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ABSTRACT. Blow-up phenomena are analyzed for both the delay-differential equation

(DDE) u′(t) = B′(t)u(t− τ),

and the associated parabolic PDE

(PDDE) ∂tu = ∆u+B′(t)u(t− τ, x),

where B : [0, τ ] → R is a positive L1 function which behaves like 1/ |t− t∗|α , for some

α ∈ (0, 1) and t∗ ∈ (0, τ). Here B′ represents its distributional derivative. For initial

functions satisfying u(t∗ − τ) > 0, blow up takes place as t↗ t∗ and the behavior of the

solution near t∗ is given by u(t) ' B(t)u(t− τ), and a similar result holds for the PDDE.

The extension to some nonlinear equations is also studied: we use the Alekseev’s
formula (case of nonlinear (DDE)) and comparison arguments (case of nonlinear
(PDDE)). The existence of solutions in some generalized sense, beyond t = t∗is also

addressed. This results is connected with a similar question raised by A. Friedman and

J.B. McLeod in 1985 for the case of semilinear parabolic equations.

AMS (MOS) Subject Classification. 34K05, 34K12, 34K40, 35B05, 35B30, 35B40,
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1. Introduction

Blow-up or explosion phenomena is a general term that refers to the
fact that some solutions of an evolution equation in a Banach space tend to
infinity in norm as t approaches some finite explosion time t∗ which depends
on the solution. This behavior has been extensively studied in the last few
decades. In the ODE case (when the Banach space is finite-dimensional) it
is more commonly referred to with expressions like non existence of global
solutions, since the theory of continuation of solutions shows that, under very
general hypotheses, blow-up is the only possibility for a maximal solution to
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be defined only on a finite time interval. In the PDE framework, however,
more diversity of results is found: for instance, the solution might explode
in some norm but not on others (shock waves), or might explode at some
points of the spatial domain but not on others, and so on. An extensive
bibliography is available. Let us just mention [1] and [14], and the references
indicated for semilinear equations at the end of this section.

The relation of blow-up and time delay has not been studied in detail,
and the purpose of this paper is to give a class of delay equations (both
ODE and PDE) in which this phenomenon appears. The authors (see [4])
have done a similar analysis for the “opposite” situation, namely, finite-time
extinction, in which some (nonzero) solutions vanish identically after some
finite “extinction time”. Some of the techniques used are similar in both
cases, but there are important differences. The first of these comes from the
very nature of blow-up and how “infinity” is involved, which requires ana-
lyzing some technical aspects of the regularity properties of the solution and
which is not necessary in finite-time extinction processes, except for the fact
that non-Lipschitz functions are usually involved. The second difference is
that the structure of the equation enables us to apply delay-PDE comparison
techniques which are not usually available in the extinction phenomenon.

We first analyze the delay-differential equation

(1.1) (DDE)
{
u′(t) = B′(t)u(t− τ), 0 < t,
u(θ) = ξ(θ) given, −τ ≤ θ ≤ 0,

and then some delay-PDEs of the type

(1.2) (PN )


∂u
∂t −∆u = B′(t)u(t− τ,x), (t,x) ∈ (0,+∞)× Ω,
∂u
∂n(t,x) = 0, (t,x) ∈ (0,+∞)× ∂Ω,

u(θ,x) = ξ(θ,x), (θ,x) ∈ (−τ, 0)× Ω,

where B : [0, τ ]→ R is a positive L1 function which behaves like 1/ |t− t∗|α ,
for some α ∈ (0, 1) and t∗ ∈ (0, τ), and B′ represents its distributional
derivative. In (DDE), initial functions with u(t∗ − τ) > 0 blow up like
B(t)u(t − τ)as t ↗ t∗, and a similar result holds for the PDDE due to the
applicability of comparison arguments. Other boundary conditions can be
studied in the same way, but have been omitted for simplicity.

The extension to some nonlinear equations is also studied: we use the
Alekseev’s formula for

(1.3) (NLDDE)

{
u′(t) = f(t, u(t)) +B′(t)g(t, u(t− τ)), 0 < t

u(θ) = ξ(θ), τ ≤ θ ≤ 0,



BLOW-UP IN SOME DIFFERENTIAL EQUATIONS WITH TIME-DELAY 3

where f is C2 and g is C1 (see subsection 2.7) and some comparison argu-
ments, for the case of

(NLPN )


∂u
∂t −∆u = f(t, u(t, x), u(t− τ ,x)), (t, x) ∈ (0,+∞)× Ω,
∂u
∂n(t, x) = 0, (t, x) ∈ (0,+∞)× ∂Ω,

u(θ, x) = ξ(θ, x), (θ, x) ∈ (−τ, 0)× Ω,

(see subsection 3.2).

The possibility of extending these blow-up solutions beyond the explo-
sion time t∗, that is, the question of existence of solutions in some generalized
sense in the whole interval [0, T ], when T > t∗, is much more delicate.

