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a b s t r a c t

We prove the existence of a random global attractor for the multivalued random dynamical system
associated to a nonlinear multivalued parabolic equation with a stochastic term of amplitude of the order
of ε. The equationwas initially suggested by North and Cahalan (following a previous deterministicmodel
proposed by M.I. Budyko), for the modeling of some non-deterministic variability (as, for instance, the
cyclones which can be treated as a fast varying component and are represented as a white-noise process)
in the context of energy balance climate models. We also prove the convergence (in some sense) of the
global attractors, when ε→ 0, i.e., the convergence to the global attractor for the associated deterministic
case (ε = 0).
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1. Introduction

This paper deals with the study of the asymptotic behaviour,
for large time, of the following stochastic PDE, initially proposed
by North and Cahalan [1] (following a previous deterministic
model proposed by Budyko [2]), modeling some non-deterministic
variability (as, for instance, the cyclones which can be treated as
a fast varying component and are represented as a white-noise
process) in the context of energy balance climate models:
ut − uxx + Bu ∈ QS(x)β(u)

+ h(x)+ εφ
dWt
dt

, (x, t) ∈ (−1, 1)× R+,

ux(−1, t) = ux(1, t) = 0, t ∈ R+,
u(x, 0) = u0(x), x ∈ (−1, 1),

(1)

where B,Q , ε are positive constants, φ ∈ H2 (−1, 1) with
φx (−1) = φx (1) = 0, S, h ∈ L∞ (−1, 1), u0 ∈ L2 (−1, 1), and

β is a bounded maximal monotone graph of R2, (2)
i.e., there existm,M ∈ R such that
m ≤ z ≤ M, for all z ∈ β(s), s ∈ R,

0 < S0 ≤ S(x) ≤ S1, a.e. x ∈ (−1, 1). (3)
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Here Wt is a two-sided, i.e. t ∈ R, real Wiener process endowed
with the usual Wiener probability space (Ω,F , P) (see a detailed
definition of this space in Section 2.2). Other motivations are
presented in [3] (see the entire proceedings book [4]).
As in the deterministic case (see, e.g., [5–7]), the unknown

u(x, t, ω) represents the average temperature of the Earth surface,
whereQ is the so-called solar constantwhich is the average (over a
year and over the surface of the Earth) value of the incoming solar
radiative flux, the function S(x) is known as the insolation function
given by the distribution of incident solar radiation at the top of the
atmosphere. When the averaging time is of the order of one year
or longer, function S(x) satisfies (3) (in shorter periods we must
assume that S0 = 0). The term β represents the so-called coalbedo
function that takes values between 0 and 1. It represents the ratio
between the absorbed solar energy and the incident solar energy at
the point x on the Earth surface. Obviously, β(u(x, t, ω)) depends
on the nature of the Earth surface. For instance, it is well known
that on ice sheets β(u(x, t, ω)) is much smaller than that on the
ocean surface because the white color of the ice sheets reflects a
large portion of the incident solar energy, whereas the ocean, due
to its dark color and high heat capacity, is able to absorb a larger
amount of the incident solar energy. Asmentioned before, the non-
deterministic term was first suggested in [1] and later considered
by other authors (see, e.g., [8]).
We recall that, as in the deterministic case, the distribution

of temperature u(x, t, ω) is expressed pointwise after a standard
average process, where the spatial variable x is given by x =
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sin θ where θ is the latitude. Notice that, for simplicity, we are
replacing the natural degenerate diffusion term ((1 − x2)ux)x by
the usual 1d-Laplacian operator and that the absence of boundary
conditions for the degenerate diffusion is corrected by adding
Neumann type boundary conditions since in the degeneratemodel
the meridional heat flux (1 − x2)ux vanishes at the poles x =
±1 (this simplification was already considered by many authors:
see, e.g., [9,10] and their references). The expression Bu − h(x)
represents the average amount of energy radiated to the space.
Here, following Budyko [2], the expression corresponds to a
linearization of themore general Stefan–Boltzmann nonlinear law.
We point out that we shall not deal here with the existence

of weak solutions, since, even under more general assumptions
on the stochastic term, it follows from many previous papers as,
for instance, Gyöngy and Pardoux [11] or by easy modifications of
Bensoussan and Temam [12].
We note that, in virtue of the studiesmade for the deterministic

case [5–7], it is not reasonable to expect the uniqueness of
solutions of (1) even if it is a parabolic typeproblem.Due to that,we
shall work here with the associatedmultivalued random dynamical
system (MRDS) generated by its solutions. Ourmain result concerns
the asymptotic behaviour of solutions when t →+∞.

Theorem 1.1. Assume conditions (2) and (3). Then the multivalued
random dynamical system associated to (1) has a global random
attractor Aε .

For the sake of the completeness in the exposition, we shall
recall some basic definitions and results on multivalued random
dynamical systems, and its attractors, in a subsection below.
Continuing, and improving, the results initiated in [8], we also

consider the question about the convergence (in some sense) of
the global attractors Aε when ε → 0, i.e., the convergence to the
global attractor for the associated deterministic case (ε = 0). We
prove, in the next section, the following result:

Theorem 1.2. Assume conditions (2) and (3). Then,

lim
ε↘0
dist(Aε(ω),A) = 0, for all ω ∈ Ω,

withA the global attractor associated to (1) with ε = 0.

We point out that the study of the ω-limit set for the
deterministic case (ε = 0) was carried out in [13] and that
the structure of the global attractor may be very complicated
(essentially depending on the parameter Q ) including, a finite
number of stationary solutions (see, e.g., [13,14]) or even a set of
infinite solutions (see [15,10]).
As amatter of fact, our results can be suitably extended tomore

general cases: for instance, we can assume an x-dependence in
the coalbedo multivalued function β(x, u(x, t, ω)), we can extend,
in a suitable way, our conclusions to the more general case in
which h = h(x, t) and QS = Q (t)S(x, t), and the extension
to quasilinear diffusion operators (as considered in [5–7]) is also
possible. Nevertheless, we shall not present such extensions here
to avoid technical details. Some numerical experiences for the
deterministic casewere given in [7,16]. For the stochastic case, see,
for instance, [1,17].

