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Abstract

We study the dynamics and regularity of the level sets in solutions of the semilinear parabolic equation

ut − �pu + f ∈ aH(u − μ) in Q = Ω × (0, T ], p ∈ (1,∞),

where Ω ⊂ R
n is a ring-shaped domain, �pu is the p-Laplace operator, a and μ are given positive constants, and H(·) is the

Heaviside maximal monotone graph: H(s) = 1 if s > 0, H(0) = [0,1], H(s) = 0 if s < 0. The mathematical models of this type
arise in climatology, the case p = 3 was proposed and justified by P. Stone in 1972. We establish the conditions on the initial
data which guarantee that the level sets Γμ(t) = {x: u(x, t) = μ} are hypersurfaces, study the regularity of Γμ(t) and derive the
differential equation that governs the dynamics of Γμ(t). The analysis is based on the introduction of a system of Lagrangian
coordinates that transforms the moving surface Γμ(t) into a stationary one.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Statement of the problem

In this paper we deal with the problem⎧⎨⎩
ut − �pu + f (x, t) ∈ aH(u − μ) in DT = Ω × (0, T ],
u = φ on ST = ∂Ω × (0, T ],
u(x,0) = u0(x) in Ω,

(1.1)
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where μ > 0 and a > 0 are prescribed constants, H(·) is the Heaviside maximal monotone graph in R
2 given by

H(s) =
⎧⎨⎩

1 if s > 0,

[0,1] if s = 0,

0 if s < 0.

�p is the p-Laplace operator

�pv ≡ div
(|∇v|p−2∇v

)
, p ∈ (1,∞).

It is assumed throughout the paper that Ω ∈ R
n, n � 1, is a ring-shaped domain with the exterior boundary ∂eΩ and

the interior boundary ∂iΩ , ∂iΩ ∩ ∂eΩ = ∅. The function f (x, t) is given and belongs at least Lp′
(0, T ;Lp′

(Ω)) with
p′ = p

p−1 .
Our interest in this problem is motivated by its application in Climatology. Problem (1.1) arises from the mathe-

matical formulation of the Energy Balance Model proposed by M. Budyko in 1969 [1]. The model is obtained from
the energy balance equation for the earth surface

E = Ra − Re + D,

where E is the accumulation of the total energy, Ra is the co-albedo absorbed energy (represented here by the discon-
tinuous function, i.e., the maximal monotone graph), Re is the emitted energy and D is the diffusion represented by
the second order p-Laplace diffusion operator. If p = 2, then the diffusion is described by the linear Laplace operator,
as was originally proposed by M. Budyko. In 1972 P. H. Stone [14] proposed to choose for D the nonlinear diffusion
operator with p = 3. This is the case considered in the present paper: the diffusion operator D is the quasilinear p-
Laplacian under the general condition p ∈ (1,∞). More information on the physical backgrounds of this model and
the further references can be found in [4–6].

The main aim of the paper is to describe the level set Γμ which separates the regions

D+
T = {

(x, t) ∈ DT : u(x, t) > μ
}

and D−
T = {

(x, t) ∈ DT : u(x, t) < μ
}
.

The solution of problem (1.1) is understood as follows.

Definition 1.1. A function u : DT �→ R is said to be a continuous weak solution of problem (1.1) if

(1) u ∈ C0(DT ) ∩ Lp(0, T ; W 1
p(Ω)) and satisfies the initial and boundary conditions by continuity,

(2) there exists a function hu ∈ L∞(DT ), such that{
hu :DT �→ [0,1],
hu(x, t) ∈ H

(
u(x, t) − μ

)
for a.e. (x, t) ∈ DT ,

(1.2)

(3) for every test-function η ∈ Lp(0, T ; W
1,p

0 (Ω)), such that ηt ∈ L2(DT ), the following identity holds:∫
DT

[
ηtu − ∇η · |∇u|p−2∇u − ηf + aηhu

]
dxdt =

∫
Ω

uη dx

∣∣∣∣t=T

t=0
. (1.3)

According to this definition, problem (1.1) is understood as the problem of finding the functions u and hu such that⎧⎨⎩
ut − �pu + f (x, t) = ahu ∈ aH(u − μ) in DT ,

u = φ on ST ,

u(x,0) = u0(x) in Ω.

(1.4)

Throughout the paper we assume that the data of problem (1.4) are subject to the following general restrictions:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂Ωe, ∂Ωi ∈ C2,

u0 ∈ W 2,q (Ω) with some q > n + 2, |∇u0| � ε > 0 in Ω,

φ > μ on ∂Ωe × [0, T ], φ < μ on ∂Ωi × [0, T ],
φ(x,0) = u0(x) on ∂Ωe and ∂Ωi,

f (x, t) ∈ Cβ
(
(0, T );Lq(Ω)

)
with some β ∈ (0,1).