It seems that this type of questions was raised by first time in Fried-
man and McLeod [8] when analyzing blow-up properties of solutions of the
semilinear equation

(1.4) (SP )


∂u
∂t −∆u = |u|p−1 u, in (0,+∞)× Ω,

u = 0, on (0,+∞)× ∂Ω,

u(0,x) = u0(x), on Ω.

They consider the case in which p > 1 and u0 ∈ L∞(Ω) such that

limt↑Tmax ‖u(t, ·)‖L∞ = +∞

for some Tmax < +∞. The open question raised in [8] is to know if ‖u(t, ·)‖Lq
remains bounded as t ↑ Tmax for q in the ”subcritical case”, i.e. for q such
that 1 ≤ q ≤ N(p−1)

2 (it is known that the answer is negative if q > N(p−1)
2 :

[8], [3] and its references). For a very complete survey on the blow-up
phenomenon results for the semilinear problem (SP ) until 1995 we send the
reader to the monograph [16]. Many other more recent results are available
today in the literature (see, e.g. the papers [18], [5] and their references).
We also mention that many sufficient conditions on Ω, u0, p and N implying
that the explosion region {x ∈ Ω : u(x, t) ↑ +∞ when t ↑ Tmax} is confined
to a proper subset of Ω are well-known for the semilinear problem (SP ) (see
the above indicated references and specially the extension to quasilinear
equations made in [16]).

We define generalized solution by means of the following integral iden-
tity in a suitable space of functions on Ω
(1.5)

u(t) = eAtξ(0) +B(t)ξ(t− τ) +
∫ t

0
eA(t−s)B(s)

[
−Aξ(s− τ) + ξ′(s− τ)

]
ds,

where A is the abstract operator associated to −∆ with Neumann boundary
conditions and eAt is the associated semigroup, and give sufficient conditions
for the integral to exist beyond t = t∗(for instance on [0, τ ]).
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2. Setting of the problem

2.1. Preliminary analysis. Let t∗ > 0, let b : [0, t∗)→ R be a continuous
function such that b(t) ≥ 0 on [0, t∗) and assume that b “blows up” at t∗,
that is, b(t)→∞ as t↗ t∗. Consider the delay differential equation (DDE)

(2.1)

{
u′(t) = b(t)u(t− τ), for 0 ≤ t < t∗,

u(θ) = ξ(θ), for − τ ≤ θ ≤ 0,

where τ > t∗ is a given delay and ξ represents the “history” or “initial
function”, which is usually assumed to be continuous on [−τ, 0], although
other function spaces can also also be considered. For a general study of
this type of equations see [11].

If ξ(t) ≡ ξ ∈ R is a nonzero constant, then direct integration of both
sides of equation (2.1) gives

(2.2) u(t) = u(t, ξ) = u(0) +
∫ t

0
b(s)ξds = ξ(1 +B(t)), 0 ≤ t < t∗,

where we have denoted B(t) =
∫ t

0 b(s)ds. If b is integrable on (0, t∗) then
B(t∗) = limt→t∗ B(t) exists. Otherwise, u blows up at t∗ but the singularity
of the solution is weaker than that of b, a fact that reminds the “smoothing
effect” usually found on delay equations.

If the initial condition ξ is not constant and if ξ(t∗ − τ) > 0, then
ξ(t) ≥ ξ(t∗ − τ)/2 on some interval [t∗ − τ − δ, t∗ − τ ] (where 0 < δ < t∗)
and we may write for t ∈ [0, t∗) :

u(t) = u(t, ξ) = u(t∗ − δ) +
∫ t

t∗−δ
b(s)ξ(s− τ)ds ≥(2.3)

≥ u(t∗ − δ) +
ξ(t∗ − τ)

2
[B(t)−B(t∗ − δ)]

which implies that, u(t, ξ) blows up at t∗ like B(t) as before. Obviously, if
ξ(t∗ − τ) = 0, the product b(t)ξ(t − τ) may be integrable or not on (0, t∗),
depending on the (fractional) order of t∗ − τ as a zero of ξ. If ξ is C1,
for instance, the order will be an integer and the product will certainly be
integrable.

If the function b is also defined and is continuous for t > t∗, it is natural
to ask whether the solution itself can be continued beyond t∗ in some sense.
In other words, can the formal integral expression

u(t, ξ) = ξ(0) +
∫ t

0
b(s)ξ(s− τ)ds, 0 ≤ t ≤ τ,

be considered a as an “integralsolution” of some kind, defined on the whole
interval [0, τ ]? This is the real difficulty, since continuation beyond τ is
always possible as long as b remains continuous.
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Let us start again with constant initial functions ξ(t) ≡ ξ. If B ∈
Lp(0, τ) for some p ∈ [1,∞], the function

u(t, ξ) = ξ(1 +B(t)),

is a well-defined Lp function. For a general continuous initial ξ, the function

u(t, ξ) = ξ(0) +
∫ t

0
b(s)ξ(s− τ)ds, 0 ≤ t ≤ τ,

is also well defined and belongs to the same Lp class as B does, it is also C1

except a t = t∗ and satisfies the differential equation for all t ∈ [0, τ ] except
for t∗.

