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Abstract—The study of overland flow of water over an erodible sediment leads to a coupled model describing

the evolution of the topographic elevation and the depth of the overland water film. The spatially uniform solution

of this model is unstable, and this instability corresponds to the formation of rills, which in reality then grow and

coalesce to form large-scale river channels. In this paper we consider the deduction and mathematical analysis of

a deterministic model describing river channel formation and the evolution of its depth. The model involves a

degenerate nonlinear parabolic equation (satisfied on the interior of the support of the solution) with a super-linear

source term and a prescribed constant mass. We propose here a global formulation of the problem (formulated in

the whole space, beyond the support of the solution) which allows us to show the existence of a solution and leads

to a suitable numerical scheme for its approximation. A particular novelty of the model is that the evolving

channel self-determines its own width, without the need to pose any extra conditions at the channel margin.

Key words: River models, landscape evolution, nonlinear parabolic equations, free boundaries, singular

free boundary flux.

1. Introduction

In a recent paper, FOWLER et al. (2007), addressed the question of how rivers form in

the landscape. They derived a nonlinear partial differential equation of diffusive type to

describe the depth of an evolving channel, and it is the mathematical analysis of this

equation which forms the substantive part of the present paper. In this introduction we

begin by indicating the physical context within which this equation arises, and we sketch

the way in which it is derived.

It is a matter of common experience that rainfall on land surfaces does not drain

uniformly. Even on short time scales, small-scale channels called rills form, and over

longer time scales, these rills evolve and merge, forming progressively larger channels.

At the same time, the flow in the developing channels erodes the hillslope, cutting its way

down, and the overland flow into the channels causes sub-channels or tributaries to form,
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so that in a mature landscape, such as that shown in Figure 1, a fractal-like pattern of

river channels dissects the landscape.

The mathematical understanding of the drainage process on the large scale of a

catchment is challenging. Just as for air transport in the lungs, or for liquid transport in

crystallizing mushy zones, the medium may be best represented as a porous network, but

(like the second example) it is one whose transport properties are formed by the transport

process itself. We thus need to understand the mechanisms whereby channels form in the

first place, and which governs their size and transport capacity.

The ingredients of a suitable model are variables describing water flow and sediment

transport, and the mechanism of channel formation arises through an instability, in which

locally increased flow causes increased erosion, which in turn increases the flow depth

and thus also the flow. This positive feedback induces instability, as was shown by SMITH

and BRETHERTON (1972), in their pioneering study.

Smith and Bretherton’s study was later elaborated by LOEWENHERZ (1991), and LOE-

WENHERZ-LAWRENCE (1994), who was particularly concerned with the issue of wavelength

selection, something which also formed the principal concern of IZUMI and PARKER (1995,

2000). Nonlinear studies of channel development and topographic evolution focussed on

catchment scale problems, such as that of WILLGOOSE et al. (1991), however, such efforts

were unable to compute the solution of the governing models directly, essentially because of

the stiffness of the system. WILLGOOSE et al. (1991), reverted to an artificial channel indicator

variable, and KRAMER and MARDER (1992), used cellular lattice models, a development which

has formed the thrust of simulation models since e.g., those of HOWARD (1994) and TUCKER

and SLINGERLAND (1994). There have been efforts to solve the Smith-Bretherton model

directly (e.g., SMITH et al., 1997; BIRNIR et al., 2001), although these are problematical,

unsurprisingly since the original Smith–Bretherton model is actually ill-posed.

The starting point for Smith and Bretherton’s study was a coupled set of partial

differential equations describing s(x, y, t), the hill slope elevation, and h(x, y, t), the water

depth. The model takes the form

Figure 1

Hillslope topography. Photograph courtesy (Gary Parker).
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r�ðhuÞ ¼ r;

st þr�q ¼ U;
ð1:1Þ

and represents conservation of mass of water and sediment. The mean water velocity u is

determined through a momentum balance equation, while the sediment flux q is usually

taken as an empirically prescribed function of flow-induced bed stress and bed slope, the

resulting combination (the effective bed stress) being denoted s: The source term r

represents rainfall, while U represents tectonic uplift. The time derivative in the water

mass equation is ignored, on the basis that the time scale for evolution of the hill slope is

considerably longer than that for water flow.

In order to complete this model, we assume it has been written in dimensionless form,

so that the variables are O(1). One can show that suitable models for the flow speed u and

effective bed stress s are

u ¼ h1=2jrgj1=2n;

s ¼ ujuj � brs;
ð1:2Þ

where typically b = O(1), and the down-water slope normal n is defined by

n ¼ � rg
jrgj: ð1:3Þ

g represents the water surface elevation, and in dimensionless terms is related to hillslope

elevation s and water film thickness h by

g ¼ sþ dh: ð1:4Þ

The parameter d is very small, a typical estimate being 10-5. Finally, the sediment flux is

taken to have the form

q ¼ VðsÞN; ð1:5Þ

where s ¼ jsj and the down-sediment flow normal N is

N ¼ s

s
: ð1:6Þ

V is an increasing function of s, with V& s3/2 being a popular choice (this essentially

stemming from the model of MEYER-PETER and MÜLLER, 1948).