2. On the asymptotic behaviour of solutions

2.1. Attractors for stochastic partial differential inclusions

Let (X, dX ) be a complete and separable metric space with the
Borel σ -algebra B (X). Let (Ω,F , P) be a probability space and
θt : Ω → Ω a measure preserving group of transformations inΩ
such that the map (t, ω) 7→ θtω is measurable and satisfies

θt+s = θt ◦ θs = θs ◦ θt; θ0 = Id.

The parameter t takes values in R endowed with the Borel
σ -algebra B (R). Denote by P (X) (C(X)) the set of non-empty
(non-empty closed) subsets of X .

Remark 2.1. Throughout this paper all assertions about ω are
assumed to hold on a θt invariant set of full measure.

Definition 2.2. A set-valued map G : R+ × Ω × X → C(X)
is called a multivalued random dynamical system (MRDS) if it is
measurable, i.e., if given x ∈ X the map

(t, ω, y) ∈ R+ ×Ω × X 7→ dist(x,G(t, ω, y)) (4)

is measurable, where dist(x, A) = infa∈A dX (x, a), for A ⊂ X, and
satisfies:
(i) G(0, ω, ·) = Id on X;
(ii) G(t + s, ω, x) = G(t, θsω,G(s, ω)x) (cocycle property) ∀t, s ∈

R+, x ∈ X , ω ∈ Ω.

Remark 2.3. Property (4) is equivalent to say that for every open
set O the inverse image {(t, ω, y) : G(t, ω, y) ∩ O 6= ∅} is
measurable (see [18, Proposition 2.1.4] or [19, p. 67]).

Denote an ε-neighborhood of a set A by Oε (A) = {y ∈ X :
dist (y, A) < ε}.

Definition 2.4. G(t, ω, ·) is said to be upper semicontinuous if for
all t ∈ R+ and all ω ∈ Ω , given x ∈ X and a neighborhood of
G(t, ω, x), O(G(t, ω, x)), there exists δ > 0 such that if dX (x, y) <
δ, then

G(t, ω, y) ⊂ O(G(t, ω, x)).

On the other hand, G(t, ω, ·) is called lower semicontinuous if for
all t ∈ R+ and all ω ∈ Ω, given xn → x (n → +∞) and
y ∈ G(t, ω, x), there exists yn ∈ G(t, ω, xn) such that yn → y.
It is said to be continuous if it is upper and lower semicontinu-

ous.

Definition 2.5. G(t, ω, ·) is said to be ε-upper semicontinuous
if in the definition of upper semicontinuity we replace the
neighborhood O by an ε-neighborhood Oε .

It is clear that any upper semicontinuous map is ε-upper
semicontinuous. The converse is true if G has compact values
[20, p. 45].
We now introduce the generalization of the concept of random

attractor (Crauel and Flandoli [21]) to the case of a multivalued
random dynamical system and recall here a general result for
the existence and uniqueness of attractors. Firstly we need some
definitions.

Definition 2.6. A closed random set D is a map D : Ω → C(X)
which is measurable.
A closed random set D(ω) is said to be negatively (resp. strictly)

invariant for the MRDS if

D(θtω) ⊂ G(t, ω,D(ω)) (resp. D(θtω) = G(t, ω,D(ω)))
∀ t ∈ R+, ω ∈ Ω.

Suppose the following conditions for the MRDS G:
(H1) There exists an absorbing random compact set K(ω), that is,

for every bounded set D ⊂ X , there exists tD(ω) such that for
all t ≥ tD(ω)

G(t, θ−tω,D) ⊂ K(ω), ∀ω ∈ Ω. (5)
(H2) G(t, ω, ·) : X → C(X) is upper semicontinuous, for all

t ∈ R+ and ω ∈ Ω .
Define the ω-limit set Λ(D, ω) = ΛD(ω) of a bounded set

D ⊂ X as

ΛD(ω) = ∩T≥0 ∪t≥T G(t, θ−tω,D). (6)
We recall first some auxiliary results, proved in [22, p. 808].
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Lemma 2.7. ΛD(ω) is the set of limits of all converging sequences
{xn}n≥1, where xn belongs to G(tn, θ−tnω,D) with tn ↗ +∞.

Proposition 2.8. Assume conditions (H1) and (H2) hold. Then:

(i) ΛD (ω) ⊂ K (ω) is nonvoid and compact.
(ii) ΛD(ω) is negatively invariant, that is, G(t, ω,ΛD(ω)) ⊇

ΛD(θtω) for all t ∈ R+, ω ∈ Ω . If G(t, ω) is lower
semicontinuous, thenΛD(ω) is strictly invariant.

(iii) ΛD(ω) attracts D, that is, for any ω ∈ Ω we have

lim
t→+∞

dist(G(t, θ−tω,D),ΛD(ω)) = 0.

Definition 2.9. A closed random set ω 7→ A(ω) is said to be a
global random attractor of the MRDS G if:

(i) G(t, ω)A(ω) ⊇ A(θtω), for all t ≥ 0, ω ∈ Ω (that is, it is
negatively invariant);

(ii) for all D ⊂ X bounded,

lim
t→+∞

dist(G(t, θ−tω,D),A(ω)) = 0;

(iii) A (ω) is compact for any ω ∈ Ω.

We also recall the following theorem on the existence and
upper semicontinuity of random attractors for MRDS, proved
in [22,23].

Theorem 2.10. Let assumptions (H1)−(H2)hold, themap (t, ω) 7→
G(t, ω,D) be measurable for all deterministic bounded sets D ⊂ X,
and the map x ∈ X 7→ G(t, ω, x) have compact values. Then

A(ω) :=
⋃
D⊂X
bounded

ΛD(ω) (7)

is a global random attractor for G (measurable with respect to F ). It
is unique and the minimal closed attracting set.
Moreover, if the map x 7−→ G(t, ω, x) is lower semicontinuous for

each fixed (t, ω), then the global random attractor A (ω) is strictly
invariant, i.e., G(t, ω)A(ω) = A(θtω), for all t ≥ 0, ω ∈ Ω .