Of course, one could define an integral solution to be just that, but it is
clear that further analysis is necessary in order to justify such a procedure.
This is the purpose of the next section, which deals with primitives B(t) only
assumed to be in Lp(0, τ), thus allowing for infinitely many singularities and
other more complicated situations.

2.2. The basic equation. Let B ∈ Lp(0, τ) such that B′ /∈ L1
loc(0, τ),

where B′ is to be understood in the sense of distributions. Without loss of
generality we will assume that B(0) = 0.

We consider the retarded functional differential equation

(2.4)

{
u′(t) = B′(t)u(t− τ), 0 < t < τ,

u(θ) = ξ(θ), τ ≤ θ ≤ 0,

where ξ is a given initial function whose smoothness properties will be dis-
cussed below. For the time being we will concentrate on the initial “basic
interval” [0, τ ].

As discussed in the previous section, if B is C1 except for a singularity
t∗ ∈ (0, τ), for instance

(2.5) B(t) = 1/ |t− t∗|α , where 0 < α < 1,

we can integrate both sides, thus obtaining

(2.6) u(t) = ξ(0) +
∫ t

0
B′(s)ξ(s− τ)ds,

but, in general, this formula will make sense only for t ∈ [0, t∗) because
the product B′(t)ξ(t − τ) need not be integrable. In fact, it will never be
integrable for nonzero constants ξ. As mentioned above, in order to get a
better understanding of the problem and check whether the solution can
be continued “beyond” the singular point t∗ in a meaningful way we need
to give a more precise meaning to the right-hand side of (2.4). A standard
strategy in the theory of differential equations with discontinuous right-hand
sides (see Filippov [9]) is to try to transform the equation into another with
integrable discontinuities, that is, a “Carathéodory form”, as follows.
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2.3. Equivalent neutral equation. By writing

(2.7) B′(t)u(t− τ) = [B(t)u(t− τ)]′ −B(t)u′(t− τ),

equation (2.4) becomes

(2.8)


d

dt
[u(t)−B(t)u(t− τ)] = −B(t)u′(t− τ), t > 0,

u(θ) = ξ(θ), τ ≤ θ ≤ 0,

which is a neutral differential-delay equation. Integrating (formally) both
sides of (2.4) on [0, τ ] and taking into account the (nonessential) assumption
B(0) = 0 we obtain

(2.9) u(t) = ξ(0) +B(t)ξ(t− τ)−
∫ t

0
B(s)ξ′(s− τ)ds, 0 ≤ t ≤ τ

which gives an explicit representation of the solution in terms of the initial
function. Of course, this is just the standard “method of steps” as long as
the integral in the right-hand side is defined. As is usual in neutral FDE’s,
more smoothness in the initial function is required than in the retarded case.
Since B ∈ Lp(0, τ), the hypothesis ξ′ ∈ Lq(−τ, 0) (1/p + 1/q = 1) will be
enough. We have just proved the following result:

Theorem 2.1. 1. Let B ∈ Lp(0, τ). Then, for every ξ ∈ W 1,q(0, τ)
(where 1/p + 1/q = 1) the Cauchy problem (2.8) has a unique solu-
tion given by the identity

(2.10) u(t) = ξ(0) +B(t)ξ(t− τ)−
∫ t

0
B(s)ξ′(s− τ)ds, 0 ≤ t ≤ τ,

Therefore u ∈ Lp(0, τ) and u(t)−B(t)ξ(t− τ) is an absolutely contin-
uous function and we may write symbolically

(2.11) u(t) = B(t)ξ(t− τ) +AC,

where “AC” means “an absolutely continuous function”. As a conse-
quence, the singularities of the solution on [0, τ ] are also singularities
of B

2. In particular, let t∗ ∈ (0, τ), 0 < α < 1, let m be continuous on [0, τ ]
and let

(2.12) B(t) =
a

|t− t∗|α
+m(t),

If the initial function ξ satisfies ξ(t∗ − τ) 6= 0, then t∗ is also a singu-
larity of u and

(2.13) u(t) ' a

|t− t∗|α
ξ(t∗ − τ), as t→ t∗,

is an asymptotic expansion of u near t∗.
3. If |ξ(t∗ − τ − t)| ≤ C |t∗ − τ − t|α near t∗, then u is bounded near t∗.
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2.4. Solutions without Singularities. Following on point 3 of the pre-
vious theorem, let us concentrate again on the single-singularity case as
above:

(2.14) B(t) =
a

|t− t∗|α
+m(t), t ∈ [0, τ ],

with t∗ ∈ (−τ, 0), α ∈ (0, 1) and m continuous. For any γ > α let us
consider the following class of initial values:

Eγ = {ξ ∈W 1,q(−τ, 0) : There exists C > 0 such that(2.15)

|ξ(t∗ − τ − θ)| ≤ C |t∗ − τ − θ|γ for all θ ∈ [−τ, 0]}.

Because of the Sobolev embedding W 1,q(−τ, 0) ⊂ C[−τ, 0], Eγ is a closed
subspace of W 1,q(−τ, 0). We have thus the following immediate consequence
of representation (2.10):

Proposition 2.2. If ξ ∈ Eγ , the solution u of (2.8) is absolutely continuous
on [−τ, 0].