This model admits steady solutions corresponding to overland flow, in which the

variables g = g0(X) and h = h0(X) are functions only of the downslope coordinate X, and

the flow of both water and sediment is in the X direction, thus n = N = i, the unit vector

along the X axis. The Smith–Bretherton analysis was based on taking the limit d? 0, and

in this case it is easy to see that always n = N, even for non-unidirectional flows. Smith

and Bretherton then found instability to arise in an ill-posed way, through a negative

effective diffusivity in the cross-stream y direction. This leads to unbounded growth at

small transverse wavelengths, but LOEWENHERZ-LAWRENCE (1994), was able to show that
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the instability was regularized at high wave number by including the small term d in

(1.4), which has the crucial effect of making n = N.

It is this observation which allows analytic progress in the model. Uniform overland

flow is unable to y–dependent perturbations of small wavelength, and we can examine the

nonlinear evolution of these by directly seeking asymptotic expansions in terms of d. To

do so, we firstly suppose that the channels which form are aligned in the X direction, and

(sensibly) that the perturbation to the water surface is small, comparable to the overland

flow depth:

g ¼ g0 þ dZ: ð1:7Þ

We may then linearize the geometry of the system, to find that

n ¼ i� dZy
S
jþ � � � ;

N ¼ i� d
S

Zy �
b

hþ b
hy

� �
jþ � � � ;

ð1:8Þ

where j is the unit vector in the y direction and S(X) = |g00(X)| is the unperturbed

downhill slope.

The nonlinear channel evolution then arises from a rescaling of the hillslope evolution

equation, in which we put

y ¼ d1=2Y ; h ¼ H

d1=3
; t ¼ d7=6T ; ð1:9Þ

after some algebra, we find the leading order sediment transport equation takes the form

oH

oT
¼ S0S1=2H3=2 þ S1=2 o

oY
bH1=2 oH

oY

� �
; ð1:10Þ

where S0 = dS/dX.

It is important to note that this equation arises through conservation of sediment. Only

Y derivatives are present, because the lateral length scale is so much smaller than the

downslope one. The perturbation Z to the water surface is in fact then determined by

quadrature of the water conservation equation, but integration of this equation in the

across stream direction yields the integral constraintZ1
�1

H3=2dY ¼ 2LrX

S1=2
; ð1:11Þ

where L is the spacing (on the original hillslope length scale for y) between channels; the

limits in (1.11) are, however, infinite because the integral is with respect to the much

smaller channel width length scale. Suitable initial and boundary conditions for the

channel depth are that

H ! 0 as Y ! �1; H ¼ H0ðYÞ at T ¼ 0: ð1:12Þ
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An alternative to the initial condition is to assume that H?0 as T? -?, corresponding

to the evolution of an initial infinitesimal perturbation. (1.12) mimics this if we suppose

that H0 is everywhere small in value.

The equation (1.10), together with the integral constraint (1.11) and initial/boundary

conditions (1.12), form the basis of our study. We will assume that S0 > 0, so that the

nonlinear term in (1.10) is a source. Since the downslope coordinate only appears in the

coefficients, it can be scaled out of the problem. Indeed, if we define

H ¼ 6

b

� �1=3

ðLrXÞ2=3u; T ¼ b
6

� �1=6 t

S1=2S0ðLrXÞ1=3
; Y ¼ 2b

3S0

� �1=2

x ð1:13Þ

(note that this definition of t is distinct from that used previously), the problem to be

studied can be written in the form

ut ¼ u3=2 þ ðu3=2Þxx;Z1
�1

u3=2 dx ¼ 1; u ! 0 as x ! �1;

u ¼ u0ðxÞ at t ¼ 0: ð1:14Þ

2. Mathematical Analysis

We consider problem (1.14) assuming an initial thickness perturbation u0(x)

satisfying some natural physically based hypothesis, i.e., a bounded and nonnegative

function with a compact and connected support [-f0, f0] such that $0
?? u0

m(x) dx = M/2,

for m > 1 (including the case of m = 3/2 of (1.14)). For the sake of simplicity of the

exposition we also assume symmetric initial data.

In the rest of the paper, we shall be especially interested in the question of global

solvability (in time) of the following problem: Find a continuous curve

f : ½0;þ1Þ ! R
þ and a function u : P ! ½0;þ1Þ (regular enough) such that

ðSLÞ

ut ¼ ðumÞxx þ um; in D0ðPÞ;
uðx; 0Þ ¼ u0ðxÞ a.e. x 2 X0;

uðx; tÞ[ 0; a.e. ðx; tÞ 2 P;
uðx; tÞ � 0; a.e. ðx; tÞ 62 P;
uðfðtÞ; tÞ ¼ 0; ðumÞxð0; tÞ ¼ 0 a.e. t 2 ð0;þ1Þ;
fð0Þ ¼ f0 and fðtÞ[ 0 for any t� 0;

ZfðtÞ
0

umðx; tÞ dx ¼ M

2
a.e. t 2 ð0;þ1Þ:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:
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where X0 = (0, f0), Xt = (0, f(t)) 9 {t}, P ¼ [t[ 0Xt: Notice that D0ðPÞ denotes the

space of distributions on P and P is the positivity subset of the solution. Later on we

shall make more precise the (minimal) regularity of the solution. The function f(t) is

called the interface separating the (connected) region where u(x, t) > 0 from the region

where u(x, t) = 0. It is unknown and it is usually called the free or moving boundary of

the problem. Due to the free boundary, we shall refer to the strong formulation (SL) as the

strong-local formulation. We emphasize that the mass conservation constraint

ZfðtÞ
0

umðx; tÞ dx ¼ M

2
a.e. t 2 ð0;þ1Þ

prevents possible blow-up phenomena which could arise (without this condition) due to

the presence of the source term um in the equation.

