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Stabilization beyond the distributions

J. I. Dı́az and E. Sanchez Palencia

Abstract. We prove that for suitable evolution problems, the solution u(t) corresponding to some
right hand side term f(t) in V ′ (with V some Hilbert space), only satisfies the stabilization property
(f(t) → f∞ in V ′ implies that u(t) → u∞, in V , when t → +∞, with u∞ solution of the associated
stationary problem) when the space V is taken strictly larger than the distribution space. This type of
problems arise, for instance, in the study of some quasi-stationary viscoelastic shell-like problems in the
presence of friction effects.

Estabilización más allá de las distribuciones

Resumen. Probamos que en ciertos problemas de evolución, la solución correspondiente a adecuados
términos del lado derecho f(t) en V ′ (con V cierto espacio de Hilbert), sólo satisface la propiedad de
estabilización (f(t)→ f∞ en V ′ implica que u(t)→ u∞, en V , cuando t→ +∞, con u∞ solución del
problema estacionario asociado) cuando el espacio V es tomado estrictamente más grande que el espacio
de distribuciones. Este tipo de situaciones aparecen, por ejemplo, en el estudio de ciertas formulaciones
del estilo de los problemas de estructuras finas viscoelásticas con fricción.

1 Introduction

The fundamental role of Distribution Theory, offering the correct framework in which most of the models
of the Mathematical-Physics must be formulated is well-known in our days ([11, 5, 8, 7]). Nevertheless,
there is a large amount of singular problems, (arising in many different contexts as, e.g. in thin shell theory)
which lead to formulations beyond the distributions.

The main goal of this article is to present some results showing that, even in this case, it is possible to
show the stabilization, as t goes to infinity, in a context more general than the space of distributions. In
fact, this philosophy has many common points with a series of papers dealing with some singular stationary
problems (see, e.g. [9] and [6]). Our main contribution is to replace the direct role played by a parameter ε
(which in the above mentioned papers is assumed converging to zero) by the derivative with respect to time
when we consider suitable evolution problems and we assume that the time t converges to infinity.

In a first part of the paper (see Section 2) we consider an academic problem for which we can prove
directly the stabilization of solutions beyond D′;

du
dt

(t) +Au = f(t) t > 0, in V ′,

u(0) = 0,
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where V is a Sobolev space on Γ, a one-dimensional compact manifold without boundary (for instance a
circle), A = S∗S and S is a suitable smoothing operator, i.e. verifying that S(Hs(Γ)) ⊂ Hr(Γ) for any
s, r ∈ R+ (in particular S(D′(Γ)) ⊂ C∞(Γ)). Here S∗ denotes the adjoint of S.

In a second part (see Section 3) we consider a problem related, in some sense, to shell theory. We
consider a special formulation for the transient displacements of a thin shell under a viscoelastic constitutive
law. Then, following the general approach by G. Duvaut, and J. L. Lions [4, Section 6, Chapter 3] and
J. Sanchez-Hubert and E. Sanchez Palencia [10] we arrive to a formulation of the type

∂2U
∂t2

+ c

(
∂U
∂t

,v
)

+ a(U,v) + ε2b(U,v) = 〈f ,v〉

for suitable test functions in the energy space V (a certain Sobolev space) and bilinear forms a, b, and c.
The so called quasi-static problem corresponds to

c

(
∂u
∂t
,v
)

+ a(u,v) + ε2b(u,v) = 〈f ,v〉 (1)

and it provides a reasonable good approximation for the asymptotic time since it was shown in [4] that
(under suitable conditions: see Corollary 6.1, Chapter 3) that

‖u(t, ·)−U(t, ·)‖V ≤ Ce−γt and

eγt
(
∂u
∂t
− ∂U

∂t

)
∈ L2(0,+∞ : V ),

for some C, γ > 0.
The main goal of this work is to analyze the stabilization of solutions of (1), as t→ +∞, to the solutions

uε∞ of the stationary problem
a(uε∞,v) + ε2b(uε∞,v) = 〈f∞,v〉. (2)

Moreover, as it can be shown (following the ideas introduced in the papers [9] and [6]) the solutions uε∞
of (2) converge, when ε → 0 (in a functional space which is not included in the distributions space D′), to
a solution u∞ of

a(u∞,v) = 〈f∞,v〉. (3)

So that the double limit, as t → +∞ and ε → 0 leads the solutions of (1) to the solutions of (3) in a
functional space beyond D′.