(1.5)
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Further conditions will be specified in the formulation of the main results. We will use the notation

Γμ = {
(x, t) ∈ DT : u(x, t) = μ

}
, Γμ(t) = Γμ ∩ {t = const}

and assume that

γ = Γμ(0) is a (n − 1)-dimensional surface of the class C2. (1.6)

We prove that under these conditions the set Γμ is a (n + 1)-dimensional hypersurface (for short times), establish
certain regularity properties of Γμ, and show that the dynamics of Γμ(t) is defined by a differential equation which
can be interpreted as a generalization of the Darcy law in filtration theory.

1.2. Previous work. Motivation

The questions of dynamics and regularity of the level set Γμ in solutions of Eq. (1.4) were studied thus far only
in the linear case p = 2—see [7,15] for the problem in the one-dimensional setting and [6] for the case of arbitrary
space dimension. The present work continues the study initiated in [6] for the special case p = 2, f ≡ 0 and extends
it to the quasilinear equation (p 
= 2) with a nonzero forcing term.

Under the foregoing conditions on the data, existence of a weak solution to problem (1.1) can be proved by the
methods developed in [4,5]. The discontinuous term H(u − μ) is approximated by a sequence of smooth functions,
and the solution of problem (1.1) is then obtained as the limit of the sequence of solutions of the regularized problems.
The basics, an excellent insight into this method and a number of relevant results can be found in the monograph [12].
Unfortunately, this approach provides no information about the regularity and qualitative properties of the surface Γμ.

For smooth solutions the differential equation of the level surface Γμ can be derived in the standard way. Calculat-
ing the total derivative of u along Γμ we find that

0 = du|Γμ = (ut + xt · ∇u)|Γμ dt. (1.7)

Since the normal n to Γμ(t) has the form ∇u/|∇u|, Eq. (1.7) formally leads to the differential equation of motion
of Γμ: if |∇xu(x0, t0)| 
= 0 at a point (x0, t0) ∈ Γμ, then at this point the normal velocity of Γμ is calculated by the
formula

xt · n = − ut

|∇u|
∣∣∣∣
Γμ

.

However, the regularity of the searched solution is insufficient to justify such an equation. Indeed: the nonlinear
forcing term in Eq. (1.1) belongs to L∞(DT ) and the standard parabolic theory does not guarantee differentiability of
the solution across Γμ.

The level surface Γμ can be regarded as a moving (free) boundary where the nonlinear forcing term has a discon-
tinuity jump. The study of regularity of solutions of the free boundary problems is often based on a suitable change
of variables that transforms (locally) the moving boundary into a part of vertical plane—see, for example, [2,3,8] and
the references therein. In this approach, the study of the free boundary properties reduces to the study of behavior of
the solution to a nonlinear PDE near a known time -independent boundary of the problem domain. The method we
use in the present paper is also based on a special (nonlocal) coordinate transformation that renders the free boundary
Γμ a time-independent surface. We prove the equivalence between the original problem and the new one, and then
treat the latter as an independent mathematical problem. An advantage of our method is that the differential equation
of the free boundary is included into the formulation of the new problem and does not need any further justification.
The detailed description of the coordinate transformation is given in Section 2.

1.3. Main results

Let us a choose a domain ω(0) ⊂ Ω such that ∂ω(0) ∈ C2, γ ⊂ ω(0), and there exist ring-shaped domains ω+
0 and

ω−
0 satisfying the conditions⎧⎪⎨⎪⎩

ω(0) = ω+
0 ∪ ω−

0 , γ = ω+
0 ∩ ω−

0 ,

ω+
0 ∩ ∂Ωe = ∅, ω−

0 ∩ ∂Ωi = ∅,

∂ω±
0 ∈ C2.

(1.8)
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Theorem 1.1. Let conditions (1.5), (1.6), (1.8) be fulfilled. Assume that a > 0 and 0 � f < a in DT . Then there
exists T ′ such that

(1) problem (1.1) has a weak solution u ∈ W
2,1
q (DT ′),

(2) for this solution the surface Γμ is parametrized by the bijective mapping

γ � y �→ x(y, t) = y + ∇yU ∈ Γμ(t) (1.9)

where U(y, t) is a function defined on ω(0) × (0, T ′) and

D
β
y U ∈ W 2,1

q

(
ω±

0 × (0, T ′)
)

for |β| = ∑
i βi � 2.