An important difficulty, in order to get a global formulation (i.e., extended to the entire

domain (x, t) [ (0, ? ?) 9 (0, ? ?), and not only on ðx; tÞ 2 PÞ; is the necessity to

provide a suitable description of the flux - (um)x(f(t), t) at the free boundary. This leads

to a new constrained global formulation suitable for mathematical analysis and numerical

resolution. In the next subsections we propose the global formulation of the model for the

stationary regime. The transient regime is dealt with in subsection 2.2. Finally, in

subsection 2.3, a finite element method is described and numerical results are presented.

2.1. The Stationary Case

We first consider the strong formulation of the stationary problem associated to (SL).

Let M be a positive, fixed, real number and define v = um. Then we look for a solution of

�vxx � v ¼ 0; v0ð0Þ ¼ 0; lim
x!þ1

vðxÞ ¼ 0;

Zþ1

0

vðxÞj jdx ¼ M

2
:

We first observe that the formulation does not correspond to a standard constrained

problem of the Calculus of Variations. Indeed, if we were dealing with a standard

constrained problem, the solution would coincide with the solution of problem:

Minv2XJðvÞ; such that v0ð0Þ ¼ 0; lim
x!þ1

vðxÞ ¼ 0;

Zþ1

0

GðvÞ dx ¼ M

2

where

JðvÞ ¼ 1

2

ZfðtÞ
0

jvxj2dx�
1

2

ZfðtÞ
0

jvj2dx; and GðvÞ ¼ jvj:

Then, by using the theory of Lagrange multipliers we would have that v would solve the

unconstrained minimization problem:
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Minv2XJðvÞ þ k
Zþ1

0

G0ðvÞ dx; such that v0ð0Þ ¼ 0; lim
x!þ1

vðxÞ ¼ 0;

for some constant k, where G0(v) = sign(v) = ±1 depending on the (positive or negative)

sign of v. Thus, vwould be the solution of the associate Euler-Lagrange optimality equation

�vxx � v ¼ kG0ðvÞ;

and so, on the set where v > 0 we would have -vxx - v = k, which is not the equation

stated in the original formulation, i.e., -vxx -v = 0. Then, we derive the conclusion that

the equation is not verified in the whole halfline (0, ? ?) and that the integral constraint

must be carefully considered.

We recall that here we look for a continuous nonnegative function v C 0 and that the

differential equation must be verified at the interior of the set {v > 0}: =

{x [ (0, ? ?) : v(x) > 0}. Since the solutions of the ODE, vxx ? v = 0, are explicitly

given by v(x) = Acos x ? Bsin x, we see that none of them can satisfy vx (f?) = 0 if

{v > 0} = (0,f?). So, necessarily, the limit limx%f1vxðxÞ is strictly negative (since the

function is passing from positive values to zero). Moreover, if we extend v by zero to the

rest of (0, ? ?) (as in FOWLER et al., 2007) we obtain that vx(x) has a discontinuity at

x = f?. In particular, vxx is not an integrable function on (0, ? ?) but a measure with a

non-zero singular part.

This introduces our formulation of the constraint by means of the ‘‘measure’’

l ¼ �vxx 2 Mð0;þ1Þ;

where Mð0;þ1Þ is the space of Radon measures (see, for instance, EVANS and GARIEPY,

1992). In fact, from the identity vxx = -v on {v > 0} we see that the (signed) Jordan

decomposition of l (in the form l = l? - l-, with l?\l-) is given by

lþ ¼ v ðwhich is in L1ð0;1ÞÞ and l� ¼ �cdf1 for some c[ 0;

where df1 is the Dirac delta distribution located at interface f1 2 R
þ; i.e., where

v(f?) = 0 (sometimes we shall use the alternative notation df1 ¼ dofv¼0gÞ: Thus, l- is a

singular measure with respect to the Lebesgue measure.

Moreover, we see that in other problems in which vx(f?) = 0, i.e., when the flux is

continuous at the free boundary, we obtainZþ1

0

dl ¼ �
Zþ1

0

vxx dx ¼ 0; ð2:15Þ

since vx(0) = 0 and vx(x) = 0 if x > f?. In our case the relation (2.15) is equivalent to the

constraint $0
??v dx = M/2 even if vx(f?) < 0. Indeed, as mentioned above we know that

�vxx � v ¼ cdofv¼0g; ð2:16Þ
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which, in this stationary case, allows us to compute c explicitly

0 ¼
Zþ1

0

dl ¼
Zþ1

0

v dx�
Zþ1

0

dl� ¼ M

2
� chdf1 ; 1i ¼ M

2
� c;

i.e., c = M/2 and thus, necessarily, l� ¼ �M=2df1 : Moreover, integrating in (2.16) we

have:

0 ¼
Zþ1

0

dl ¼ �
Zf1
0

vxx dxþ
Zþ1

f1

dl� ¼ �vxðf1Þ �M

2

and we deduce that, in the stationary case, the flux is determined by the integral constraint

(-vx(f?) = M/2) and reciprocally. Notice that, despite of (2.15), we have

klkMð0;þ1Þ ¼ klþkMð0;þ1Þ þ kl�kMð0;þ1Þ ¼
Zþ1

0

v dxþM

2
¼ M:

The (symmetric) global formulation can be stated in the following terms: Find a

stationary state v(x) and a point f1 2 R
þ satisfying

ðSPÞ
vxx þ v ¼ ðM=2Þdf1 ; in D0ð0;þ1Þ;
vðxÞ[ 0; x 2 ½0; f1Þ;
vðxÞ � 0; x� f1;
vxð0Þ ¼ 0:

8>><
>>:

We have

Proposition 1. Given M > 0 there exists a unique solution (v(x), f?) of (SP) given by

f1 ¼ p
2

and vðxÞ ¼ M

2
cos x 1 � H x� p

2

� �h i
; ð2:17Þ

where H(x - p /2) denotes the Heaviside function located at p /2 i.e.,

vðxÞ ¼ ðM=2Þ cos x if x 2 ½0; p=2�;
0 if x 2 ðp=2;þ1Þ:

�

Proof. We shall use a shooting argument. Obviously any solution of (SP) must satisfy

that v(0) > 0. Let a, n > 0 be positive parameters. By using the Laplace transform we can

solve the initial value problem

v00 þ v ¼ ðM=2Þdn; in D0ð0;þ1Þ;
vð0Þ ¼ a;
v0ð0Þ ¼ 0;

8<
:

so proving the uniqueness and the extension to (0, ? ?) of the local solution of the

stationary strong-local formulation. Indeed, if we denote by
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YðsÞ ¼ L½v�ðsÞ ¼
Z1
0

e�sxvðxÞ dx;

the Laplace transform of v, we get that L½v00 � þ L½v� ¼ M
2
L½dn�; and so

s2YðsÞ � svð0Þ � v0ð0Þ þ YðsÞ ¼ M

2
e�ns:

Using the initial conditions this becomes

s2YðsÞ � saþ YðsÞ ¼ M

2
e�ns;

whence

YðsÞ ¼ a
s

s2 þ 1

� �
þM

2

e�ns

s2 þ 1

� �
:

The inverse transform is direct:

vðxÞ ¼ a cos xþM

2
Hðx� nÞ sinðx� nÞ;

where H(x - n) denotes the Heaviside function located at n. The free boundary condition

v(n) = 0 leads to the characteristic equation v(n) = acos n = 0, of solutions

nn = (n ? 1/2) p, n = 0,1, . . . and of corresponding eigenfunctions

va;nðxÞ ¼ a cos xþM

2
H x� nþ 1

2

� �
p

� �
sin x� nþ 1

2

� �
p

� �

¼ cos x a� ð�1Þn M
2
H x� nþ 1

2

� �
p

� �� �

and the solutions va,n(x) have a compact support [0, n], with va(x):0 for x 62 ½0; n�; only if

a = a(n) = (-1)n(M/2). Notice that n odd shall imply changing sign solutions. The

requirement v(x) > 0 on [0, nn], with v:0 for x 62 ½0; nn� fixes the unique solution of the

original stationary free boundary problem which corresponds to the value n = 0 and so

we get (2.17).

Remark 1. The function (2.17) was obtained in FOWLER et al. (2007), for the

local/strong formulation (i.e., without any global formulation). As we shall see in the next

subsection, the global formulation is especially useful for the parabolic case. In Figure 2.

the steady-state solution (2.17) for the global formulation (SP) is represented. We showed

that it can be characterized as the first eigenfunction of the free boundary problem, where

f? = p /2 (v(x) has a compact and connected support). Its total mass, in R
þ; is M/2.

Notice the discontinuity of the flux at the free boundary f? where a Dirac’s delta is

generated by the diffusion operator.
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Remark 2. Problems of this type arise in fluid mechanics (problems of the Bernoulli

type), in combustion and in plasma physics (see, e.g., DÍAZ et al., 2007, and references

there in).

2.2. Parabolic Case

Given T > 0 (arbitrary) and a continuous, symmetric, nonnegative initial data u0(x),

with compact support [0, f0] such that $0
?? u0

m(x) dx = M/2, we look for a continuous curve

f : ½0; T � ! R
þ and a function u : Rþ � ½0; T � ! ½0;þ1Þ such that u satisfies the strong-

local formulation (SL). To prove their existence we shall use an auxiliary global

formulation on the whole domain R
þ � ½0; T�: As in the stationary case, the global

formulation of the partial differential equation includes a Dirac delta distribution located,

for each t [ (0, T], at the free boundary x = f(t) since the free boundary flux is discontinuous

there (due to the mass constraint). To be precise we introduce the notation dq{u(t,�)=0}

to design the Dirac delta distribution located at the interface x = f(t) for each t [ (0, T)

(i.e., dq{u(t,�)=0} = d(f(t),t)). Nevertheless, the naturally associated problem

ðP0Þ

ut ¼ ðumÞxx þ um � M
2
dofuðt;�Þ¼0g; D0ðRþ � ð0; TÞÞ;

uðx; 0Þ ¼ u0ðxÞ a.e. x 2 ð0; f0Þ
uðx; tÞ[ 0; a.e. ðx; tÞ 2 PT ;
uðx; tÞ � 0; a.e. ðx; tÞ 62 PT ;
uðfðtÞ; tÞ ¼ 0; uxð0; tÞ ¼ 0 a.e. t 2 ð0; TÞ;
fð0Þ ¼ f0 and fðtÞ[ 0 for any t 2 ½0; T �;