From Theorem 2.10, Kapustyan [24] proved the following
result:

Theorem 2.11. Let Ω be a metrizable topological space, X be a
separable Banach space with norm ‖·‖,F be the Borel σ -algebra, and
let G satisfy conditions (i), (ii) of Definition 2.2. Assume the following
conditions:

(H1b) There exists a measurable mapping r : Ω → R+ such that
for all ω ∈ Ω and for R > 0, there is a T = T (R, ω) > 1
such that ‖G (t − 1, θ−tω, BR)‖+ ≤ r (ω) for all t ≥ T , where
‖A‖+ = supy∈A ‖y‖, for A ⊂ X, and BR is a closed ball of radius
R > 0 centered at 0;

(H2b) If xn → x0 weakly, tn → t0 > 0, ωn → ω0, and
yn ∈ G (tn, ωn, xn), then up to a subsequence yn → y0 ∈
G (t0, ω0, x0) .

Then G generates a MRDS and the set A(ω) :=
⋃
R>0ΛBR(ω) is a

global random attractor. It is unique and the minimal closed random
attracting set.

Let Gε : R+ × Ω × X → C(X), ε ∈ (0, 1], be a parametrized
family of MRDS and let G0 : R+ × X → C(X) be a deterministic
multivalued semiflow (see [25] for the theory of global attractors
in this case). We recall that the set A is a global attractor for G0 if
A ⊂ G (t,A), for all t ≥ 0, and dist (G0 (t, B) ,A)→ 0, as t →∞,
for any bounded set B.
The following result improves Theorem 17 in [26].

Theorem 2.12. Let G0 have a compact global attractor A and let G0
have compact values. Suppose that the map x 7→ G0 (t, x) is upper
semicontinuous for any t ≥ 0. Assume also that every Gε satisfies
conditions (H1)–(H2) and the following:
(G1) For all ω ∈ Ω , t ∈ R+ it holds

dist(Gε(t, ω, B),G0(t, B))→ 0, as ε ↘ 0,

for any compact set B.
(G2) There exists a compact set K ⊂ X such that

lim
ε↘0
dist(Kε(ω), K) = 0, for all ω ∈ Ω,

where Kε (ω) is the absorbing set from condition (H1).
Then limε→0+dist (Aε (ω) ,A) for all ω ∈ Ω.

Proof 2.13. We argue by contradiction. Suppose that there exist
δ > 0, εj ↘ 0 and ω ∈ Ω , such that

dist(Aεj(ω),A) > δ.

Since Aεj(ω) are compact sets, there exists a sequence
{
xj
}
j∈N,

xj ∈ Aεj(ω), such that

dX (xj, x) > δ, for all j ∈ N, for all x ∈ A. (8)

We shall prove that there exists a subsequence of
{
xj
}
converging

to a point of the global attractorA, which contradicts (8).
Indeed, we can write, by the semi-invariance ofAεj(ω) that

xj ∈ Gεj(n, θ−nω, y
n
j ), with ynj ∈ Aεj(θ−nω),

for all n ∈ N.

From (G2)we deduce, asAεj(ω) ⊂ Kεj(ω), that

lim
j→∞

dist(Aεj(θ−nω), K) = 0, for all n,

so that limj→∞ dist(ynj , K) = 0. Thus, we conclude that there exists
a subsequence of

{
ynj
}
converging to a point yn0 ∈ K .

Now we shall prove that

lim
j→+∞

dist(Gεj(n, θ−nω, y
n
j ), G0(n, K)) = 0. (9)

Denote KJ,n = ∪j≥J y
n
j , which is a compact set. Then by the upper

semicontinuity of G(n, ·) for any ν > 0 there exists J (ν, n) such
that

dist(G0(n, KJ,n),G0(n, K)) ≤ dist(G0(n, KJ,n),G0(n, y
n
0)) <

ν

2
.

Hence

dist(Gεj(n, θ−nω, y
n
j ),G0(n, K))

≤ dist(Gεj(n, θ−nω, y
n
j ),G0(n, KJ,n))

+ dist(G0(n, KJ,n),G0(n, K))

≤ dist(Gεj(n, θ−nω, y
n
j ),G0(n, KJ,n))+

ν

2
. (10)

For the first termon the right-hand side of (10) by (G1) for arbitrary
ν > 0 there is J (ν, n) ≥ J (ν, n) such that

dist(Gεj(n, θ−nω, y
n
j ),G0(n, KJ,n)) <

ν

2
, if j ≥ J.

Therefore it holds (9) and, as xj ∈ Gεj(n, θ−nω, y
n
j ), it is

straightforward that

lim
j→+∞

dist(xj,G0(n, K)) = 0.

Since G0 has compact values, G0(n, ·) is upper semicontinuous
and K is compact, the set G0(n, K) is compact. Indeed, let yk ∈
G0 (n, uk), uk ∈ K . Then, up to a subsequence, uk → u0 and
dist (yk,G0 (n, u0))→ 0 as k→∞. Hence, yk → y0 ∈ G0 (n, u0).
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Then we can ensure that there exists x0 ∈ G0(n, K), for all n ∈
N, such that xj → x0 as j → ∞ (accurate to a subsequence). It
follows from the definition of the omega limit set (see [25]) that
x0 ∈ ΛK ⊂ A,which contradicts (8). �

2.2. Existence of random attractors for the climate model

Let H be a separable Hilbert space with norm ‖·‖ and scalar
product (·, ·).
In Kapustyan [24] it was proved the existence of random

attractors for the following abstract stochastic evolution equation{
du(t) ∈ (−∂ϕ(u(t))+ F(u(t)))dt + εφ

dWt
dt

,

u(x, 0) = u0,
(11)

where ∂ϕ is the subdifferential of a proper, convex lower
semicontinuous function ϕ : H → (−∞,+∞]. Consider the
following hypotheses for F and ϕ:
(F1) F : H → Cv(H), whereCv(H) is the set of non-empty bounded

closed convex subsets of H.
(F2) There exist D1,D2 ≥ 0 such that ‖y‖ ≤ D1 + D2‖v‖, for all

y ∈ F(v), v ∈ H.
(F3) F is ε-upper semicontinuous on H.
(F4) There exist δ > 0 andM > 0 such that

(y, u) ≤ −δ‖u‖2 +M,

for all u ∈ D(A) and y ∈ F(u).
(F5) The level sets MR = {u ∈ D (ϕ) : ‖u‖ ≤ R, ϕ (u) ≤ R} are

compact in H for any R > 0.