Remark 2.3. If we restrict ourselves to C1 initial functions (a very standard
procedure in neutral delay-differential equations), the hypothesis that the
exponent γ be strictly larger than αmeans that the condition |ξ(t∗ − τ − t)| ≤
C |t∗ − τ − t|γ is automatically satisfied if t∗ − τ is simply a zero of ξ, and
the definition of Eγ is much easier:

Eγ ∩ C1([−τ, 0]) = {ξ ∈ C1([−τ, 0]) : ξ(t∗ − τ) = 0},

and its geometrical structure is clearer too: E ∩ C1([−τ, 0]) is just a closed
hyperplane in C1([−τ, 0]). These are the initial functions which generate
solutions without discontinuities in [0, τ ], and any other ξ ∈ C1([−τ, 0])
may be written as ξ(t∗) + [ξ(t)− ξ(t∗)] , which means that the asymptotic
expansion of u near t∗ can be further simplified to u(t) ' ξ(t∗)/ |t− t∗|+AC.

2.5. Continuation beyond τ . Assume that B is defined on a larger in-
terval [0, T ), where T > τ. As can be easily seen from the explicit formula
(2.9)

(2.16) u(t) = ξ(0) +B(t)ξ(t− τ)−
∫ t

0
B(s)u′(s− τ)ds, 0 ≤ t ≤ τ,

even for very smooth ξ, if B also contains singularities on the interval
[τ, 2τ ] (for instance, if B is τ -periodic, a very important case), the func-
tion B(s)u′(s− τ) may not be integrable beyond τ.

Take, for instance, ξ ≡ constant, 1/2 ≤ α < 1, B(t) = 1/ |t− τ/2|α on
[0, τ ] and extended periodically to all of R. Then u(t) = ξ(1 +B(t)) = ξ on
[0, τ ], on [τ, 3τ/2) the equality u′(t) = B′(t)u(t− τ) does hold and then

(2.17)
u(t) = ξ(1 +B(τ)) + ξ

∫ t
τ B(s)B′(s− τ)ds

= ξ

(
1 +B(τ) +

1
2
[
B(t)2 −B(τ)

])
, τ ≤ t < 3τ

2
,
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because of the periodicity of B. Since B2 is not integrable, the solution
cannot be extended beyond 3τ/2 in a meaningful way.

On the other hand, standard results of the general theory of functional
differential equations imply that if B is differentiable on [0, T ) except at a
unique singularity t∗, the solution can be extended to all [0, T ). The following
theorem is stated in a simplified situation which enables us to give a direct
proof.

Theorem 2.4. Let T > τ (including +∞), 0 < α < 1, let B1 be given by
(2.12) and let m : [0, T )→ R be continuously differentiable and let

(2.18) B(t) = B1(t) +m(t), 0 ≤ t < T.

Let ξ ∈ C1([−τ, 0]). Then the initial value problem

(2.19)


d

dt
[u(t)−B(t)u(t− τ)] = −B(t)u′(t− τ),

u(θ) = ξ(θ), τ ≤ θ ≤ 0,

has a unique solution on [0, T ) belonging to Lp for every p < 1/α, continuous
on [0, T ) except at t∗ and continuously differentiable at every t ∈ [0, T ) except
t∗ and τ + t∗.

Proof. We already know that the expression (2.9) gives us an Lp solution
[0, τ ]. Since ξ ∈ C1, it is also continuously differentiable except at t∗. In order
to extend it beyond τ, we go back to the original retarded presentation

u′(t) = B′(t)u(t− τ),

which does not give any trouble for values t ≥ τ, since the ”coefficient” B′(t)
is continuous on [τ, T ). On [τ, 2τ ] we can write

u(t) = u(τ) +
∫ t

τ
B′(s)u(s− τ)ds, τ ≤ t ≤ 2τ,

which is absolutely continuous on (τ, 2τ) and continuously differentiable
except at t = τ + t∗.

Remark 2.5. Since linear retarded functional differential equations are
well-posed on Lp spaces (see [21]) and these equations have a well-known
“smoothing effect” ([11]), the above result can be extended in a number
of ways. For instance, if B : [0, T ) → R is Lp on [0, τ ] and continuously
differentiable on [τ, T ), then the solution belongs to Lploc(0, T ), belongs to
W 1,p(τ, 2τ), to W 2,p(2τ, 3τ) and so on.