8>>>>>><
>>>>>>:

ð2:18Þ

–0.4

–0.2

0
0.5 1 1.5 2 2.5 3

0.2

0.4

x

Figure 2

The (positive) stationary solution (2.17), its (negative and decreasing) derivative and the negative, increasing

diffusive term (vM/2,0
m )0 0 (x) (dotted-line) for the global formulation (SP).
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where PT (the positivity subset of u) is defined by PT ¼ fðx; tÞ 2 R
þ � ½0; T � :

0� x\fðtÞg; has blow-up solutions. In fact, it is important to observe that the mere

presence of the Dirac delta, in the parabolic case, does not prevent the occurrence of the

blow-up phenomenon (well-known for the case of zero, continuous free boundary flux,

see SAMARSKI et al., 1995, Chapter IV, Section 1.1). Indeed, the following result proves

that it is possible to construct an infinite number of initial data such that the

corresponding solutions fuTeg; with Te be a positive parameter, of problem (P0) (i.e., with

a discontinuous free boundary flux condition) are not globally defined in time (the

solution uTe being defined on a finite time interval [0, Te)). Moreover, uTe verifies thatZþ1

0

umðx; tÞ dx ¼ MTe
1=ðm�1Þ

2ðTe � tÞ1=ðm�1Þ for t 2 ½0; TeÞ:

Remark 3. There is a long list of references dealing with nonlinear parabolic equations

involving similar Dirac delta distributions (see, e.g. CAFFARELLI et al., 1995, 1997, and their

references) but the case of the simultaneous presence of the Dirac delta with a perturbation

term of the form um and with prescribed mass seems not to have been considered before.

We also mention that some other problems formulated in terms of a quasi-linear parabolic

equation with a constraint of total mass type were treated in NAZARET (2001).

Inspirated in SAMARSKI et al. (1995) (see Chapter IV, Section 1.1), we search for some

separable solutions, u, of the form

uðx; tÞ ¼ ðTe � tÞ�1=ðm�1ÞhðxÞ:

Then, by using the phase plane associated with the ordinary differential equation for h(x)

it is proved in DÍAZ et al. (in preparation), that the following result holds:

Proposition. i) For any c > 0, the problem

w00 þ w� w1=m ¼ cdf0 ; D0ð0;þ1Þ;
wðxÞ ¼ 0 x[ f0;
w0ð0Þ ¼ 0;

8<
:

admits a unique nonnegative solution w such that

Zþ1

0

wðxÞ dx ¼ c:

ii) If we take h(x) = wm(x) and c = M2Te
m/(m-1) then the pair uTeðx; tÞ ¼ ðTe � tÞ�1=ðm�1Þ

hðxÞ and f(t):f0 satisfies (P0) for u0(x): = Te
-1/(m-1)wm(x).

The above result explains that the reformulation of the mass constraint in terms of the

solution of a global partial differential equation in the whole domain R
þ � ð0; TÞ requires

Vol. 165, 2008 River Channel Formation 11

Journal : 24 Dispatch : 4-10-2008 Pages : 20

Article No. : 0394 h LE h TYPESET

MS Code : 0394 h CP h DISK4 4



some additional condition (besides the presence of the mentioned Dirac delta at the

equation). To do that, we start by noting that if we define (for a.e. t [ (0, T) fixed) the

spatial distribution

lðt; �Þ :¼ utðt; �Þ � ðumÞxxðt; �Þ;

then we must expect to know that, in fact, such a distribution is a bounded measure

Mð0;þ1Þ (with compact support) since

lðt; �Þ ¼ umðt; �Þ �M

2
dofuðt;�Þ¼0g:

Moreover its signed (Jordan) decomposition, l(t,�) = l?(t,�) - l-(t,�), must be given

by l?(t,�) = um(t,�) and l-(t,�) = (M/2)dq{u(t,�)=0}. Now, as in the stationary case we

recognize that the mass constraint $0
?? um(x, t) dx = M/2 is equivalent to the ‘‘zero total

measure‘‘ condition

Zþ1

0

dlðt; �Þ ¼ 0; for a.e: t 2 ð0; TÞ: ð2:19Þ

So, we arrive at the global formulation: Find a nonnegative function u : Rþ � ½0; TÞ !
½0;þ1Þ such that

ðPÞ
ut ¼ ðumÞxx þ um � M

2
dofuðt;�Þ¼0g; D0ðRþ � ð0; TÞÞ;

uðx; 0Þ ¼ u0ðxÞ a.e. x 2 ð0;þ1Þ;
uxð0; tÞ ¼ 0, uðx; tÞ ! 0 as x ! þ1 a.e. t 2 ð0; TÞ;
lðt; �Þ :¼ utðt; �Þ � ðumÞxxðt; �Þ satisfies ð2:19Þ a.e: t 2 ð0; TÞ:

8>><
>>: ð2:20Þ

Notice that now the compact support condition is not explicitly required. In fact,

following the numerical experiences of FOWLER et al. (2007), we conjecture that problem

(P) can be solved for suitable, strictly positive initial data u0(x) such that u0(x)? 0 as

x? ? ?. Notice also that if a solution u of (P) gives rise to a free boundary f
(t): = q{u(t,�) = 0} then, the zero total measure condition (2.19) implies that the free

boundary flux must be given by

�ðumÞxðfðtÞ; tÞ ¼
M

2
�

ZfðtÞ
0

utðx; tÞ dx a.e. t 2 ð0;þ1Þ:

Here (and, in fact, also in (2.19)) there is a slight abuse of notation since, a priori, ut(x, t)

(respectively l(t,�)) does not need to be a L1ðRþÞ function, but merely a bounded

measure. Nevertheless we keep the classical notation for simplicity reasons. In any case,

we see that in the transient regime the boundary flux at the free boundary is unknown

(being also discontinuous), as opposed to the stationary case in which the flux (also

discontinuous) can be explicitly known. Moreover, the above considerations allow us to

conclude that any solution of the strong-local formulation (SL) solves problem (P) and

that any (regular enough) solution of (P) with compact support satisfies the strong-local
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formulation (SL). In order to show the existence of a global solution u of problem (P)

we use a two-step iterative approximation. The main idea is to construct {u2n?1:n = 0, 1,

2. . .} as solutions of the problem with a semi-implicit linear source term

ðP2nþ1Þ :¼
ðu2nþ1Þt¼ððu2nþ1ÞmÞxxþðu2nÞm�1ðu2nþ1Þ�M

2
dofðu2nþ1Þðt;�Þ¼0g; D0ðRþ�ð0;TÞÞ;

ðu2nþ1Þðx;0Þ¼u0ðxÞ a.e. x2ð0;þ1Þ;
ðu2nþ1Þxð0; tÞ¼0, ðu2nþ1Þðx;tÞ!0 as x!þ1 a.e. t2ð0;TÞ;

8<
:

(where for n = 0 we use as u2n the initial condition u0) and then to construct the sequence

{u2n:n = 1,2. . .} by requiring that

ðP2nÞ :¼
u2nðx; tÞ ¼ C2nðtÞu2n�1ðx; tÞ for a.e. ðx; tÞ 2 R

þ � ð0; TÞ;Rþ1

0

ððu2nðx; tÞÞm�1ðu2n�1ðx; tÞÞ dx ¼ M
2

for a.e. t 2 ð0; TÞ;

8<
:

for some C2n(t) > 0.

The detailed proof of the convergence of the algorithm (contained in DÍAZ et al. (in

preparation)) is quite technical and will not be presented here. For instance, many of the

a priori estimates on u2n?1 were obtained previously for the solutions u2n?1,e of the equation

obtained by replacing the singular equation of (P2n?1) by the more regular equation

ðu2nþ1;eÞt ¼ ððu2nþ1;eÞmÞxx þ ðu2nÞm�1ðu2nþ1;eÞ � beðu2nþ1;eÞ;

where be(r) is a regular nonnegative and bounded function, approximating M/2 times the

Dirac delta. Moreover, it is not difficult to show that

u2nþ1ðx; tÞ�Uðx; tÞ for any n and a.e. ðx; tÞ 2 R
þ � ð0; TÞ; ð2:21Þ

where U(x,t) is the (bounded) solution of

Ut ¼ ðUmÞxx � M
2
dofUðt;�Þ¼0g; D0ðRþ � ð0; TÞÞ;

Uðx; 0Þ ¼ u0ðxÞ a.e. x 2 ð0;þ1Þ;
Uxð0; tÞ ¼ 0;Uðx; tÞ ! 0 ¼ as x ! þ1 a.e. t 2 ð0; TÞ;

8<
:

obtained by approximating the equation

Uet ¼ ððUeÞmÞxx � beðUeÞ;

and passing to the limit as e?0. Indeed, it is enough to apply the comparison

principle (recall that (u2n)
m-1(u2n?1) C 0) to the approximate solutions to show that

u2n?1,e C Ue on R
þ � ð0; TÞ and then, passing to the limit, we obtain (2.21). Function U

is bounded since if we introduce the function V, solution of the unperturbed problem

Vt ¼ ðVmÞxx D0ðRþ � ð0; TÞÞ;
Vðx; 0Þ ¼ u0ðxÞ a.e. x 2 ð0;þ1Þ;
Vxð0; tÞ ¼ 0;Vðx; tÞ ! 0 as x ! þ1 a.e. t 2 ð0; TÞ;

8<
:

Vol. 165, 2008 River Channel Formation 13

Journal : 24 Dispatch : 4-10-2008 Pages : 20

Article No. : 0394 h LE h TYPESET

MS Code : 0394 h CP h DISK4 4



then we know that

0�Uðx; tÞ�Vðx; tÞ for any t 2 ½0; T � and a.e. x 2 R
þ:

Indeed, it is enough to multiply the difference of the equations verified by U and V, by an

approximation of the test function sign?(V - U) and use that M
2
dofUðt;�Þ¼0g

signþðV � UÞ� 0: On the other hand, by applying the results of BENILAN (1978), we derive

0�Uðx; tÞ�Vðx; tÞ�C
u0k k2=ðmþ1Þ

L1ðRþÞ

t1=ðmþ1Þ for any t 2 ½0; T � and a.e. x 2 R
þ:

Note that we can write that {u2n?1} is a set of mild solutions satisfying

ðu2nþ1Þt � ððu2nþ1ÞmÞxx ¼ f2nþ1ðt; xÞ D0ðRþ � ð0; TÞÞ;
ðu2nþ1Þðx; 0Þ ¼ u0ðxÞ a.e. x 2 ð0;þ1Þ;
ðu2nþ1Þxð0; tÞ ¼ 0, ðu2nþ1Þðx; tÞ ! 0 as x ! þ1 a.e. t 2 ð0; TÞ;