We shall prove that (1) can be reformulated, in operator terms, as

(QSP)


dCu
dt

(t) +Au(t) + ε2Bu(t) = f(t), in V ′

Cu(0) = Cu0

where the operators A, B, C of L(V, V ′) are given by

〈Au, v〉 = a(u, v) ∀u, v ∈ V,
〈Bu, v〉 = b(u, v) ∀u, v ∈ V,
〈Cu, v〉 = c(u, v) ∀u, v ∈ V.

Which seems to be more extraordinary is that, in fact, the quasi-static problem is well posed even for ε = 0
and that the stabilization, as t→ +∞, holds on the space VA (see [2]) defined as the completion of V with
a norm defined by A (and so, such that u∞ /∈ D′ if, for instance, f∞ ∈ V ′ − C∞).

As a matter of fact, we shall not work directly with the displacements u since it can be shown that the
singular perturbation problem can be reduced to a formulation on its trace on a part of the boundary Γ (here
assumed as a one-dimensional compact manifold without boundary). The bilinear forms a, b, c and the
energy space V must be also adapted to this trace formulation. We shall recall this, in Section 3, following
the ideas of [6].
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2 A special sensitive evolution problem
In this Section, for the sake of simplicity in the exposition, we shall assume that Γ = S1 = T, the unit
circle. So that, we can assume that any function defined on T is 2π-periodic in x.

The sequence of functions eikx can be used to describe any function v in L2(T) (and its Fourier series)

v =
+∞∑
−∞

vkwk,

with
wk(x) =

1√
2π

eikx.

As, wk is an orthonormal basis in L2(T), we have

v ∈ L2(T) iff ‖v‖2L2 =
+∞∑

k=−∞

|vk|2 <∞.

Differentiating with respect to x amounts to multiply any vk by ik, so the following equivalence holds

v ∈ H1(T) iff ‖v‖2H1 =
+∞∑

k=−∞

|vk|2 (1 + k2) <∞,

and by duality

v ∈ H−1(T) iff ‖v‖2H−1 =
+∞∑

k=−∞

|vk|2

(1 + k2)
<∞.

For m > 1, m ∈ N we can use (over the space Hm(T)) the norm (equivalent to the one obtained from
the condition u ∈ Hm(T) iff ux ∈ Hm−1(Γ))

‖v‖2Hm =
+∞∑

k=−∞

|vk|2 (1 + k2m)

and so, by duality

‖v‖2H−m =
+∞∑

k=−∞

|vk|2

(1 + k2m)
.

Moreover, by interpolation the above equivalence can be extended to any m ∈ R.
We can define

H∞(T) =
⋂
p∈N

Hp(T)

and we have that, for a general manifold T

D(T) ⊂ H∞(T) ⊂ C∞(T).

So, by duality
H−∞(T) := (H∞(T))′ ⊂ D′(T).

Notice that, in our case, since T is bounded, D(T) = H∞(T) = C∞(T).
We consider now a linear smoothing operator, S : D′(T)→ D(T). For instance we can define

S

(
+∞∑

k=−∞

vkwk

)
=

+∞∑
k=−∞

vke−
|k|
2 wk. (4)
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Then we get that S(Hs(T)) ⊂ Hr(T)) for any s, r ∈ R+ (in particular S(D′(T)) ⊂ C∞(T)).
More generally, we can take as S any (linear) smoothing operator, i.e. S(Hs(T)) ⊂ Hr(T), for any

s, r ∈ R+.We assume that S is injective

v ∈ V, Sv = 0 =⇒ v = 0.

We then define on V the hermitian form

a(u, v) =
∫

T
Su Sv dx

and the operator A, of L(V, V ′) given by

〈Au, v〉 = a(u, v) ∀u, v ∈ V.

Notice that A can be written in the form
A = S∗S,

where we understand that S and its adjoint S∗ are considered as

S ∈ L(Hm, H0), S∗ ∈ L(H0, H−m).

for some fixed (but arbitrary) m ∈ R+.

Lemma 1 The operator A ∈ L(V, V ′) is injective.

