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Abstract

A rigidification phenomenon for certain thin slender parabolic shells, with curvature in the transversal direction to the main
length was addressed in a previous work. The main results are generalized here to the case when the shape of the middle surface is
no longer cylindrical, but incorporates a very small curvature in the longitudinal direction (it is “slightly hyperbolic”). The structure
of the basic equations changes, but (due to a coupling with the flection rigidity) the main results hold true independently of the
location of the characteristics. This problem constitutes a tentative modelling of certain remarkably rigid structures built by Torroja
in the 1930s. To cite this article: J.I. Díaz, E. Sanchez-Palencia, C. R. Mecanique 337 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Sur un problème de coques élancées, légèrement hyperboliques, suggéré par les structures de Torroja. Un phénomène
de rigidification pour un type de coques élancées cylindriques avec courbure dans la direction transversale à celle de la longueur
principale a été considéré dans un travail précédent. Nous généralisons ici les principaux résultats au cas où la surface moyenne
n’est plus cylindrique, mais a une petite courbure dans la direction longitudinale (elle est « légèrement hyperbolique »). Le type des
équations change, mais (grâce à un couplage avec la rigidité de flexion) les principaux résultats restent valables indépendamment
de la disposition des caractéristiques. Ce problème constitue une tentative de modélisation de certaines structures remarquablement
rigides construites par Torroja dans les années 1930. Pour citer cet article : J.I. Díaz, E. Sanchez-Palencia, C. R. Mecanique 337
(2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Keywords: Computational solid mechanics; Slender thin shells; Asymptotic behavior; Hyperbolic shells; V-shaped structures

Mots-clés : Mécanique des solides numérique ; Coques minces élancées ; Comportement asymptotique ; Coques hyperboliques ; Structures en V

* Corresponding author.
E-mail addresses: ildefonso.diaz@mat.ucm.es (J.I. Díaz), sanchez@lmm.jussieu.fr (E. Sanchez-Palencia).
1631-0721/$ – see front matter © 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.crme.2009.02.002



2 J.I. Díaz, E. Sanchez-Palencia / C. R. Mecanique 337 (2009) 1–7
Fig. 1. Geometry under consideration.

1. Introduction

We consider the same problem of [1], Sections 1 and 2 with, in addition, a small curvature in the longitudinal
direction. This we proceed to describe, but certain details will only be given in [1]. Let the small parameter ε denote
the thickness of the shell; the shape of the middle surface is nearly a slender rectangle, Ωε = (0, l) × (0, η) in the
“plane of the parameters” x = (x1, x2) which is assimilated to the middle surface (see Fig. 1).

We take η = ε1/4. The curvature in the x2 direction is equal to the constant b, whereas there is also a small curvature
of order η2 and sign opposite to that of b in the x1 direction. This small curvature constitutes the difference with [1];
when it is not present, the shell is cylindrical. When it does, the shell is hyperbolic, with asymptotic curves forming
a small angle of order O(η). The shell is fixed by the boundary x1 = 0. In the cylindrical case, the fixation ensures
the geometric rigidity of the middle surface, which enters in the class of “inhibited shells” (see [2] or [3]). On the
other hand, when the small longitudinal curvature is present, geometrical rigidity does no longer hold true as in the
hyperbolic case it is only ensured in the “determinacy” triangle defined by the characteristics (i.e. the asymptotic
curves) issued from the fixed boundary; this is obviously a part of Ω , which may not arrive to x1 = l. The aim of
this Note is to show that some coupling of the asymptotic (for small ε) expressions of the membrane and flection
rigidities allows one to prove that the asymptotic scheme and estimates hold true in the slightly hyperbolic case (at
least concerning magnitude orders).