Moreover,⎧⎪⎪⎨⎪⎪⎩
ω(0) � y �→ x(y, t) = y + ∇yU ∈ ω(t),∫
ω(t)

u(x, t) dx =
∫

ω(0)

u0(x) dx ∀t ∈ [0, T ′]. (1.10)

Corollary 1.1. An immediate byproduct of Theorem 1.1 is that for the constructed solution the set Γμ is an n-
dimensional hypersurface of the class C1+α,(1+α)/2 with some α ∈ (0,1), and that for every t ∈ (0, T ′] the set Γμ(t)

is a (n − 1)-dimensional hypersurface of the class C2+σ with σ ∈ (0,1).

Remark 1.1. If we drop the regularity assumption (1.6), then, by virtue of conditions (1.5) and the embedding
theorems in Sobolev spaces, we would have γ ∈ C1+α with certain α(q,n) ∈ (0,1). In this case formulas (1.9) yield
Γμ(t) ∈ C1+α for every t ∈ (0, T ′].
Remark 1.2. In this paper we do not specially discuss the question of uniqueness of solution to problem (1.1). Under
the conditions of Theorem 1.1 the uniqueness follows from the results of [4].

Theorem 1.2. The points of the surface Γμ(t) move with the velocity

v(x, t) = − 1

u
|∇u|p−2∇u + ∇p,

where p(x, t) is the solution of the elliptic problem{
div(u∇p) + f − aχ{u>μ} = 0 in ω(t), t ∈ [0, T ′],
p(x, t) = 0 on ∂ω(t)

(1.11)

and the moving domain ω(t) is given in (1.10). The points of the surface Γμ(0) start moving with the velocity

v0(x) = − 1

u0
|∇u0|p−2∇u0 + ∇p0,

where p0 ∈ W 2
q (ω(0)) is the solution of the elliptic problem

div(u0 ∇p0) + f (x,0) − aχ{u0>μ} = 0 in ω(0), p0 = 0 on ∂ω(0).

Moreover,∣∣v(
x(y, t), t

) − v0(y)|(σ )
ω(0) � Ctν with ν ∈ (0,1). (1.12)

The next result refers to case p = 2 (linear diffusion).

Theorem 1.3. Let in the conditions of Theorem 1.1 p = 2 and f ≡ 0. Given an arbitrary m ∈ N, there exists T = T (m)

such that for every fixed y ∈ ω(0) the function X(y, t) = y + ∇yU (the trajectory) satisfies the estimate
m∑

k=0

1

k!Mk

∑
|β|�2

∥∥tkDk
t D

β
y U(y, t)

∥∥
W

2,1
q (ω±

0 ×(0,T (m)))
< ∞

with a constant M depending on n, q , m, γ and ∂ω±
0 , but independent of U .



Author's personal copy

J.I. Díaz, S. Shmarev / J. Math. Anal. Appl. 352 (2009) 475–495 479

Remark 1.3. It is proved in [7] that in the case p = 2, n = 1, and under similar conditions on the initial data, the
level curve Γμ is represented in the form x = ζ(t) with ζ(t) ∈ C∞(0, T ]. The proof given in [7] is specific for the
one-dimensional case and is not applicable to the solutions of multidimensional problem.

1.4. Organization of the paper

The study of the level set Γμ is based on the introduction of the system of Lagrangian coordinates frequently
used in continuum mechanics. The evolution equation (1.4) is formally considered as the of mass balance equation
in the motion of a fictitious fluid, and this motion is then given a counterpart description in the plane of Lagrangian
coordinates. The convenience of this method is that on the plane of Lagrangian coordinates the level set Γμ is known
beforehand.

The introduction of Lagrangian coordinates and the equivalence between the original free-boundary problem and
the problem formulated in Lagrangian coordinates are given in Section 2. This part of presentation mostly follows
paper [6] where the same method was applied to the study of problem (1.1) with the linear diffusion operator and
f ≡ 0.

Sections 3-4 are devoted to the study of auxiliary problems formulated in Lagrangian coordinates. In Section 5 we
prove solvability of the problem formulated in Lagrangian coordinates and check the equivalence between the original
free-boundary problem and its Lagrangian counterpart. The proofs of Theorems 1.1, 1.2 are given in Section 6 and
turn out to be simple byproducts of the results obtained for the problem in Lagrangian formulation. The proof of
Theorem 1.3 is given in Section 7.

2. Lagrangian coordinates

2.1. The Euler and Lagrangian descriptions of motions of a fluid

Let us consider a fluid occupying a region ω(t) ⊂ R
n assuming that the following conditions are fulfilled:

• the mass of every moving volume σ(t) ⊆ ω(t), constituted by the same particles, does not change with time,
• the boundary ∂ω(t) of ω(t) is constituted by the same particles for every t > 0 and the velocity of ∂ω(t) in the

normal direction coincides with the normal velocity of the particle constituting ∂ω(t),
• the continuous velocity field v(x, t) is given.