8<
:

with f2n?1 uniformly integrable in Mð0;þ1Þ in the sense that

f2nþ1k kL1ðð0;TÞ:Mð0;þ1ÞÞ �K for any n; for some K[ 0:

Then by a variation of the main result of DÍAZ and VRABIE (1989) (see also p. 70 of

VRABIE 1987: both results concerning the special case in which f2n?1 is uniformly

integrable in L1(0, ? ?)), we obtain that {u2n?1} is a relatively compact set of

Cð½0; T � : L1ðRþÞÞ: Then there exists a subsequence strongly convergent {u2n?1}? u in

Cð½0; T � : L1ðRþÞÞ: This, and the special construction of {u2n(x, t)}, provides for having

the a priori estimate

0\C2nðtÞ�
M

2
Rþ1

0

ðUðx; tÞÞmdx

2
6664

3
7775

1=ðm�1Þ

for a.e. t 2 ð0; TÞ:

Moreover, at least under a physically natural assumption on the initial datum u0(x), we

can ensure that C2n(t) is uniformly bounded from above by a positive function for each t [
[0, T] (notice that we do not have such conclusion in the trivial case of u0(x):0). Indeed,

let us assume that

u0ðxÞ[ 0 for any x 2 ½0; fð0ÞÞ: ð2:22Þ

Then, as function U(t,.) verifies that Ut(t,.) = (Um(t,.))xx on (0,f(t)), and m > 1, we can

apply a well-known local result (see KALASHNIKOV, 1987) showing that if U(0, x1) > 0 then

U(t, x1) > 0 for any t > 0. In particular, we get that U(t, x) > 0, for any x[[ 0, f(0)) and for

any t > 0. Thus, $0
??(U(x, t))m dx > 0 for any t > 0 and 0 < C2n(t). This shows that

{C2n(t)} is uniformly bounded (and uniformly far from zero) in L?(0,T) and so, there exists

C*(t) such that C2nð:Þ * C	ð:Þ weakly-* in L?(0,T). But, as {u2n?1}? u strongly in

Cð½0; T � : L1ðRþÞÞ we obtain:
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lim
n!1

u2nðx; tÞ ¼ lim
n!1

ðC2nðtÞu2n�1ðx; tÞÞ ¼ lim
n!1

C2nðtÞ lim
n!1

u2n�1ðx; tÞ ¼ C	ðtÞuðx; tÞ:

Moreover, we can read the algorithm as

ðu2nþ1Þt ¼ ððu2nþ1ÞmÞxx þ C2nðtÞm�1ðu2n�1Þm�1ðu2nþ1Þ �
M

2
dofðu2nþ1Þðt;�Þ¼0g;

and so we get (by the Lebesgue’s dominated convergence theorem) that (u2n-1)m-1

(u2n?1)? um in L1ðRþ � ð0; TÞÞ:
In conclusion, we have shown

Theorem. Assume that u0(x) satisfies (2.22), then, there exists a function C*(t) > 0,

C* [ L?(0, T) and a function u 2 Cð½0; T � : L1ðRþÞÞ such that

ut ¼ ðumÞxx þ C	ðtÞm�1um � M
2
dofuðt;�Þ¼0g; D0ðRþ � ð0; TÞÞ;

uðx; 0Þ ¼ u0ðxÞ a:e: x 2 ð0;þ1Þ;
uxð0; tÞ ¼ 0, uðx; tÞ ! 0 as x ! þ1 a:e: t 2 ð0; TÞ;

8><
>:

and

C	ðtÞm�1

Zþ1

0

uðx; tÞm dx ¼ M

2
:

Remark. We do not know if C*(t) = 1, but by a rescaling et ¼ kðtÞ; y ¼ Yðt; xÞ and

V ¼ Vðu; y; etÞ it is possible to reformulate the above equation in the terms

Vet ¼ ðVmÞyy þ Vm �M

2
d
ofVðet ;�Þ¼0g:

3. Numerical Results

This section briefly describes the different techniques we used in the numerical

resolution of the problem (P). For each initial condition h0, we compute its mass, say M/

2, and the associated stationary solution v(x) given in (2.17) to which the solution should

converge when t?? ?, (see FOWLER et al., 2007). As observed before, (P) is a free

boundary problem with a non local integral term and a Dirac’s delta distribution in the

absorption term. These characteristic features, along with the (weak) nature of

the problem, suggest the development of the numerical resolution of the problem in

the framework of finite elements. We first consider a time marching scheme in the

coordinate t, of step dt. At each level in the time discretization, we shall employ a semi-
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implicit scheme in order to deal with the nonlinearities. An iterative (splitting) numerical

scheme is implemented in order to impose the mass conservation constraint. In order to

discretize with respect to the coordinate x, at each time level l� dt, we will employ

piecewise linear finite elements Ll,k:= {/ [ C0([0, ? ?)):/|E [ P1, V E [ Tl,k} in a

uniform grid, Tl,k, of step k. Also, Bl,k:= {/i} is a base of finite linear elements in Ll,k.