PROOF. Let v ∈ V be such that Av = 0. Then

0 = 〈Av, v〉 = a(v, v) = ‖Sv‖20 ,

and from the injectivity of S we obtain v = 0. �

Now, we follow an idea already adopted in [2], which will play an important role also in the next
Section. The previous lemma allows to define the following norm

‖v‖VA
= ‖Av‖V ′ ,

and we denote by VA to the completion of V with ‖ · ‖VA
. By Lemma 2.3 and Lemma 2.4 of [9] we have

that the range of A,R(A), is dense in V ′ and that the operator A extends as an isomorphism from VA onto
V ′ (which we denote again as A). In particular, for any F ∈ V ′ there exists a unique solution u ∈ VA of
Au = F .

We pass now to the consideration of the evolution problem

(EP)


du
dt

(t) +Au = f∞ t > 0,

u(0) = 0,

where
f∞ ∈ H0,

i.e. we know that

f∞ =
+∞∑
−∞

bkeikx with
+∞∑

k=−∞

|bk|2 <∞.
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If we assume that u(t, x) =
+∞∑
−∞

uk(t)wk satisfies (EP) then we get

(EPk)


duk
dt

(t) + e−|k|uk(t) = bk t > 0,

uk(0) = 0

and so,
uk(t) = bke|k|

(
1− e−e−|k|t

)
.

It is not difficult to show that the function

u(t, x) =
+∞∑
−∞

bke|k|
(

1− e−e−|k|t
)
wk(x)

is such that u /∈ L∞
(
0,+∞ : H−m(T)

)
(for some arbitrarily fixed m) since

‖u(t, ·)‖2H−m =
+∞∑
−∞

|bk|2 e2|k|
(

1− e−e−|k|t
)2

(1 + k2m)

is unbounded as t → +∞. This implies that there is no reasonable hope to pass to the limit in H−m(T)
as t → +∞. To follow a different approach, we introduce the space VA as the completion of V with
‖v‖VA

= ‖Av‖V ′ for A = S∗S. Then, the norm of the space VA is given by

‖v‖2VA
=

+∞∑
k=−∞

e−2|k| |vk|2

so that

‖u(t, ·)‖2VA
=

+∞∑
−∞
|bk|2

(
1− e−e−|k|t

)2

≤ ‖f∞‖2H0 .

Moreover ∣∣∣∣∂u(t, x)
∂t

∣∣∣∣ =
+∞∑
−∞

bke−e−|k|t =⇒
∥∥∥∥∂u(t, ·)

∂t

∥∥∥∥2

H0

→ 0 as t→∞.

Then (at least), u(t, ·) ⇀ u∞, weakly in VA, as t → +∞, for some u∞ ∈ VA. As a matter of fact, if we
write the (unique) solution u∞ of the stationary limit problem

(SP) Au∞ = f∞

as

u∞ =
+∞∑
−∞

u∞,kwk

we get that
Au∞ = f∞ iff u∞,k = bke|k|

and we see that
uk(t) = bke|k|

(
1− e−e−|k|t

)
→ u∞,k

as t→ +∞. Since
‖u(t, ·)‖2VA

→ ‖u∞‖2VA

we get that u(t, ·)→ u∞, strongly in VA, as t→ +∞.

Remark 1 This shows that, in fact, even if (for simplicity) f(t) = f∞ ∈ Hm(T) − C∞(T), for some
arbitrarily fixed m, the associate solution of (SP), u∞, is not a distribution (u∞ /∈ D′(T)).
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3 On some quasi-static like-shell problems
We consider now a problem related to the evolution formulation for a thin shell with a viscoelastic constitu-
tive law. Then, according G. Duvaut, and J. L. Lions [4] (Section 6, Chapter 3) and J. Sanchez-Hubert and
E. Sanchez Palencia [10] we arrive to a formulation of the type

∂2U
∂t2

+ c

(
∂U
∂t

,v
)

+ a(U,v) + ε2b(U,v) = 〈f ,v〉,

for suitable test functions in the energy space V and suitable bilinear forms a, b, and c. The so called
quasi-static problem corresponds to

c

(
∂u
∂t
,v
)

+ a(u,v) + ε2b(u,v) = 〈f ,v〉

and, as mentioned at the Introduction, it provides a reasonable good approximation for the asymptotic
behavior of U when t→ +∞.