There are two methods of description of such a motion. The first one is the Euler method in which the characteristics
of motion are considered as function of the time t and the position of each particle in a coordinate system independent
of the fluid. Let u(x, t) be the density of the fluid. The mathematical description of the fluid motion includes

(a) the mass conservation law∫
σ(t)

u(x, t) dx =
∫

σ(0)

u0(x) dx,

where σ(t) is an arbitrary fluid volume which evolves with time but is constituted by the same particles at every
t > 0; in the differential form this law reads

ut + div(uv) = 0;

(b) the initial and boundary conditions: the initial distribution of density u(x,0) = u0(x) in ω(0) and the normal
velocity of ∂ω(t) are given.
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In this approach the unknowns are the density u(x, t) and the domain ω(t). They are defined from the conditions⎧⎪⎪⎪⎨⎪⎪⎪⎩
ut + div(uv) = 0 in C = ⋃

{t>0} ω(t),

u(x,0) = u0(x) in ω(0),∫
ω(t)

u(x, t) dx =
∫

ω(0)

u0(x) dx ∀t > 0.
(2.1)

The solution of this problem is understood in the weak sense.

Definition 2.1. A domain C = ⋃
t>0 ω(t) and a function u(x, t) ∈ C0(C) are called a solution of problem (2.1) is for

every test-function η ∈ C1(C)∫
C

(uηt + u∇η · v) dxdt =
∫

ω(t)

ηudx

∣∣∣∣t=T

t=0
. (2.2)

In the approach of Lagrange the characteristics of motion are considered as functions of time and the initial position
of each particle. In this method the unknowns are: the density u[X(y, t), t] and the position X(y, t) ∈ ω(t) of the
particle which was initially located at the point y ∈ ω(0). The flow is described by the following relations:

(a) the mass conservation law

u
[
X(y, t), t

]|J| = u0(y) for (y, t) ∈ ω(0) × [0, T ], (2.3)

where J is the Jacobi matrix of the mapping

ω(0) � y �→ x = X(y, t) ∈ ω(t), (2.4)

(b) the equation of trajectories{
Xt (y, t) = v

[
X(y, t), t

]
in ω(0) × [0, T ],

X(y,0) = y in ω(0).
(2.5)

Definition 2.2. A vector-valued function X(y, t) and a scalar function u(X, t) are said to be a weak solution of
system (2.3), (2.5) if

Xt ,v[X, t] ∈ (
W 1,0

q (QT )
)n with some q > 1, u

[
X(y, t), t

] ∈ C0(QT ),

for every test-function Φ ∈ W
1,0
q ′ (QT )∫

QT

∇Φ · (Xt − v[X, t])dxdt = 0, (2.6)

and (2.3) holds at every point of QT .

Theorem 2.1. Let (X, u) is a weak solution of problem (2.3), (2.5) in the sense of Definition 2.2. If there exist positive
constants λ1, λ2 such that λ1 < |J| < λ2 in QT and if the mapping (2.4) is bijective, then the function u(x, t) defined
by the formulas

u(x, t) = u0(y)
∣∣J−1

∣∣, x = X(y, t), (y, t) ∈ QT , (2.7)

is a solution of problem (2.1) in the sense of Definition 2.1.

Proof. Let us check that the function u(x, t) satisfies identity (2.2). Let ψ(y, t) be a suitable test-function. Passing to
the Lagrangian coordinates y and applying (2.3), we have:
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∫
ω(t)

ψudy

∣∣∣∣t=T

t=0
=

T∫
0

d

dt

( ∫
ω(t)

ψ(x, t)u(x, t) dx
)

dt

=
T∫

0

d

dt

( ∫
ω(0)

ψ
[
X(y, t), t

]
u
[
X(y, t), t

]|J|dy
)

dt

=
T∫

0

( ∫
ω(0)

(
d

dt
ψ

[
X(y, t), t

])
u
[
X(y, t), t

]|J| + ψ
[
X(y, t), t

] d

dt

(
u
[
X(y, t), t

]|J|)dy
)

dt

=
∫

QT

u0
d

dt

(
ψ

[
X(y, t), t

])
dxdt.

By virtue of (2.6)∫
QT

u0(y)
[
ψt

[
X(y, t), t

] + u0(y)∇xψ
[
X(y, t), t

] · Xt (y, t)
]
dydt

=
∫

QT

u0(ψt + ∇xψ · v) dydt

=
∫

QT

u(ψt + ∇xψ · v)|J|dydt

=
∫
C

(uψt + u∇xψ · v) dxdt.