Denoting by ũ = (ũ1, ũ2, ũ3) the displacement (with components in the directions of x1, x2 and the normal to the
surface, the kinematic boundary conditions are

0 = ũ1 = ũ2 = ũ3 = ∂̃1ũ3 on {0} × (0, η) (1)

and the components of the strain tensor are

γ̃11(ṽ) = ∂̃1ṽ1 − η2ṽ3

γ̃22(ṽ) = ∂̃2ṽ2 + bṽ3

γ̃12(ṽ) = γ̃21(ṽ) = 1

2
(∂̃2ṽ1 + ∂̃1ṽ2) (2)

Here we used the notation ∂̃α = ∂
∂xα

. As the shell is shallow, the tensor of variations of curvature has the components

ρ̃αβ(ṽ) = ∂̃αβ ṽ3 (3)

The variational formulation of the shell problem can be written

εa
(
uε,v

) + ε3b
(
uε,v

) = 〈
fε,v

〉
(4)

The two bilinear forms on the space V = H 1(Ωε) × H 1(Ωε) × H 2(Ωε) are then defined by:

a(ũ, ṽ) =
∫
Ωε

Aαβλμγ̃αβ(ũ)γ̃λμ(ṽ)dx (5)

b(ũ, ṽ) =
∫

Bαβλμρ̃αβ(ũ)ρ̃αβ(ṽ)dx (6)
Ωε
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where A and B denote the membrane and flexion coefficients. Moreover

〈f,v〉 = ε3
∫
Ωε

F3(x1, x2/η)ṽ3(x1, x2)dx (7)

Following [1] or [4], we perform the change of variables:{
x = (x1, x2) ⇒ y = (y1, y2)

y1 = x1, y2 = η−1x2
(8)

so, the domain Ωε is transformed into Ω = (0, l) × (0,1) and

∂1 = ∂̃1, ∂2 = η∂̃2; ∂α = ∂

∂yα

(9)

The change of unknowns⎧⎨
⎩

ũ1(x) = η6u1(y)

ũ2(x) = η5u2(y)

ũ3(x) = η4b−1u3(y)

(10)

allows one to write the variational problem under the form:

Problem Πε . Find uε ∈V satisfying

aε
(
uε,v

) =
∫
Ω

F3(y1, y2)v3(y1, y2)dy (11)

∀v ∈ V, where

aε
(
uε,v

) def=
∫
Ω

Aαβλμγ ε
αβ

(
uε

)
γ ε
λμ(v)dy +

∫
Ω

Bαβλμρε
αβ

(
uε

)
ρε

λμ(v)dy (12)

and

γ ε
11(v) = ∂1v1 − v3 (13)

γ ε
12(v) = γ ε

21(v) = η−1 1

2
(∂2v1 + ∂1v2) (14)

γ ε
22(v) = η−2(∂2v2 + v3) (15)

ρε
11(v) = η2∂2

1 v3 (16)

ρε
12(v) = ρ21(v) = η∂1∂2v3 (17)

ρε
22(ṽ) = ∂2

2 v3 (18)

Defining asymptotic expansions in powers of η for uε , γ ε and the corresponding membrane stresses T ε (see [1]),
we see that the terms tending to infinity should vanish. This lead to

∂2u1 + ∂1u2 = 0 (19)

for the limit (leading order term) and

∂2u2 + u3 = 0 (20)

for the two leading order terms. Then, proceeding as in [1] (end of Section 2), the limit problem is

a0(u,v)
def=

∫
Ω

1

C1111
(∂1u1 − u3)(∂1v1 − v3)dy +

∫
Ω

B2222∂2
2 u3∂

2
2 v3 dy (21)

in a space of functions including the constraints (19) and (20). Here, and in the sequel, irrelevant constants will be
taken equal to 1.
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2. Main result

Because of the constraints (19) and (20), the limit may be described in terms of a potential ϕ:

v1 = ∂1ψ, v2 = −∂2ψ, v3 = −∂2
2 ψ (22)

with

ψ(0, y2) = ∂1ψ(0, y2) = 0 (23)

We denote by G the completion of the set of the smooth functions defined on Ω satisfying (23) with the norm

‖ψ‖2
G =

∫
Ω

|�ψ |2 dy +
∫
Ω

∣∣∂4
2 ψ

∣∣2 dy (24)

where � denotes the Dalembertian

� = ∂2
1 − ∂2

2 (25)