2.6. Linear perturbations. The above analysis is easily adapted to the
case

(2.20)

{
u′(t) = λu(t) +B′(t)u(t− τ), t > 0

u(θ) = ξ(θ), τ ≤ θ ≤ 0,
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by first applying the Euler change of variables v(t) = e−λtu(t), which gives

(2.21)
v′(t) = −λe−λtu(t) + e−λt [λu(t) +B′(t)u(t− τ)]

= e−λτB′(t)v(t− τ),

and successively obtaining the equivalent neutral formulation

(2.22)


d

dt

[
v(t)− e−λτB(t)v(t− τ)

]
= −e−λτB(t)v′(t− τ), t > 0,

v(θ) = e−λθξ(θ), τ ≤ θ ≤ 0,

the representation for v(t)
(2.23)
v(t) = e−λτB(t)e−λ(t−τ)ξ(t− τ) + ξ(0)

−
∫ t

0 e
−λτB(s)e−λ(s−τ) [−λξ(s− τ) + ξ′(s− τ)] ds

= ξ(0) + e−λtB(t)ξ(t− τ)−
∫ t

0 e
−λsB(s) [−λξ(s− τ) + ξ′(s− τ)] ds,

and the representation for u(t) = eλtv(t)

(2.24)

{
u(t) = eλtξ(0) +B(t)ξ(t− τ)

+
∫ t

0 e
λ(t−s)B(s) [−λξ(s− τ) + ξ′(s− τ)] ds,

which is very similar to (2.9). The qualitative statements of theorem 1 and
the asymptotic expansion near t∗ are translated to this case without change.

Similar results can be written for non-autonomous versions of the above
equation

(2.25)

{
u′(t) = λ(t)u(t) +B′(t)u(t− τ), t > 0,

u(θ) = ξ(θ), τ ≤ θ ≤ 0,

obtaining the representation

(2.26)

{
u(t) = B(t)ξ(t− τ)

+
∫ t

0 e
Λ(t)−Λ(s)B(s) [−λ(s)ξ(s− τ) + ξ′(s− τ)] ds,

where Λ(t) is a primitive of λ(t) on [0, τ ]. It suffices that λ ∈ L1(−τ, 0),
thus allowing for singularities on the coefficient λ which give rise to very
interesting interactions with the singularities of B.

2.7. The nonlinear case. Using Alekseev’s variation-of-constants
formula.

2.7.1. A first nonlinear case. We now generalize the results presented above
to the “partially nonlinear” case, that is

(2.27)

{
u′(t) = B′(t)g(t, u(t− τ)), 0 < t < τ,

u(θ) = ξ(θ), τ ≤ θ ≤ 0,
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where g is C1. By formally writing

(2.28) B′(t)g(t, u(t− τ)) =
d

dt
[B(t)g(t, u(t− τ))]−B(t)

d

dt
[g(t, u(t− τ))] ,

we see that the equivalent neutral equation is completely similar to those
obtained in the previous section, that is
(2.29)

d

dt
[u(t)−B(t)g(t, u(t− τ))] = −B(t)

d

dt
[g(t, u(t− τ))] , t > 0,

u(t) = ξ(t), τ ≤ t ≤ 0.

On [0, τ ] we have (formally)

(2.30)


u(t) = B(t)g(t, ξ(t− τ)) + ξ(0)

−
∫ t

0 B(s)
d

ds
[g(s, ξ(s− τ))] ds, 0 ≤ t ≤ τ.

But if ξ ∈W 1,q(−τ, 0) and g is C1, s 7→ g(s, ξ(s− τ)) is also in W 1,q(−τ, 0)
and the integral actually is an absolutely continuous function. Therefore,
the representation or “asymptotic expansion” u(t) = B(t)g(t, ξ(t−τ))+AC
is still valid.

If an additive term λu(t) appears in the right-hand side, a similar anal-
ysis can be performed by means of the change of variable v(t) = e−λtu(t),
although the nonlinearity g(t, u(t − τ)) makes the integral representation
much more complicated than (2.30).

2.8. The fully nonlinear case. Let us now analyze the “fully nonlinear”
case, that is

(2.31)

{
u′(t) = f(t, u(t)) +B′(t)g(t, u(t− τ)), 0 < t < τ

u(θ) = ξ(θ), τ ≤ θ ≤ 0

where f is C2 and g is C1. Its reduction to a “neutral form” is still possible:

(2.32)


d

dt
[u(t)−B(t)g(t, u(t− τ))]

= f(t, u(t))−B(t)
d

dt
[g(t, u(t− τ))] , t > 0,

u(θ) = ξ(θ), τ ≤ θ ≤ 0.

However, the presence of the term f(t, u(t)) makes the (formal) integration of
both sides of the equation hard to deal with: instead of an explicit expression
of u, it becomes an integral equation with u as the unknown, and it would be
necessary to choose the right function space in which the equation not only
made sense but had a unique fixed point as well. In any case, the neutral
formulation can be used to give a precise meaning to the equation, but we
will not follow this approach here.
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Instead, we will change our strategy and make use of a very useful, but
little-known mathematical device: Alekseev’s nonlinear variation of con-
stants formula. We now briefly recall this result in a very simple setting,
which will suffice for our purposes. For more general statements and the
proofs, see [12]:

Proposition 2.6 (Alekseev’s formula). Let f : R2 → R be C2 and G :
R→ R be L1

loc. Let y = φ(t, t0, ξ) represent the unique solution of the ODE

(2.33)

{
y′ = f(t, y(t)),

y(t0) = ξ,

and let Φ(t, t0, ξ) = ∂ξφ(t, t0, ξ), where ∂
ξ

denotes partial differentiation.
Then φ is C2, Φ is C1 and the solution u(t) of the so-called “perturbed
problem”

(2.34)

{
u′ = f(t, u(t)) +G(t),

u(t0) = ξ,

has the integral representation

(2.35) u(t) = y(t) +
∫ t

t0

Φ(t, s, y(s))G(s)ds,

where y(t) = φ(t, t0, ξ) is the “unperturbed” or “reference” solution.