The initial condition for u(x, t) is fulfilled by definition. By (2.3), for every t > 0∫
ω(t)

u(x, t) dx =
∫

ω(0)

u|J|dy =
∫

ω(0)

u0(y) dy. �

Corollary 2.1. The assertion of Theorem 2.1 remains true if condition (2.6) is substituted by the following one: there
exists a nondegenerate symmetric matrix A with differentiable entries Aij such that

div
(
A · (Xt − v[X, t])) = 0 a.e. in QT . (2.8)

Proof. For every given Ψ ∈ W
1,0
q (QT ) there exists a function Φ ∈ W

1,0
q (QT ) defined as a weak solution of the

co-normal derivative problem

div(A · ∇Φ − ∇Ψ ) = 0 in ω(0), (A · ∇Φ − ∇Ψ ) · n|∂ω(0) = 0.

Multiplying (2.8) by Φ and integrating by parts in ω(0), we obtain (2.6). �
Corollary 2.2. In the conditions of Corollary 2.1(

A · (Xt − v[X, t])) · n = 0 on ST = ∂ω(0) × [0, T ], (2.9)

where n is the exterior normal to ∂ω(0).

2.2. Local coordinates in the equation without mass conservation

Let us revert to problem (2.1). We want to consider this problem as the mathematical description of motion of a
fluid with density u(x, t) and velocity

v(x, t) = −u−1|∇u|p−2∇u + ∇p, (2.10)
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where p(x, t) is the new unknown. Let us denote

ω+(t) = {
x ∈ ω(t): u(x, t) > μ

}
, ω−(t) = {

x ∈ ω(t): u(x, t) < μ
}
,

ω+
0 = {

x ∈ ω(0): u0(x) > μ
}
, ω−

0 = {
x ∈ ω(0): u0(x) < μ

}
,

Q±
T = ω±

0 × (0, T ], QT = Q+
T ∪ Q−

T ∪ {
γ × (0, T ]},

ST = the lateral boundary of QT , S±
T = the lateral boundaries of Q±

T .

We will search for the solutions satisfying several additional conditions:

• for every t > 0 the set Γμ(t) is a (n − 1)-dimensional manifold separating the regions ω±(t),
• for every t > 0 Γμ(t) is constituted by the same particles,
• the displacement X is the potential vector

X = y + ∇yU, (y, t) ∈ QT ,

which makes symmetric the Jacobi matrix J, and

ω±(t) = {
x: x = X(y, t), y ∈ ω±

0

}
, Γμ(t) = {

x: x = X(y, t), y ∈ γ
}
,

• the density u(x, t) is a solution of problem (2.1) with the v given by (2.10).

Adding these assumptions to conditions (2.3), (2.5), we arrive at the following problem: to find scalar functions
U(y, t), P(y, t), R(y, t) such that X = y + ∇U is a solution of system (2.5 ) with the velocity field given by (2.10),

R(y, t) ≡ u
[
X(y, t), t

] = μ for y ∈ Γμ(0).

The latter condition yields |J| = 1 on Γμ(0). According to Theorem 2.1, the solution of problem (2.3), (2.5) generates
a weak solution of problem (2.1): for every ψ ∈ C0(C) ∩ C1(C)∫

C

(
uψt − ∇ψ · (|∇u|p−2∇u − u∇p

))
dxdt =

∫
ω(t)

ηudx

∣∣∣∣t=T

t=0
. (2.11)

Let us now claim that the function p is chosen as follows: p ∈ W
1,0
p′ (C) and for every ψ ∈ C0(C) ∩ C1(C)∫

C

[
u∇ψ · ∇p − ψ(f − a χω+(t))

]
dxdt = 0, (2.12)

where χω+(t) is the characteristic function of the set {u > μ}. If such a problem has a solution, then, gathering (2.11)
with (2.12), we conclude that u(x, t) is a solution of the free boundary problem (2.1).

Let us formulate the problem in the plane of Lagrangian coordinates. Formally passing in (2.12) to Lagrangian
coordinates we find that∫

QT

[
u0

((
J−1)2 · ∇Ψ

) · ∇P − Ψ
(
f (y + ∇U) − aχω+

0

)|J|]dxdt = 0.

