,+∞)
we conclude that W (t) = 0 for any t ∈ [2τ,+∞) .¥
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