Obviously, because of the completion process, the exact definition of the set is irrelevant; “smooth” may be understood
in the sense “of class C2”, for instance. On the other hand, the fact that ‖ψ‖G is a norm is not so evident; the proof
will be given later, at the same time as the proof of Theorem 1 below. The limit problem (21) then becomes

Problem Π0. Find ϕ ∈ G such that, ∀ψ ∈ G∫
Ω

�ϕ�ψ dy +
∫
Ω

∂4
2ϕ∂4

2 ψ dy = −
∫
Ω

F∂2
2 ψ dy. (26)

Our main result is the following:

Theorem 2.1. There exist c > 0 such that

‖ψ‖G � c‖ψ‖L2(0,l;H 4(0,1)) for any ψ ∈ G (27)

This ensures the existence and uniqueness of the solution with (for instance) F ∈ L2(Ω). Because of the presence
of ∂4

2ψ in the norm of G, obvious equivalence of norms in H 4(0,1) show that it is sufficient to prove:

Lemma 2.2. There exist c > 0 such that

‖ψ‖G � c‖ψ‖L2(0,l;L2(0,1)) (28)

for any ψ ∈ G.

Remark 2.3. The above lemma shows a remarkable fact: if �ψ = 0 in the rectangle Ω we can extend the uniqueness
of solution beyond the usual cone of dependence once we know that in the “spatial variable” we have that ∂4

2 ψ = 0.

We also point out that, as in [1], the solution ϕ ∈ G of problem Π0 satisfies a variational principle which is very
implicit for the formulation Πε.

3. First decomposition of L2(Ω)

Let us denote by K the subspace of L2(Ω) formed by the functions of the form:

ψ(y1, y2) = A(y1) + B(y1)y2 + C(y1)
y2

2

2
+ D(y1)

y3
2

6
(29)

with A, B , C, D in L2(0, l), which is clearly closed. By identifying L2(Ω) with L2(0, l;L2(0,1)), the decomposition
of L2(Ω) as K × K⊥ is associated with the decomposition of L2(0,1) into the subspace of polynomials of degree 3
and its orthogonal.
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Classically, ‖∂4
2 ψ‖L2(0,1) is the norm of ψ in H 4(0,1)/R

4, i.e. in H 4(0,1) up to polynomials of degree 4; from
the expression of the norm in G we have (where c denotes various constants)

‖ψ‖G � c‖ψ‖L2(0,l;H 4(0,1)/R4) � c‖ψ‖L2(0,l;L2(0,1)/R4) (30)

But this last expression is precisely ‖ψK⊥‖L2(Ω), so that

‖ψ‖G � c
∥∥ψK⊥∥∥

L2(0,l;L2(0,1))
(31)

for any ψ ∈ G. This is the desired inequality “up to the component in K”.

4. Second decomposition of L2(Ω)

Let us now consider another decomposition of ψ ∈ G (or rather an smooth function of the set which the completion
is G).We shall only develop the proof in the case when 1 < l < 2. This amounts to saying that in the forthcoming
explicit construction of the solution of the wave equation with given boundary values, there is only one reflection. The
case l > 2 with several reflections is analogous but cumbersome, whereas the case l < 1 is simpler by the absence of
reflections. Let

ψ = ψ1 + ψ2 (32)

where ψ1 and ψ2 are defined by:⎧⎪⎪⎨
⎪⎪⎩

�ψ1 = 0 in Ω = (0, l) × (0,1)

ψ1(0, y2) = ∂1ψ1(0, y2) = 0

ψ1(y1,0) = ψ(y1,0)

ψ1(y1,1) = ψ(y1,1)

(33)

and ⎧⎪⎪⎨
⎪⎪⎩

�ψ2 = �ψ in Ω = (0, l) × (0,1)

ψ2(0, y2) = ∂1ψ2(0, y2) = 0

ψ2(y1,0) = 0

ψ2(y1,1) = 0

(34)

We note that, since ψ ∈ G, functions ψ1 and ψ2 are both well defined as solutions of mixed problems for the wave
equation (with initial conditions in y1 = 0 and boundary conditions in y2 = 0 and y2 = 1). From classical estimates
for mixed problems for the wave equation it follows that

‖ψ‖G � c‖�ψ‖L2(Ω) � c‖ψ2‖L2(Ω) (35)

We are now giving an explicit expression for ψ1. Let us extend both ψ and ψ1 with value 0 for y1 < 0; they are then
defined on (−∞, l) × (0,1); see Fig. 2.