In [24] the results on existence and continuity of random
attractors are proved by using these conditions, but changing (F3)
by the stronger one that F is upper semicontinuous. In order to
give a proof of the first theorem of the Introduction, our aim is to
put (1) in the abstract form (11) and to improve the result in [24]
by proving the existence of the random attractor under merely
conditions (F1)–(F5).
Note also that Kapustyan and Valero [27] consider the existence

of attractors for the problem
∂u(t)
∂t
∈ ∆u+ f̃ (u)+ h̃, ∈ C × (0, T ),

u = 0 on ∂C,
u(x, 0) = u0,

(12)

where C ⊂ RN is an open bounded set with smooth boundary,
h̃ ∈ L2(C) and f̃ : R→ 2R satisfies:
(̃f 1) f̃ : R→ Cv(R) (Cv(R) denotes the set of non-empty, closed,

bounded and convex subsets of R).
(̃f 2) There exists d1, d2 ≥ 0 such that |y| ≤ d1 + d2|s|, for all

y ∈ f̃ (s), s ∈ R.
(̃f 3) f̃ is ε-upper semicontinuous on R.
(̃f 4) There exists δ > 0 andM > 0 such that

ys ≤ (λ1 − δ)|s|2 +M,

for all s ∈ R and y ∈ f̃ (s), being λ1 the first eigenvalue of−∆
in H10 (C).

Let H = L2(C). Define the multivalued map G : H → 2H as
follows:

G(y) = {ξ + h̃ : ξ ∈ H, ξ(x) ∈ f̃ (u(x)), a.e. x ∈ C}.

Then, by Lemma 6.28 in [28] G(·) satisfies (F1)–(F3). In this case
condition (F4) is satisfied but changing δ by λ1 − δ.

Remark 2.14. The fact that the map F is ε-upper semicontinuous
was stated at first in [27, Proposition 2.5]. However, there the proof
contained a misleading argument, and a new proof of this fact
(more precisely, two different ones)was given in [28, Lemma6.28].

Thus, if we now define f : (−1, 1)× R→ 2R as

f (x, r) = QS(x)β(r)− Br, for a.a. x ∈ (−1, 1), r ∈ R,

wewant to generalize the result on existence of random attractors
for this a bit more general multivalued map f . From now on H =
L2 (−1, 1) .
By the hypotheses on β , we know that

(β1) β : R→ Cv(R).
(β2) There exists d1 ≥ 0 such that |y| ≤ d1, for all y ∈ β(r), r ∈ R.
(β3) β is ε-upper semicontinuous onR (hence, upper semicontin-

uous as β (s) is compact).

Let us prove analogous properties as (̃f 1)–(̃f 3) for f (x, t). Also,
we prove a modified version of (̃f 4), in which λ1 = 0. We have:

(f1) f : (−1, 1) × R → Cv(R) is obvious, since if (x0, r) ∈
(−1, 1)×R, it follows by (β1) that QS(x0)β(r)− Br ∈ Cv(R).

(f2) For (x0, r) ∈ (−1, 1) × R, take y ∈ QS(x0)β(r) − Br . Then,
there exists ỹ ∈ β(r) such that y = QS(x0)ỹ − Br . Now, by
(β2), there exists d1 ≥ 0 such that |ỹ| ≤ d1, for all ỹ ∈ β(r),
r ∈ R. Thus,

QS(x0)|ỹ| ≤ QS(x0)d1,

and since

|y| ≤ QS(x0)|ỹ| + B|r|,

we get that

sup
y∈f (x0,r)

|y| ≤ QS(x0)d1 + B|r| ≤ QS1d1 + B|r|,

being the last inequality uniform for almost all x0 ∈ (−1, 1).
(f3) Given (x0, r0) ∈ (−1, 1) × R, and ε > 0, there exists δ > 0

such that, if |r − r0| < δ, then β(r) ⊂ Oε(β(r0)). Thus,
QS(x0)β(r) ⊂ Oε(QS(x0)β(r0)), and QS(x0)β(r) − Br ⊂
Oε(QS(x0)β(r0) − Br0). Indeed, if we take ỹ ∈ β(r) such that
y = QS(x0)ỹ− Br , given ε > 0, there exists δ < ε

2B such that,
if |r− r0| < δ, then |ỹ−z| < ε

2QS(x0)
, for some z ∈ β(r0). Thus,

|(QS(x0)ỹ− Br)− (QS(x0)z − Br0)| ≤ QS(x0)|ỹ− z|

+ |B (r − r0) | ≤
ε

2
+
ε

2
= ε,

so that r 7→ f (x, r) is ε-upper semicontinuous a.a. x ∈
(−1, 1).

(f4) For y = QS(x0)ỹ− Br , ỹ ∈ β (r), we have

(QS(x0)ỹ− Br)r ≤ QS(x0)d1 |r| − B|r|2,

so that

sup
x0∈(−1,1)

sup
y∈f (x0,r)

yr ≤ −
B
2
|r|2 +

QS1d1
2B

.

Define the multivalued map F : H → 2H as follows:

F(u) = {y+ h : y ∈ H, y(x) ∈ f (x, u(x)),
for a.a. x ∈ (−1, 1)}.

Proposition 2.15. The map F satisfies (F1)–(F4).