Then, the discretized problem is formulated as follows:

Find (ul?1)k [ Ll,k, (ul?1)k =
P

j(ul?1)k
j/j, such thatZ

Tl;k

ðulþ1Þk/i dx ¼
Z
Tl;k

ðulÞk/i dx�
3dt

2

Z
Tl;k

ðulÞ
1
2

kððulþ1ÞkÞx/ix dx

þ dt

Z
Tl;k

ðulþ1Þ
3
2

k/i dx� dt

Z
Tl;k

M

2
dðulÞ/i dx; 8/i 2 Bl;k:

ð3:23Þ

Note that d is evaluated at the boundary obtained in the previous time step. In order to

deal with the nonlinearities present in (3.23), as above stated and taking into

consideration the mass conservation constraint, we shall consider the following iterative

scheme: for p = 2n ? 1 from 1 to N, n = 0, 1, 2. . ., and N an odd number to be fixed, we

consider the problem,Z
Tl;k

ðulþ1;2nþ1Þk/i dx¼
Z
Tl;k

ðulÞk/i dx�
3dt

2

Z
Tl;k

ðulþ1;2nÞ
1
2

kððulþ1;2nþ1ÞkÞx/ix dx

þdt

Z
Tl;k

ðulþ1;2nÞ
1
2

kðulþ1;2nþ1Þk/i dx�dt

Z
Tl;k

M

2
dðulÞ/i dx;8/i 2Bl;k;

ð3:24Þ

where, (ul?1,2n)k has been rescaled before being introduced in (3.23) so that

$(ul?1,2n)k
3/3 = M/2, according to (P2n), i.e., (ul?1,2n)k = Cl?1,2n(ul?1,2n-1)k. The result-

ing system of equations for the nodal values at the (2n ? 1)th-step is solved with the

Gauss Seidel method. In order to initiate the iterative scheme, one can take as

(ul?1,p=1)k the values obtained in the previous time step, that is to say, (ul?1,p=1)k = ul.

The scheme finishes assuming the values for the (l ? 1)-time level given by

ul?1 = (ul?1,p=N)k.

In Figure 3 we present the numerical results obtained considering as an initial

condition the function u0(x) = 1 - x2, where we have plotted the graphics obtained for

different steps in time. The results reveal the convergence, as expected, to the support of

the stationary solution in a monotonous way. We also can see how the maximum of the

solution does not blow up (by the contrary, it is decreasing in time in this special case).

In Figures 4 and 5, we present 3-D graphics of the results corresponding to u(x, t)

and -u(x,t), respectively. We also present two tables in which we show results

concerning the values of the constant of the scaling at the final step N and the location of

the boundary for different levels in time.
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Figure 3

Numerical results obtained for u(x, t) for different time levels. The initial condition is labelled by u0 and the

stationary solution by u.
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Figure 4

3-D representation of the numerical results obtained for u(x, t).
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3.1. Summary and Conclusions

A coupled model describing the evolution of the topographic elevation and the depth

of the overland water film is studied here when considering the overland flow of water

over an erodible sediment. The instability of the spatially uniform solution corresponds to

the formation of rills, which in reality then grow and coalesce to form large-scale river

channels.

We started by considering the deduction and mathematical analysis of a

deterministic model describing river channel formation and the evolution of its depth.

We complete the previous modeling of the problems by SMITH and BRETHERTON (1972)

and FOWLER et al. (2007), obtaining a model which involves a degenerate nonlinear

parabolic equation (satisfied on the interior of the support of the solution) with a super-

linear source term and a prescribed constant mass. We propose here a global

formulation of the problem (formulated in the whole space, beyond the support of the

solution) which allows us to show the existence of a solution and leads to a suitable

numerical scheme for its approximation. As we show, the solution does not blow up

despite of the presence of the superlinear forcing term at the equation thanks to the

mass constraint.

A particular feature of the model for channel evolution which we have studied is that

the degeneracy of the equation causes the channel width to be self-selecting. This is of

some interest in the geomorphological literature, since the issue of channel width

determination is one that has caused some difficulties (e.g., PARKER, 1978).

5.0

1.0

2.0

4.0

3.0

0.0
1.0

x

0.0

-0.5

-1.0

-u

Figure 5

3-D representation of the numerical results obtained for - u(x, t).
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CAFFARELLI, L. A. and VÁZQUEZ, J. L. (1995), A free-boundary problem for the heat equation arising in flame

propagation, Trans. Amer. Math. Soc. 347(2), 411–441.
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DÍAZ, J. I., PADIAL, J. F., and RAKOTOSON, J. M. (2007), On some Bernouilli free boundary type problems for

general elliptic operators, Proc. Roy. Soc. Edimburgh 137A, 895–911.

Table 1

Time (t) Results for CN

1.0 1.00000071770833

2.0 1.00000061614692

3.0 1.00000056130953

4.0 1.00000051022114

5.0 1.00000050094979

6.0 1.00000046809999

Table 2

Time (t) Location of the boundary (x)

1.0 1.31999997049570

2.0 1.36999996937811

3.0 1.37499996926036

4.0 1.38849999690422

5.0 1.38999996893108

6.0 1.39499996881932

Vol. 165, 2008 River Channel Formation 19

Journal : 24 Dispatch : 4-10-2008 Pages : 20

Article No. : 0394 h LE h TYPESET

MS Code : 0394 h CP h DISK4 4



DÍAZ, J. I. and VRABIE, I. (1989), Proprietés de compacité de l’opérateur de Green généralisé pour l’équation
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