Motivated by the arguments mentioned in Section 2 and the shell type formulation taken in [10] and [6],
a “trace general formulation” can be obtained by starting with, p(x,D) and q(x,D), be two elliptic pseudo
differential operators of order m ∈ R+ with real symbols p(x, ξ) and q(x, ξ) continuous and coercive on
V = Hm(Γ), i.e. satisfying

c ‖v‖m ≤ ‖p(x,D)v‖0 ≤ C ‖v‖m ∀v ∈ V,
c ‖v‖m ≤ ‖q(x,D)v‖0 ≤ C ‖v‖m ∀v ∈ V,

(5)

with c, C > 0. Let S be a (linear) smoothing operator, i.e. S(Hs(Γ)) ⊂ Hr(Γ)) for any s, r ∈ R+, where
now Γ is a given one-dimensional compact manifold without boundary. We assume that S is injective

v ∈ V Sv = 0 =⇒ v = 0.

We then define on V the Hermitian forms

a(u, v) =
∫

Γ

Su Sv dx,

b(u, v) =
∫

Γ

p(x,D)u p(x,D)v dx,

c(u, v) =
∫

Γ

q(x,D)u q(x,D)v dx.

We notice that here we are neglecting the oscillation term arising when taking into account the membrane
effects. We start with an abstract formulation: given ε ≥ 0, u0 ∈ V and f ∈ H1(0, T : V ′) for any T > 0,
find u ∈ L2(0, T : V ) with du

dt ∈ L
2(0, T : V ′) such that for any v ∈ V

(QSP)

{
d
dtc(u(t), v) + a(u(t), v) + ε2b(u(t), v) = 〈f(t), v〉,
u(0) = u0

where the bracket denotes the duality between V ′ and V (it may depend on the small parameter ε ≥ 0).
In order to show that the problem is well posed we shall need to make some additional assumptions (see
Showalter [12] for other alternatives). It is useful to reformulate (QSP) in terms of operators

(QSP)


dCu
dt

(t) +Au(t) + ε2Bu(t) = f(t), in V ′,

Cu(0) = Cu0,
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where the operators A, B, C of L(V, V ′) are given by

〈Au, v〉 = a(u, v) ∀u, v ∈ V,
〈Bu, v〉 = b(u, v) ∀u, v ∈ V,
〈Cu, v〉 = c(u, v) ∀u, v ∈ V.

Notice that they can be written in the form

A = S∗S, B = p∗p and C = q∗q,

where we understand that S and its adjoint S∗ are considered as

S ∈ L(Hm, H0), S∗ ∈ L(H0, H−m).

As in the previous section, the operatorA ∈ L(V, V ′) is injective, the operatorA extends to an isomorphism
from VA onto V ′ (which we denote again as A), and, in particular, for any F ∈ V ′ there exists a unique
solution u ∈ VA of Au = F .

From the assumptions on q(x,D) we deduce, from Lax-Milgram’s Lemma, that operator C admits an
inverse C−1 ∈ L(V ′, V ) and so, by introducing w := Cu we can reformulate problem (QSP) as to find
w ∈ C([0,+∞) : V ′) solution of the Cauchy problem

(Q̃SP)


dw
dt

(t) +AC−1w(t) + ε2BC−1w(t) = f(t), in V ′,

w(0) = w0,

with w0 := Cu0.

Lemma 2 Assume that
q(x,D) commutes with S and p(x,D), (6)

Su = Su, p(x,D)u = p(x,D)u and q(x,D)u = q(x,D)u for any V. (7)

Then, for any ε ≥ 0 the operator A ∈ L(V ′, V ′) defined as Aw = AC−1w + ε2BC−1w, for any w ∈ V ′,
is a maximal monotone operator on V ′. Moreover, A is self-adjoint and A = ∂ϕ, the subdifferential of the
convex lower semi-continuous function

ϕ(w) =
1
2

∥∥∥A1/2w
∥∥∥2

for any w ∈ V ′.

PROOF. We first notice that A is (single valued) defined in the whole Hilbert space V ′. The monotonicity
of A comes from the fact that, denoting by ((·, ·)) the scalar product in V ′ and if w := Cu = q∗qu,

((Aw,w)) =
〈
S∗Su+ ε2p∗pu, q∗qu

〉
= (qSu, qSu)H0 + ε2 (qpu, qpu)H0 ≥ 0.