Proof 2.16. The map β has compact values and it is ε-upper
semicontinuous, so that it is upper semicontinuous. Therefore,
Proposition 2.5 in [18] implies that for arbitrary closed set C the
set E = {r ∈ R : β(r) ∩ C 6= ∅} is closed, so it is a borelian set.
Therefore for any u ∈ H the set

{x ∈ (−1, 1) : β(u (x)) ∩ C 6= ∅} = {x ∈ (−1, 1) : u(x) ∈ E}

is measurable. Thus from Theorem 1.35 in [18] we obtain the
measurability of the set-valued map x 7→ β(u (x)). Hence,
β(u(·)) has a measurable selection g(·) (see [29, Theorem 8.1.3] or
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[18, Theorem 2.1]). It follows that ξ (x) = QS(x)g (x) − Bu (x) is a
measurable selection of f (x, u (x)), and from (f2) we have ξ ∈ H .
Then F (u) is non-empty. In view of (f2) we have that

‖ξ + h‖ ≤

√∫
Ω

(K1 + K2|u(x)|)2dx+ ‖h‖ ≤ D1 + D2‖y‖,

for any u ∈ H , ξ+h ∈ F(u), so that (F2) holds and F (u) is bounded.
In a similar way as in [25, Lemma 11] we obtain that F (u) is closed
and convex. Hence, F : H → Cv(H) and (F1) holds.
Now we shall prove that F is ε-upper semicontinuous on H . If

this is not the case, then there exist u ∈ H , an ε-neighborhood
Oε(F (u)) and sequences un, yn + h ∈ F (un) such that un → u and
yn + h 6∈ Oε(F (u)) for all n, that is

dist(yn + h, F(u)) ≥ ε. (13)

Note that

yn (x) = QS (x) ξn (x)− Bun (x) ,

where ξn (x) ∈ β (un (x)), for a.a. x ∈ (−1, 1). Also from S (x) ≥
S0 > 0 and

ξn(x) =
yn(x)+ Bun(x)

QS(x)

it follows that ξn ∈ H . We have seen that β satisfies (̃f 1)–(̃f 3).
Since β has compact values in R and the map x 7→ β (u (x)) is
measurable (see the first part of the proof), for any n Corollary
8.2.13 in [29] implies the existence of a measurable selection
ηn (x) ∈ β (u (x)) such that

dist(ξn(x), β(u(x))) = |ξn(x)− ηn(x)| for a.a. x.

As un → u in H , passing to a subsequence we have un (x)→ u (x)
for a.a. x. Hence, the ε-upper semicontinuity of β gives

|ξn (x)− ηn (x)| ≤ dist(β(un(x)), β(u(x)))→ 0,

as n→∞, for a.a. x. By (β2) we get

|ξn (x)− ηn (x)| ≤ 2d1 for a.a. x,

so the Lebesgue theorem implies ‖ξn − ηn‖ → 0, and then if we
denote pn (x) = QS (x) ηn (x)− Bu (x), we have

‖yn − pn‖ → 0, as n→∞.

Observe that pn + h ∈ F (u). Therefore,

dist(yn + h, F(u)) ≤ ‖yn − pn‖ → 0 as n→∞,

which is a contradiction with (13). Thus (F3) is proved.
Finally, we obtain (F4). Indeed, if y + h ∈ F(u), in view of (f4)

we get

(y+ h, u) ≤
∫ 1

−1

(
−
B
2
|u (x) |2 +

QS1d1
2B

)
dx

+ ‖h‖ ‖u‖ ≤ −
B
4
‖u‖2 +

QS1d1
B
+
‖h‖2

B
.

This concludes the proof. �

If we define the function

ϕ (u) =

12
∫ 1

−1
|∇u|2 dx, if u ∈ H1 (−1, 1) ,

+∞, otherwise,
then it is well known ([30], see also [31, p. 63]) that ϕ is proper,
convex and lower semicontinuous and that ∂ϕ = −∆with domain
D (∂ϕ) =

{
u ∈ H2 (−1, 1) : ux (−1) = ux (1) = 0

}
. Also, D (ϕ) =

{u ∈ H : ϕ (u) < +∞} = H1 (−1, 1). Note also that in viewof [30]
we have D (ϕ) = D (∂ϕ) = H . Denote V = H1 (−1, 1) = D (ϕ)
and let V ∗ be its conjugate.
As a consequence of the compact embedding H1 (−1, 1) ⊂

L2 (−1, 1)we have:

Proposition 2.17. The function ϕ satisfies (F5).

Thus, we can consider (1) in the abstract form (11).

Remark 2.18. As it was proved in [5], the case of a degenerate
diffusion ((1 − x2)ux)x also generates a subdifferential ∂ϕ. In fact
it remains being true for the case of quasilinear diffusion operators
(see [5]).

Now, let us consider the Wiener probability space (Ω,F , P)
defined by

Ω = {ω = w (·) ∈ C (R,R) : w (0) = 0} ,

equipped with the Borel σ -algebra F , the Wiener measure P, and
the usual uniform convergence on bounded sets of R. Let ζ (t) =
φw (t). Each ω ∈ Ω generates a map ζ (·) = φw (·) ∈ C (R,H)
such that ζ (0) = 0.
Write A = −∂ϕ. For each ω ∈ Ω we make the change of

variable v (t) = u (t) − εζ (t). As a consequence of well-known
results (see, e.g. [32]), inclusion (11) formally turns into{dv
dt
∈ Av (t)+ F (v (t)+ εζ (t))+ εAζ (t) ,

v (0) = v0 = u0.
(14)

Nowwe have to show that (14) has at least one solution in some
sense. Although some existence results can be obtained by obvious
modifications of the results of the papers [5–7], we shall carry out
this in a different way. Let us define the map F̃ : [0, T ]×Ω×H →
2H by F̃ (t, ω, u) = F (u+ εζ (t))+ εAζ (t) .

Definition 2.19. The process v : Ω×[0, T ] → H is called a strong
solution of (14) if for each ω ∈ Ω:

1. v(ω, ·) ∈ C ([0, T ],H);
2. v(ω, ·) is absolutely continuous on any compact subset of (0, T )
and almost everywhere (a.e.) differentiable on (0, T );

3. v(ω, ·) satisfies

dv
dt
= Av (t)+ f (t) , for a.a. t ∈ (0, T ) , v(0) = v0, (15)

where f (·) ∈ L1(0, T ;H) and f (t) ∈ F̃ (t, ω, v (ω, t)) for a.a.
t ∈ (0, T ) on H.