Remark 2.7. Φ(t, t0, ξ) satisfies Φ(t, t, ξ) = 1.

Remark 2.8. Alekseev’s formula is usually stated under stronger regularity
conditions on G. However, it is very simple to check by direct differentiation
that the function u(t) defined by (2.35) is an absolutely continuous solution
of the (Carathéodory) equation (2.34). Alekseev’s formula is usually applied
to the more ambitious setting of having G depending on t and u, which is
typical of control theory. (2.35) then becomes an integral equation and a
more delicate analysis is required.

Fortunately, we can consider the retarded term as an external “forcing”

(2.36) G(t) = B′(t)g(t, ξ(t− τ)),

and by setting t0 = 0, ξ = u(0) = ξ(0), y(t) = φ(t, 0, ξ), write (formally):

(2.37) u(t) = y(t) +
∫ t

0
Φ(t, s, y(s))B′(s)g(s, ξ(s− τ))ds,

and integrate by parts:

(2.38)

u(t) = y(t) + [Φ(t, s, y(s))B(s)g(s, ξ(s− τ))]s=ts=0

−
∫ t

0 B(s)
d

ds
[Φ(t, s, y(s))g(s, ξ(s− τ))] ds

= y(t) + Φ(t, t, y(t))B(t)g(t, ξ(t− τ))

−
∫ t

0 B(s)
d

ds
[Φ(t, s, y(s))g(s, ξ(s− τ))] ds.
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By the remark above, Φ(t, t, y(t)) = 1. On the other hand, as we saw before,
for ξ ∈ W 1,q(−τ, 0) and g ∈ C1 the composite function s 7→ g(s, ξ(s − τ))
is also W 1,q(−τ, 0) and so is its product by the C1 function Φ(t, s, y(s)).
Therefore, its derivative belongs to Lq(−τ, 0) and the indefinite integral, as
in all the previous cases, is an absolutely continuous function. This means
that the integration by parts is legitimate and we may state the following
result, which is an extension of the previous ones. We may summarize the
previous comments in the following way:

The initial value problem

(2.39)

{
u′(t) = f(t, u(t)) +B′(t)g(t, u(t− τ)), 0 < t < τ,

u(θ) = ξ(θ), τ ≤ θ ≤ 0,

with F ∈ C2(R2), g ∈ C1(R2) and initial function ξ in W 1,q(−τ, 0) can be
given a precise integral sense in [0, τ ] by means of the neutral equivalent
equation (2.32) and its unique solution u admits the integral representation
(2.40)

u(t) = y(t) +B(t)g(t, ξ(t− τ))−
∫ t

0
B(s)

d

ds
[Φ(t, s, y(s))g(s, ξ(s− τ))] ds,

(where y(t) = φ(t, 0, ξ(0))) as well as the “asymptotic expansion”

(2.41) u(t) = B(t)g(t, ξ(t− τ)) +AC,

which gives the qualitative picture of the behavior of the solution near sin-
gularities of B.

3. The PDE case

In order to avoid technicalities, let us consider the delayed linear heat
equation with Neumann boundary conditions

(3.1) (PN )


∂u
∂t −∆u = B′(t)u(t− τ ,x), for (t, x) ∈ (0,+∞)× Ω,
∂u
∂n(t, x) = 0, for (t, x) ∈ (0,+∞)× ∂Ω,

u(θ, x) = ξ(θ, x), for (θ, x) ∈ (−τ, 0)× Ω,

where Ω is a connected domain of RN , N ≥ 1, with smooth boundary, and
concentrate on a simplified version of the single-singularity case

(3.2) B(t) =
a

|t− t∗|α
+m(t),

with m ∈ C1([0, τ ]), α ∈ (0, 1) and t∗ ∈ (0, τ). It is well known (see, for in-
stance, [10] or [22]) that on [0, t∗) the initial value problem is well defined for
continuous initial functions ξ and has a unique solution. The possibility of
extending the solution beyond t∗ will be discussed later. Also, other function
spaces and boundary conditions are easily treated by these methods.

We will also assume that B′(t) ≥ 0 (so that a > 0) on [0, t∗). The reason
for this restriction will be explained below.
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3.1. Separable solutions. Assume that the initial function is separable:
u(x, t) = ξ(t)φ0(x) for t ∈ [−τ, 0] and x ∈ Ω. It is then natural to look for
solutions of the same type u = w(t)φ(x), thus obtaining

w′(t)φ(x) = w(t)∆φ(x) +B′(t)w(t− τ)φ(x).