The boundary conditions for P follow from the trajectory equation as (y, t) ∈ ST . Integrating by parts in ω(0) we
obtain the equation for defining P :

div
(
u0

(
J−1)2 · ∇P

) = (
aχω+

0
− f (X, t)

)|J| in QT , (2.13)

Gathering now all the above conditions arrive at the following problem: to find the scalar functions U , R, P satisfying
the system of equations⎧⎪⎪⎨⎪⎪⎩

div
(
J · ∇Ut + R−1

∣∣J−1 · ∇yR
∣∣p−2∇yR − ∇yP

) = 0,

div
(
u0

(
J−1

)2∇P
) = (−f (y + ∇U, t) + aχω+

0

)|J|,
R|J| = u0 in Q±

T ,
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and the initial and boundary conditions⎧⎪⎨⎪⎩
U = 0 on S±

T , U(y, t) = 0 in ω(0),[
R−1

∣∣J−1 · ∇yR
∣∣p−2∇yR − ∇yP

] · n = 0 on γ × [0, T ],
|J| = 1 on γ × [0, T ], P = 0 on ST .

Recall that according to Corollary 2.2 the trajectory equation is fulfilled on the surface Γμ(t), which leads to the
condition of zero jump of the normal velocity across Γμ(t). The boundary condition for P on ∂ω±

0 is automatically
fulfilled because of the trajectory equation.

Excluding from this system the function R, we arrive at the following problem: to find the functions U(y, t) (the
potential) and P(y, t) = p(x, t) (the artificial pressure) which satisfy the system of two scalar nonlinear equations{

div(J∇Ut + V − ∇P) = 0,

div
(
ρ0

(
J−1

)2∇P
) = a

(
f (y + ∇U, t) − χω+

0

)|J| in Q±
T

(2.14)

with

V = u−1
0 |J|∣∣J−1∇(

u0
∣∣J−1

∣∣)∣∣p−2∇(
J−1∇(

u0
∣∣J−1

∣∣)),
and the initial and boundary conditions⎧⎪⎨⎪⎩

U = 0 on S±
T , P = 0 on ST ,[

(V − ∇P) · n
]
γ×[0,T ] = 0,

|J| = 1 on γ × [0, T ].
(2.15)

3. Auxiliary nonlinear problem

In this section we consider the auxiliary problem of finding a function U under the assumption that the second
unknown, P , is given. This problem splits into two similar problems posed on the cylinders Q+

T and Q−
T . We limit

ourselves by considering the problem in Q+
T , the problem in Q−

T is studied in the same way.

3.1. Formulation of the problem

Let us fix a function P and consider the auxiliary problem of defining the function U from the conditions⎧⎪⎨⎪⎩
H1(U) ≡ div[J∇Ut + V − ∇P ] = 0 in Q+

T ,

H2(U) ≡ Det[J] − 1 = 0 on γ × [0, T ],
U = 0 on S+

T , U(y,0) = 0 in ω+
0

(3.1)

with

V = u−1
0 |J|∣∣J−1∇(

u0
∣∣J−1

∣∣)∣∣p−2∇(
J−1∇(

u0
∣∣J−1

∣∣)).
This problem can be formulated as the functional equation

H(U) ≡ {
H1(U),H2(U)

} = 0.

The existence of a unique solution of problem (3.1) will be proved by means of an abstract version of the modified
Newton method [9, Chapter XVIII].

Theorem 3.1. Let X ,Y be Banach spaces and assume that the following conditions hold:

(1) the operator H : X �→ Y admits a strong (Frechét) differential H′(·) in a ball Br(0) ⊂ X of radius r > 0,
(2) the operator H′(V ) : X �→ Y is Lipschitz-continuous in Br(0),∥∥H′(U1) − H′(U2)

∥∥ � L‖U1 − U2‖, L = const,
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(3) there exists the inverse operator [H′(0)]−1 and∥∥[
H′(0)

]−1∥∥ = M,
∥∥[

H′(0)
]−1〈H(0)

〉∥∥ = Λ.

Then, if λ = MΛL < 1/4, the equation H(U) = 0 has a unique solution U∗ in the ball BΛt0(0) where t0 is the least
root of the equation λ t2 − t + 1 = 0. Moreover, the solution U∗ is obtained as the limit of the sequence

Un+1 = Un − [
H′(0)

]−1〈H(Un)
〉
, U0 = 0. (3.2)

It is known that if an operator is weakly differentiable (in the sense of Gateaux), and its Gateaux differential is
Lipschitz-continuous, then the operator is strongly differentiable and its weak and strong differentials coincide [9,
Chapter XVIII]. Due to condition (2) of Theorem 3.1, we may take for H(0) the weak differential of H at the initial
state U0 = 0, which is easy to obtain by means of formal linearization. The proof of existence of a solution to the
nonlinear problem (3.1) reduces then to the detailed study of the linear problem H′(0)〈U 〉 = (F,Φ).