Inwhat follows,we shall omit the variableωwhenno confusion
is possible.
Let us now show that F̃ possesses good properties. First, it is

clear that it has at most linear growth. Indeed, by (F2) we obtain

‖y‖ ≤ D1 + D2 ‖u‖ + D2ε ‖φ‖ |w (t)|

+ ε ‖Aφ‖ |w (t)| ≤ D̃1 + D2 ‖u‖ , (16)

for any y ∈ F̃ (t, ω, u) and t ∈ [0, T ], where D̃1 depends on ω and
T . Also, it follows from (F1) and (F3) that F̃ (t, ω, u) ∈ Cv (H) and
that u → F̃ (t, ω, u) is ε-upper semicontinuous. Finally, we shall
show that for any u ∈ H , ω ∈ Ω , the map t 7→ F̃ (t, ω, u) has a
measurable selection.

Proposition 2.20. The map t 7→ F̃ (t, ω, u) has a measurable
selection for all ω ∈ Ω , u ∈ H.

Proof 2.21. First, we consider the map G defined above with
f̃ (s) = β (s) and h̃ (x) = 0. For a continuous function v : [0, T ] →
H we define the multivalued function G̃ : [0, T ] → P (H) by

t 7→ G̃ (t) = G (v (t)) .

Note that this map has non-empty values by the arguments given
in the proof of Proposition 2.15. We shall prove that this map has
a measurable selection.
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By (β1)–(β3) we know that β is upper semicontinuous. Then
by Theorem 1 in [20, p. 84] we have that for any σ > 0 there
exists a locally Lipschitzian map βσ : R → R such that its range
is contained in the convex hull of the range of β and Graph (βσ ) ⊂
Graph (β)+ σB1, where B1 is a closed ball of radius 1 and centered
at 0 in R2. As by (β2) we have |z| ≤ d1, for all s ∈ R, z ∈ β (s), we
obtain also that |βσ (s)| ≤ d1, for any s ∈ R.
Let Gσ : H → H be given by

Gσ (u) = {y ∈ H : y (x) = βσ (u (x)) for a.a. x ∈ (−1, 1)}.

This map is continuous. Indeed, let un → u in H . If yn = Gσ (un)
does not converge to y = Gσ (u), then there exist δ > 0 and
a subsequence (denoted again yn) such that ‖yn − y‖ ≥ δ for
any n. Passing to a subsequence we have that yn (x) → y (x) for
a.a. x ∈ (−1, 1). Then |yn (x)| ≤ d1 and the Lebesgue theorem
imply that yn → y, which is a contradiction. Then the map zσ :
[0, T ] → H defined by zσ (t) = Gσ (v (t)) is also continuous and
then measurable.
It is well known that a real maximal monotone map can have

at most a countable number of discontinuity points. Let s0 be such
a point. By Graph (βσ ) ⊂ Graph (β) + σB1 there exists (yσ , sσ ),
yσ ∈ β (sσ ) such that

|βσ (s0)− yσ | + |s0 − sσ | ≤ σ .

Sinceβ isσ -upper semicontinuous andβ (s0) is a compact interval,
we have dist (yσ , β (s0)) = |yσ − dσ | → 0 as σ → 0, for
some dσ ∈ β (s0). Then passing to a subsequence σn we have that
dσn → ds0 ∈ β (s0) and∣∣βσn (s0)− ds0 ∣∣ ≤ ∣∣βσn (s0)− yσn ∣∣+ ∣∣yσn − dσn ∣∣

+
∣∣dσn − ds0 ∣∣→ 0.

We can repeat this for each point of discontinuity and then by a
diagonal procedure we can choose a common subsequence for all
the points of discontinuity. Clearly, if s is a point of continuity, then
βσn (s)→ ds no matter which sequence we take.
Let S be the set of points of continuity of β . We define the

selection β of β given by

β (s) =
{
β (s) , if s ∈ S,
ds, if s 6∈ S,

where ds is chosen for every s 6∈ S from the above arguments.
Hence, βσn (s)→ β (s) for any s.
We state that the map defined by z (t) (x) = β (v (t) (x)), for

a.a. x ∈ (−1, 1), maps every t into H and is measurable. Fix
t ∈ [0, T ]. We prove first that zσn (t) → z (t) in H . This follows
from the Lebesgue theorem as

zσn (t) (x) = βσn (v (t) (x))→ β (v (t) (x)) ,∣∣βσn (v (t) (x))∣∣ ≤ d1, for a.a. x.
Then z (t) ∈ H , for all t , and z(·) it is the pointwise limit of a

sequence of measurable functions, so that it is measurable. Clearly,
z(·) is a selection of G̃.
If we put v (t) = u+ εζ (t), it follows that

r (t) = QSz (t)− B (u+ εζ (t))+ εAζ (t)+ h

is a measurable selection of t 7→ F̃ (t, ω, u). �

Remark 2.22. When F is upper semicontinuous (as in [24]) the
map t 7→ F̃ (t, ω, x) is also upper semicontinuous, and then it
follows directly the existence of a measurable selection by the
well-known theorems. However, we cannot obtain this property
for our problem.

Also, it is well known (see [30] or [31]) that A = −∂ϕ is an
m-dissipative operator.

Therefore, by [33] or [34], for each v0 ∈ H there exists an
integral solution v(·) of (14), which means that v(0) = v0 and for
some f (·) ∈ L1 (0, T ;H) such that f (t) ∈ F̃ (t, ω, v (ω, t)), for a.a.
t ∈ (0, T ), the following inequality holds:

‖v(t)− ξ‖2 ≤ ‖v(s)− ξ‖2

+ 2
∫ t

s
(f (τ )+ Aξ, v(τ )− ξ) dτ , t ≥ s, (17)

for all ξ ∈ D(A), where (·, ·) denotes the scalar product in H.
Note that (16) implies that f (·) ∈ L2 (0, T ;H). Then it follows

from [30] (see also [31, p. 189]) that problem (15) has a unique
strong solution. Since every strong solution is an integral one and
the integral solution of (15) is unique if f (·) ∈ L1(0, T ;H) [30] (see
also [31]), it follows that our solution v(·) is a strong one (note that
a different argument to arrive to this conclusion was given in [5]).
It is clear that the theorem on existence is also true if we take an

arbitrary interval [τ , T ]. Let vi(·), v1 (0) = v0, v2 (T ) = v1 (T ), be
strong solutions of (14) defined on [0, T ] and [T , 2T ], respectively.
Then putting

v (t) =
{
v1 (t) , if t ∈ [0, T ] ,
v2 (t) , if t ∈ (T , 2T ] ,

and

f (t) =
{
f1 (t) , if t ∈ [0, T ] ,
f2 (t) , if t ∈ (T , 2T ] ,

where fi(·) are the corresponding selection of F̃ (t, ω, vi (t)), we
can easily see that v(·) satisfies (17) on [0, 2T ], so that it is an
integral solution. Arguing as above we obtain that v(·) is in fact a
strong solution defined on [0, 2T ]. In this waywe can extend every
strong solution on [0,+∞).
Let D (v0, ω) be the set of all strong solution of (14) (which

are defined for all t ≥ 0). Then we define the set-valued map
G : R+ ×Ω × H → P (H) by

G (t, ω, v0) = {v (t)+ εζ (t) : v(ω, ·) ∈ D (v0, ω)} .

It can be proved exactly in the same way as in [22, Proposition 4]
that G satisfies the cocycle property (see Definition 2.2).
Let θs : Ω → Ω be defined by θsω = w (s+ ·) − w (s) ∈ Ω .

Then the function ζ̃ corresponding to θsω is defined by ζ̃ (τ ) =
ζ (s+ τ)− ζ (s) = φ (w (s+ τ)− w (s)) .
Now we state and prove Theorem 1.1.

Theorem 2.23. Assume the conditions (2) and (3). Then themultival-
ued randomdynamical systemG associated to (1) has a global random
attractor Aε .

Proof 2.24. Condition (H1b) in Theorem 2.11 is proved in a similar
way as in [22, Proposition 11]. We note that for any y ∈
G (t, θsω, u0), y = v (t) + εζ (t + s) − εζ (s), with v(ω, ·) ∈
D (u0, ω). After the change of variable z (t) = v (t) − εζ (s), we
obtain that y = z (t) + εζ (t + s), being z (·) the integral solution
(in fact, a strong one) of the problem{dz
dt
= Az (t)+ g (t) ,

z (0) = u0 − εζ (s) ,
(18)

where g (t) ∈ F (z (t)+ εζ (t + s))+εAζ (t + s), a.e. in (0, T ). For
s = −t0 multiplying (18) by z (t) and using (F4) we get

1
2
d
dt
‖z (t)‖2 ≤ −δ (z (t)+ εζ (t − t0) , z (t)+ εζ (t − t0))

+ ε ‖F (z (t)+ εζ (t − t0))‖+ ‖ζ (t − t0)‖
+ ε ‖Aζ (t − t0)‖ ‖z (t)‖ +M.
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Inequality (F2) and Young’s inequality then imply

1
2
d
dt
‖z (t)‖2 ≤ −

δ

2
‖z (t)‖2 + ε2M2

×
(
‖ζ (t − t0)‖2 + ‖Aζ (t − t0)‖2

)
+M3.

Hence,

d
dt
‖z (t)‖2 ≤ −δ ‖z (t)‖2 + ε2p (t − t0, ω)

+ 2M3, (19)

where p (t − t0, ω) = 2M2
(
‖ζ (t − t0)‖2 + ‖Aζ (t − t0)‖2

)
.

Multiplying (19) by exp (δt) and integrating over (0,−1+ t0) we
obtain

‖z (−1+ t0)‖2 ≤ e−δ(−1+t0) ‖u0‖2 + ε2e−δ(−1+t0) ‖ζ (−t0)‖2

+

∫
−1

−∞

e−δ(−1−τ)
(
ε2p (τ , ω)+ 2M3

)
dτ .

We take R2 = 1+ 2M3
δ
and

r21ε (θ−1ω) = R
2
+ ε2 sup

t0≤−1
e−δ(−1+t0) ‖ζ (−t0)‖2

+ ε2
∫
−1

−∞

e−δ(−1+t0)p (τ , ω) dτ , (20)

rε (θ−1ω) = r1ε (θ−1ω)+ ε ‖ζ (−1)‖ . (21)

The radius rε (θ−1ω) isP-a.s. finite, because‖ζ (−t0)‖2 and p (τ , ω)
have at most polynomial growth for P-almost all ω ∈ Ω .
Since y = z (−1+ t0) + εζ (−1), for u0 in a bounded set B we

choose T (ω, B) ≥ 1 such that

‖y‖ ≤ ‖z (−1+ t0)‖ + ε ‖ζ (−1)‖ ≤ rε (θ−1ω) ,
if t0 ≥ T (ω, B) ,

for P-a.a. ω ∈ Ω and any y ∈ G
(
−1+ t0, θ−t0ω, u0

)
, u0 ∈ B.

Hence, (H1b) holds.
Let us prove (H2b). Let yn ∈ G (tn, ωn, xn) and xn → x0 weakly,

tn → t0, t0 > 0, ωn → ω0. Then yn = vn (tn) + ζn (t), where
vn(ωn, ·) ∈ D (xn, ωn), and ζn → ζ0 in C ([0, T ];H). Take T > t0.
Multiplying (15) by vn and using (16) and ωn → ω0, we obtain

d
dt
‖vn‖

2
≤ K1 + K2 ‖vn‖2 ,

where Ki are constant not depending on n, so that Gronwall’s
lemma and (16) imply

‖vn (t)‖ ≤ C1, ‖fn (t)‖ ≤ C2, ∀t ∈ [0, T ]. (22)

Then arguing as in [22, p. 825] we have also that∫ T

0
ϕ (vn (t)) dt ≤ C3, ϕ (vn (t)) ≤ C4 (δ) , if t ∈ [δ, T ], (23)∫ T

0
t
∥∥∥∥dvndt

∥∥∥∥2 dt ≤ C5. (24)

It follows from (23) and equality (15) that dvndt is bounded in
L2 (0, T ; V ∗). Then by the compactness theorem [35] we obtain (up
to a subsequence) that

vn → v weakly star in L∞ (0, T ;H) and weakly in L2 (0, T ; V ) ,
dvn
dt
→
dv
dt
weakly in L2