In order to have a separable solution we divide by w(t)φ(x) and observe
that the assumed identity

w′(t)
w(t)

=
∆φ(x)
φ(x)

+B′(t)
w(t− τ)
w(t)

,

can only hold if there exists a real constant λ such that

∆φ = λφ,

(that is, φ is an eigenfunction of ∆ with the given boundary conditions,
with associated eigenvalue λ) and w satisfies the delay-differential equation

(3.3)

{
w′(t) = λw(t) +B′(t)w(t− τ), for t ≥ 0,

w(θ) = w0(θ), for t ∈ [−τ, 0],

which is of the type studied in Section 3.

This obviously requires that φ0(x) = φ(x) be already an eigenfunc-
tion. Assuming this is the case, we have an explicit representation of these
separable solutions from Section 3, namely (2.24):
(3.4)
u(t, x) = w(t)φ(x)

= B(t)ξ(t− τ)φ(x)

+ φ(x)
∫ t

0 e
λ(t−s)B(s) [−λξ(s− τ) + ξ′(s− τ)] ds, t ∈ [0, τ ].

If ξ(t∗ − t) > 0 then w(t) = B(t)ξ(t− τ)→∞ as t→ t∗, and the same will
happen for the separable solution on the region {φ > 0}, while u(t, x) =
w(t)φ(x) → −∞ as t → t∗ when φ(x) < 0. Clearly, the opposite behavior
takes place when ξ(t∗ − t) < 0. In any case, we have instantaneous blow-up
outside the nodal region {x ∈ Ω : φ(x) = 0}, meaning that the explosion
time is the same for all the points involved. The most important case from
the practical viewpoint is that of φ(x) ≡ 1, the first eigenfunction of ∆ with
Neumann boundary conditions.

3.2. More general delay-PDEs with blowing-up solutions via com-
parison arguments. Now enters the sign condition B′(t) ≥ 0 on [0, t∗),
whose importance comes from the fact that some comparison arguments can
be applied in this case, thus enlarging considerably the set of equations for
which we get blowing-up solutions. Although our arguments also apply to
the case of (NLDDE) here we merely state a simple version of more general
results for (NLPN ), which will be enough for our purposes
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Proposition 3.1. For i = 1, 2, consider the delayed reaction-diffusion equa-
tions

(NLPN )


∂ui

∂t −∆ui = f i(t, ui(t, x), ui(t− τ ,x)), (t, x) ∈ (0,+∞)× Ω,
∂ui

∂n (t, x) = 0, (t, x) ∈ (0,+∞)× ∂Ω,

ui(θ, x) = ξi(θ, x), (θ, x) ∈ (−τ, 0)× Ω,

where f i are locally Lipschitz in all its arguments and nondecreasing in its
third variable, i.e.

(3.5)
p1 ≤ p2 =⇒ f1(t, u1, p1) ≤ f2(t, u2, p2),

for a.e. t ≥ 0, for any ui, pi ∈ R.

Let ξ1 and ξ2 be two initial functions, in C([−τ, 0] : Lp(Ω)) for some p ∈
[1,+∞], ordered as follows:

(3.6) 0 ≤ ξ1(θ, x) ≤ ξ2(θ, x), for any θ ∈ [−τ, 0] and a.e. x ∈ Ω.

Then there exists the corresponding weak solutions u1(t, x), u2(t, x), in C([−τ, T imax) :
Lp(Ω)), for some T imax ∈ (0,+∞], and they satisfy

0 ≤ u1(t, x) ≤ u2(t, x), for all t ∈
[
−τ, T imax

)
, a.e. x ∈ Ω.

Proof. The existence of solutions is consequence of well-known results
(see, e.g., the monographs [14], [10] and [22]). Most of the comparison
results in the indicated literature are presented for the simper case in which
f1 ≡ f2 (see also other general references such as [20]). The case of (3.5)
with f1 6= f2 is well known in the literature without delay (see, e.g. [6], [7]
(Theorem 4.3) and the references indicated there) and can be easily adapted
to the case of delayed equations (see, e.g. [13] Proposition1). �

Other boundary conditions are possible. The condition to be taken into
account is that −∆ with the given boundary condition generates a positive
semigroup on the usual function spaces.

Applying this result to our case, we have the following

Theorem 3.2. Assume that the initial function satisfies

(3.7) ξ(θ, x) ≥ ξ0(θ)φ(x), for θ ∈ [−τ, 0], x ∈ Ω,

where φ is an eigenfunction of ∆ with the Neumann boundary condition,
ξ0 ∈ W 1,q(−τ, 0) and ξ0(t∗ − τ) > 0. Assume (3.2) and let f(t, u, p) be
locally Lipschitz in all its arguments, nondecreasing in its third variable,
and such that

(3.8) p1 ≤ p2 =⇒ B′(t)p1 ≤ f(t, u, p2),
for a.e. t ≥ 0, for any u, p1, p2 ∈ R.
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Then, if u(x, t) is the solution of

(NLPN )


∂u
∂t −∆u = f(t, u(t, x), u(t− τ ,x)), (t, x) ∈ (0,+∞)× Ω,
∂u
∂n(t, x) = 0, (t, x) ∈ (0,+∞)× ∂Ω,

u(θ, x) = ξ(θ, x), (θ, x) ∈ (−τ, 0)× Ω,

we have

(3.9) u(x, t) ≥
[

a

|t− t∗|α
ξ0(t− τ) + n(t)

]
φ(x),

where n is an absolutely continuous function on [−τ, 0]. In particular, u
blows up at some finite time Tmax ≤ t∗ in the sense that

(3.10) lim
t→t∗

u(t, x) =∞, a.e.x ∈ {x ∈ Ω : φ(x) > 0}.