Let us fix q > n + 2 and introduce the Banach spaces

Z+ = {
U : U ∈ W 4

q

(
Q+

T

)
, Ut ∈ W 2

q

(
Q+

T

)
, U = 0 on S+

T , U(y,0) = 0 in ω+
0

}
,

Y+ = {
f : f ∈ W 2

q

(
Q+

T

)}
,

X + = {
φ: φ ∈ W 2,1

q

(
Q+

T

)
, φ(y,0) = 0 in ω+

0

}
with the norms

‖U‖Z+ = ‖U‖(4)

q,Q+
T

+ ‖Ut‖(2)

q,Q+
T

, ‖f ‖Y+ = ‖f ‖(2)

q,Q+
T

, ‖φ‖X + = ‖φ‖
W

2,1
q (Q+

T )
.

3.2. The linear problem

To calculate the Gateaux derivative of H we use its definition as

H′
i (0)〈U 〉 = dHi (εU)

dε

∣∣∣∣
ε=0

,

where ε is a small parameter and

H1(εU) = div
(
ε
(
I + εH(U)

)∇Ut + u−1
0 |J|∣∣J−1∇(

u0
∣∣J−1

∣∣)∣∣p−2∇(
J−1∇(

u0
∣∣J−1

∣∣)) − ∇P
)
,

H2(εU) = Det
[
I + εH(U)

] − 1.

Obviously,

d

dε
div

[
ε
(
I + εH(U)

)∇Ut

]∣∣∣∣
ε=0

= �Ut .

For every matrix B and μ = const Newton’s formulas hold

Det[μI − B] =
n∑

k=0

(−1)kαkμ
n−k,

where α0 = 1, kαk = ∑k
i=1 αk−i trace(Bi ) for 1 � k � n. It follows that H′

2(0)〈U 〉 = �U . Next,

d

dε

(
Det

[
I + εH(U)

])∣∣∣∣
ε=0

= (
1 + ε�U + O

(
ε2))∣∣

ε=0 = �U,

d

dε

(
I + εH(U)

)−1∇(
u0Det

[(
I + εH(U)

)−1])∣∣∣∣
ε=0

= d

dε

(∇u0 − ε
(
H(U)∇u0 + ∇(u0�U)

) + O
(
ε2))∣∣∣∣

ε=0

= −H(U)∇u0 − ∇(u0�U)

and
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d

dε

∣∣∣∣(I + εH(U)
)−1∇(

u0 Det
[(

I + εH(U)
)−1])∣∣∣∣p−2∣∣∣∣

ε=0

= −(p − 2)|∇u0|p−4(∇u0 · (H(U) · ∇u0 + ∇(u0�U)
))

.

Gathering these formulas, we find that

H′
2(0)〈U 〉 = �U,

H′
1(0)〈U 〉 = �Ut − div

[
�U

u0
|∇u0|p−2∇u0 + (p − 2)

1

u0
|∇u0|p−4(∇u0 · (H(U) · ∇u0 + ∇(u0�U)

)) · ∇u0

+ 1

u0
|∇u0|p−2(H(U)∇u0 + ∇(u0�U)

)]
≡ �Ut − L

(
�U,H(U)

)
.

The linear problem H′(0)〈U 〉 = (�f,φ) now reads as follows: it is requested to find a function U ∈ Z+ such that⎧⎪⎨⎪⎩
(�U)t − L

(
�U,H(U)

) = �f in Q+
T ,

(�U − ψ)
∣∣
γ×[0,T ] = 0,

U(x,0) = 0 in ω+
0 , U = 0 on ∂Ωe × [0, T ].

(3.3)

The existence of a solution is proved by means of the Schauder Fixed Point Principle. Let us introduce the Banach
space

S+ = {
V : V ∈ W 3

q (Q+
T ), V = 0 on S+

T , V (y,0) = 0 in ω+
0

}
, ‖V ‖S+ = ‖V ‖(3)

q,Q+
T

,

and consider the problem⎧⎪⎨⎪⎩
(�U)t − L

(
�U,H(V )

) = τ�f in Q+
T ,

(�U − τψ)
∣∣
γ×[0,T ] = 0,

U(x,0) = 0 in ω+
0 , U = 0 on S+

T , τ ∈ [0,1],
(3.4)

with an arbitrary function V ∈ S+. Let us denote

S+
R = {

V ∈ S+: ‖V ‖S+ < R
}
.

The solution of problem (3.4) is considered as the solution of the functional equation

U = Φ(V, τ), Φ : S+
R × [0,1] �→ S+.