(
0, T ; V ∗

)
,

vn → v in L2 (0, T ;H) ,
vn (t)→ v (t) for a.a. t ∈ (0, T ) ,

fn → f weakly in L2 (0, T ;H) . (25)

Also, by (F5), (22)–(24) and the Ascoli–Arzelà theorem we
obtain

vn → v in C ([δ, T ];H) for any δ > 0. (26)

Hence,

vn (tn)→ v (t0) in H. (27)

By the compact embedding H ⊂ V ∗, (22) and the boundedness
of dvndt in L

2 (0, T ; V ∗) it follows using again the Ascoli-Arzelà
theorem that vn → v in C ([0, T ]; V ∗). Therefore, by a standard
argument

vn (t)→ v (t) weakly in H for any t ∈ [0, T ]. (28)

Hence, v (0) = x0.
The maps vn satisfy inequality (17) replacing f by fn. By the

convergences in (25)-(26) we have that v satisfies (17) for any
0 < s ≤ t . However, v ∈ L2 (0, T ; V ), dvdt ∈ L

2 (0, T ; V ∗) imply
v ∈ C ([0, T ];H) [36, p. 261], so (17) holds for any 0 ≤ s ≤ t , as
well.
Therefore, in order to show that v is a strong solution of (14) it

is necessary to check that f (t) ∈ F (v (t)+ εζ0 (t))+ εAζ0 (t), for
a.a. t ∈ (0, T ). By condition (F3) for each γ > 0 there exists N0 (γ )
such that

fn (t) ∈ F (vn (t)+ εζn (t))+ εAζn (t) ⊂
F (v (t)+ εζ0 (t))+ εAζ0 (t)+ γ B1,

for n ≥ N0, where B1 is a closed ball in H of radius 1 centered at 0.
Since the right-hand side of the last expression is a convex set, we
have

co∪n≥N0 fn (t) ⊂ F (v (t)+ εζ0 (t))+ εAζ0 (t)+ γ B1.

But fn → f weakly in L2 (0, T ;H) implies f (t) ∈ ∩N≥N0 co∪n≥N fn
(t), for a.a. t , which is a consequence ofMazur’s theorem. Hence, as
γ > 0 is arbitrary, we obtain f (t) ∈ F (v (t)+ εζ0 (t))+ εAζ0 (t).
Hence, v ∈ D (x0, ω) and by (27) we have

yn → y = v (t0)+ εζ (t0) ∈ G (t0, ω0, x0) .

Hence, condition (H2b) is proved.
Now, the result follows from Theorem 2.11. �

By using Theorem 2.12 we can also prove the upper semicon-
tinuity as ε → 0 of the random attractor to the associated global
attractor for the associated (deterministic) partial differential in-
clusion. Denote by Gε the multivalued random dynamical system
associated to (1) for each ε > 0. Let G0 be the multivalued deter-
ministic semiflow associated to (1) when ε = 0, which has a global
compact attractor. This fact follows from Propositions 2.15 and
2.17 using the results in [27, Theorem 2.3] or [28, Theorem 6.33].

Theorem 2.25. Assume conditions (2) and (3). Then,

lim
ε↘0
dist(Aε(ω),A) = 0, for all ω ∈ Ω,

whereA is the global attractor associated to (1) with ε = 0.

Proof 2.26. Let us prove that for any bounded weakly closed set B
and any t > 0 the following holds:

dist (Gε (t, ω, B) ,G0 (t, B)) →
ε→0
0, for all ω ∈ Ω. (29)

Assume the opposite, that is, there exist δ > 0, yn ∈ Gεn (t, ω, xn),
xn ∈ B, εn → 0 such that

dist(yn,G0(t, B)) ≥ δ.

Repeating the same arguments of the previous theoremwe find
up to a subsequence that yn → y0 ∈ G0 (t, x0), x0 ∈ B, which
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is a contradiction. Hence, as every compact set B is bounded and
weakly closed, we obtain that (G1) in Theorem 2.12 holds.
Further, in the proof of Theorem 2.23 we have established that

for every Gε there exists a random radius given by (21) such that
the random closed ball Brε(θ−1ω) is absorbing, i.e., for any bounded
set B there exists T (B, ω) such that

‖y‖ ≤ rε (θ−1ω) , ∀y ∈ Gε (−1+ s, θ−sω, B) , s ≥ T .

Then it follows from (H2b) that the set Kε (ω) =

Gε
(
1, θ−1ω, Brε(θ−1ω)

)
is compact, so as, by the cocycle property,

Gε (s, θ−sω, B) = Gε (1, θ−1ω,Gε (−1+ s, θ−sω, B)) ,

we have that Gε satisfies (H1).
Let BR+1 be a closed ball of radius R+1 centered at 0 and define

K = G0 (1, BR+1), which is a compact set because the operator
G0(1, ·) is compact, as shown in the proof Theorem 2.3 in [27]
(see also [28, Lemma 6.17]). Then Brε(θ−1ω) ⊂ BR+1 for ε small
enough and in view of (29) we have

dist(Kε(ω), K) ≤ dist
(
Gε
(
1, θ−1ω, Brε(θ−1ω)

)
,G0 (1, BR+1)

)
≤ dist (Gε (1, θ−1ω, BR+1) ,G0 (1, BR+1))→ 0, as ε→ 0.

Hence, (G2) holds.
Condition (H2) is a consequence of (H2b), which was proved in

the previous theorem. Also, the map G0 has compact values and
x 7→ G0 (t, x) is an upper semicontinuous map (see the proof of
Theorem 2.3 in [27] or the proof of Theorem 6.33 in [28]).
Finally, we apply Theorem 2.12. �

Remark 2.27. We have considered the asymptotic behaviour of
solutions generated by the random inclusion (14). It would be
interesting to study the relationship of these solutions with the
solutions of the original stochastic equation as done in [37] for
a differential inclusion of other type. Moreover, it would be
interesting to get similar results when φ does not satisfy φ ∈
H2 (−1, 1) with φx (−1) = φx (1) = 0 (note that in the case of
degenerate diffusion, ((1 − x2)ux)x, this leads to consider φ such
that φ 6∈ H2 (−1, 1)).
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