Fig. 2. Extension of ψ and ψ1.

It is then easily seen that ψ1 can be written:

ψ1(y1, y2) = ψ(y1 − y2,0) + ψ(y1 + y2 − 1,1) − ψ(y1 + y2 − 2,0) − ψ(y1 − y2 − 1,1) (36)
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In order to check this expression, we recall that it was supposed that 1 < l < 2, so that the first line amounts to
the “propagation of the boundary data”, and the second one to their reflections (there are not successive reflections as
l < 2).

Let us now consider the set of functions U(y1, y2) defined on Ω of the form:

U(y1, y2) = f (y1 − y2) + g(y1 + y2 − 1) − f (y1 + y2 − 2) − g(y1 − y2 − 1) (37)

with f and g smooth functions defined on (−∞, l) and vanishing for y1 < 0. Let us denote by K ′ its completion with
the norm of L2(Ω). It is easily checked that locally, convergence in L2(Ω) of elements of the form (37) implies L2

convergence of both f and g in L2, but there is some trouble concerning the points (l,0) and (l,1). This is concerned
with square-integrability in the vicinity of an extremity of a segment versus in a corner of the plane. Anyway, the next
lemma is easily checked, and sufficient for our purpose:

Lemma 4.1. The elements of K ′ are of the form (33) with f and g of class L2(−∞, α) (vanishing for negative y1),
for any α < l.

As ψ1 ∈ K ′, the previous estimate (35) is the desired inequality “up to the component in K ′”.

5. Proof of Theorem 2.1

According to the two previous sections, the desired estimate (28) was proved “either up to the component in K

or K ′”. Thus it suffices to prove that the intersection of K and K ′ reduces to the zero element of L2(Ω). This is easily
done. Let us consider ψ as an element of K ′; for fixed 0 < y1 < 1/2, as the corresponding f and g vanish for negative
values of the argument, ψ vanishes in the vicinity of y2 = 1/2 and is a polynomial for 0 < y2 < 1. So, ψ vanishes
for 0 < y1 < 1/2, and f and g vanish for their arguments less than 1/2. Repeating the reasoning, they also vanish for
0 < y1 < 1, and so on. Theorem 1 is proved.

6. Case when the shell has an edge with slight folding

There is an interesting variant of the previous problem, when the shell has an slight folding along a curve x2 = c.
This is an attempt to modelling elements of shell which, when pasted one after other in the x2 direction, constitute
the very elemental piece of the “Torroja’s structure” [5,6]. It should be noted that the first essays by Torroja before of
constructing his roofs (reported in [5]) were precisely concerned with a unique element of this kind.

Once more, the case when the elements of shell are cylindrical was addressed in [1], Section 3. The modifications
with respect to the case without folding apply exactly to the present case of small curvature in the longitudinal direc-
tion. The angle of the folding is small of order η. When passing to the variables and unknowns y and u, the kinematic
conditions along the folding write:

u+
1 = u−

1 , u+
3 = u−

3 , u+
2 − u−

2 = u3 (38)

where the symbols + and − denote the traces on both sides of the folding. In terms of the potential ψ , they become⎧⎪⎨
⎪⎩

ψ+ = ψ−

∂2
2 ψ+ = ∂2

2 ψ−

2∂2
2 ψ = ∂2ψ

+ − ∂2ψ
−

(39)

It then appears that the space for ψ in the case of the folding is a subspace of the product of the spaces for the two
parts of the shell. As the inequality of Theorem 2.1 holds true for each part, it clearly holds for the product and then
for a part of it.
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