Moreover A is a maximal monotone operator since, for any F ∈ V ′ and λ > 0, there exists a (unique)
w ∈ V ′ solution of

Aw + λw = F.

Indeed, this is equivalent to solve the equation

Au+ ε2Bu+ λCu = F,

which has a solution (even if ε = 0) via Lax-Milgram’ Lemma. Finally, A is a selfadjoint operator since
operators A and C verify

〈Au, v〉 = a(u, v) =
∫

Γ

Su Sv dx = 〈Av, u〉,
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〈Cu, v〉 = c(u, v) =
∫

Γ

q(x,D)u q(x,D)v dx = 〈Cv, u〉,

and so, ((
AC−1w, v

))
=
(
(w, (C−1)Av)

)
for any v, w ∈ V ′.

Analogously
((
BC−1w, v

))
=
((
w, (C−1)Bv

))
for any v, w ∈ V ′. Then, by Proposition 2.5 of Brezis [1]

A = ∂ϕ. �

Remark 2 In concrete examples, the commutativity assumption (6) holds when the pseudo-differential op-
erators p(x,D) and q(x,D) are x-independent. Nevertheless, other assumptions (different to (6)) implying
the monotonicity of A are possible since we can have

〈
S∗Su+ ε2p∗pu, q∗qu

〉
≥ 0 for some appropriate

q(x,D), S and p(x,D), not necessarily commuting between them.

Concerning the stabilization we have:

Theorem 1 Assume the conditions (6) and (7) of the above Lemma. For u0 ∈ V and, ε ≥ 0 let u ∈
C([0,+∞) : V ) be the (unique) solution of

(QSP)


dCu
dt

(t) +Au(t) + ε2Bu(t) = f(t), in V ′,

Cu(0) = Cu0.

Then:

i) if ε > 0 and f(t) − f∞ ∈ L1(0,+∞ : V ′) for some f∞ ∈ V ′ then limt→∞u(t) = u∞ in V with
u∞ the unique solution of

Au∞ + ε2Bu∞ = f∞.

ii) if ε = 0 and f(t) ≡ f∞ for some f∞ ∈ V ′ then
∥∥∥dCu

dt (t)
∥∥∥
V ′

= O( 1
t ) and limt→∞u(t) = u∞ in VA

with u∞ ∈ VA the unique solution of Au∞ = f∞.

PROOF. Part i) is a consequence of the application of Théorème 3.11 of [1] since, from the coercivity
assumptions (5) on p(x,D) and q(x,D), the set

{
w ∈ V ′ :

∥∥A1/2w
∥∥2

+ ‖w‖2 ≤ C
}

is (strongly) compact
in V ′. To show part ii) we use that, as f(t) ≡ f∞, and problem (QSP) can be written as

(Q̃SP)


dw
dt

(t) + ∂ϕ(w(t)) = f∞, in V ′

w(0) = w0.

then we get that
∥∥∥dCu

dt (t)
∥∥∥
V ′

= O( 1
t ) (see Theoreme 3.10 of [1]). In contrast to the case ε > 0, the

compactness of the set
{
w ∈ V ′ : ‖ϕ(w(t))‖2 + ‖w‖2 ≤ C

}
fails and we can not apply the abstract result

implying the convergence in V . Nevertheless some direct arguments lead to the conclusion. Indeed, let
u∞ ∈ VA be the unique solution of Au∞ = f∞. Then, limn→∞Au(tn) = Au∞ in V ′, which, by
construction, implies that limn→∞u(tn) = u∞ in VA. Moreover, from the uniqueness of the solution of
Au∞ = f∞ we get that the limit takes place for any t→ +∞. �
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Jesús Ildefonso Dı́az Evariste Sanchez Palencia
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Plaza de las Ciencias, 3, 4, place Jussieu,
28040 Madrid. F - 75252 Paris Cedex 05
diaz.racefyn@insde.es sanchez@lmm.jussieu.fr
and and
Real Academia de Ciencias Exactas, Académie des sciences
Fı́sicas y Naturales 23, quai de Conti - 75006
Valverde 22, Paris,
28004 Madrid France

175


	Introduction
	A special sensitive evolution problem
	On some quasi-static like-shell problems