Proof. Let w(t) denote the solution of the initial value problem (3.3):{
w′(t) = λw(t) +B′(t)w(t− τ), for t ≥ 0,

w(θ) = ξ0(θ), for θ ∈ [−τ, 0],

where λ is the eigenvalue associated to the eigenfunction φ. As before, the
hypotheses on ξ0 imply that w(t) admits the asymptotic expansion

w(t) = B(t)ξ(t− τ) + n(t),

where n(t) is absolutely continuous. On the other hand, the comparison
result stated above implies that u(t, x) ≥ w(t)φ(x), and the result is proved.

Remark 3.3. The theorem holds for the Dirichlet boundary condition
without any change. For (possibly nonlinear) Robin boundary condition
∂u/∂n+ k(t, x, u) = 0, for some nondecreasing function k(., ., u) of u (a re-
quirement imposed for the applicability of comparison arguments: see, for
instance, [6]).

Remark 3.4. For both Dirichlet and Neumann boundary conditions, if the
initial function satisfies ξ(t, x) ≥ µ > 0 in Ω, we can always choose φ to
be the first eigenfunction, which does not change sign by the Krein-Milman
theorem. We have then instantaneous blow-up on the whole domain Ω.

Remark 3.5. In the region {x ∈ Ω : φ(x) < 0} the comparison argument
does not give us any useful information, unless some symmetric condition
u(θ, x) ≤ ξ̃0(θ)φ(x), ξ̃0(t∗ − τ) < 0 holds.

3.3. Continuation beyond t∗. The question of existence of solutions on
the whole interval [0, τ ] is more delicate since it involves performing some
kind of integration by parts in order to define a suitable notion of generalized
solution, as in Sections 2 and 3. The special structure of the right hand side
of our equation, however, simplifies the situation, since the method of steps
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is directly applicable. Using the standard notation of abstract evolution
equations in Banach spaces X, our basic equation is written as follows

(3.11)

{
u′(t) = Au(t) +B′(t)u(t− τ), in X, for t ≥ 0,

u(θ) = ξ(θ), for θ ∈ [−τ, 0],

where u(t) is the function u(t)(x) = u(t, x), the same for ξ and A is the
abstract operator on X associated to −∆ with Neumann boundary condi-
tions. On the basic interval [0, τ ] we may express the solution by means of
the variation of constants formula:

u(t) = eAtξ(0) +
∫ t

0
eA(t−s)B′(s)ξ(s− τ)ds, 0 ≤ t ≤ τ.

Assume, again, (3.2). The fact that B′ is not a function (and so u′ /∈ L1(0, τ :
X)) requires integration by parts, as in Section 3. By proceeding formally
we arrive to a direct extension of equation (2.24), by substituting λ by A :

(3.12)

{
u(t) = eAtξ(0) +B(t)ξ(t− τ)

+
∫ t

0 e
A(t−s)B(s) [−Aξ(s− τ) + ξ′(s− τ)] ds,

which we may use as definition of “generalized solution in W−1,p′(0, τ : X)”
for some p = p(α) > 1 small enough. As an illustration, let us state a simple
sufficient condition for a “generalized solution in W−1,p′(0, τ : L2(Ω))” to
exist:

Theorem 3.6. Let ξ ∈ C2([−τ, 0]× Ω̄) satisfying ∂ξ/∂n = 0 on ∂Ω for all
θ ∈ [−τ, 0]. Assume (3.2). Then the integral in (3.12) is well defined and
the equation (3.11) has a “generalized solution in W−1,p′(0, τ : L2(Ω))” for
some p = p(α) > 1 small enough, and, so defined, at least, on [0, τ ].

Proof. The hypotheses imply that ξ(t, .) belongs to the domain of A and the
function s 7→ ∆ξ(s− τ, ·) + ∂tξ(s− τ, ·) is continuous from [0, τ ] into C(Ω̄).
Therefore, its product by the L2 function B is in L2, and the integral is well
defined (see Vrabie [19]).

Remark 3.7. As mentioned at the beginning of this paragraph, a complete
treatment of the existence, uniqueness and continuation of generalized solu-
tions of the PDE problem is complicated and it is currently under study by
the authors. Our goal in this paper is to present the basic results concerning
blow-up results for the main equation and to suggest some of the difficulties
involved in its treatment, avoiding the technicalities as much as possible.
This is the reason why we have excluded the explicit use of the theory of
distributions, although it obviously lies behind many of the arguments we
have employed in a more loose way in the text.
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