If the operator Φ has a fixed point for τ = 1, this point is a solution of problem (3.3). To prove the existence of a fixed
point of the operator Φ(·, τ ) it suffices to check that (see [11, Chapter 4, Section 10])

(a) the mapping Φ(·, τ ) : S+
R �→ S+

R is continuous and compact,
(b) for every τ ∈ [0,1] the fixed points of the operator U = Φ(V, τ) satisfy the estimate ‖U‖S+ � R′ for some

R′ > 0.

Notice that since problem (3.4) is linear with respect to U , V and τ , so is Φ , which yields U = τΦ(V ).

Lemma 3.1. For every τ ∈ [0,1], V ∈ S+ and every f ∈ Y+, ψ ∈ X + problem (3.4) has a solution U ∈ Z+ such
that

‖U‖Z+ � C
(
τ‖ψ‖X + + τ‖f ‖Y+ + ‖V ‖S+

)
(3.5)

with an absolute constant C depending on n, q , the properties of ∂ω+
0 and γ , infu0 and sup |∇u0|, but independent

of ψ , f and U .
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Proof. Set W = �U and choose W according to the conditions⎧⎪⎨⎪⎩
Wt − L

(
W,H(V )

) = τ�f ∈ Lq
(
Q+

T

)
,

W − τψ = 0 on γ × [0, T ],
W = 0 on S+

T , W(y,0) = 0 in ω+
0 .

(3.6)

The equation for W has the form

Wt − div
(
a(y,∇W) + b(y)W

) = h (3.7)

with

a(y, ξ) = |∇u0|p−2[ξ + (p − 2)(ν · ξ) · ν]
, ν = ∇u0

|∇u0| ,

b(y) = p − 1

u0
|∇u0|p−2∇u0,

h = τ�f + div

[
1

u0
|∇u0|p−2((p − 2)

(
ν · (H(V ) · ν)) · ∇u0 + (

H(V ) · ∇u0
))]

.

Eq. (3.7) is linear with respect to W and V . Under conditions (1.5) on u0, for every p > 1 and ξ ∈ R
n, |ξ | 
= 0,

a(y, ξ) · ξ = |∇u0|p−2[|ξ |2 + (p − 2)|ν · ξ |2] � |u0|p−2|ξ |2
{

1 if p � 2,

p − 1 if p ∈ (1,2).

The function ψ ∈ W
2,1
q (Q+

T ) with q > n + 2 is Hölder-continuous in Q+
T and satisfies the zero-order compatibility

condition on the hypersurface γ as t = 0. For every f ∈ W 2
q (Q+

T ) and V ∈ W 3
q (QT ) we have h ∈ Lq(Q+

T ). By the

assumption ∂ω+
0 , γ ∈ C2. It follows from the classical parabolic theory (see, e.g., [10, Chapter 4, Section 9]), that

for every f,ψ ∈ W 2
q (Q+

T ) and V ∈ W 3
q (Q+

T ) problem (3.6) has a unique solution W ∈ W
2,1
q (Q+

T ) which satisfies the
estimate

‖�U‖
W

2,1
q (Q+

T )
= ‖W‖

W
2,1
q (Q+

T )
� C

(
‖ψ‖

W
2,1
q (Q+

T )
+ ‖f ‖(2)

q,Q+
T

+ ‖V ‖(3)

q,Q+
T

)
. (3.8)

The function U is now defined as the solution of the Dirichlet problem for the Poisson equation with the right-hand
side �U ∈ W 2

q (Q+
T ). �

Lemma 3.2. The operator τΦ(V ) :S+
R × [0,1] �→ S+ is continuous and compact.

Proof. Continuity of Φ follows from the linearity of problem (3.4) with respect to U , V , τ , and estimate (3.5).
Compactness of the mapping follows from [13]. �
Lemma 3.3. There exists T ∗, depending on the constant C in the conditions of Lemma 3.1 and |ω+

0 |, such that for
every τ ∈ [0,1] the fixed points of the mapping U = τΦ(V ) satisfy the estimate

‖U‖S+ � ‖U‖Z+ � 2C
(‖f ‖Y+ + ‖ψ‖X +

) ≡ R′ (3.9)

on the time interval [0, T ∗].

Proof. Let U ∈ S+ be a fixed point of the mapping U = τΦ(V ). Applying Hölder’s inequality we have that for every
s > q and every v ∈ W 3

q (Q+
T )

‖v‖(3)

q,Q+
T

�
(
T

∣∣ω+
0

∣∣) 1
s′ ‖v‖(3)

s,Q+
T

,
1

s′ = 1

q
− 1

s
.

Since s > q > n + 2, it follows from Sobolev’s embedding theorem that

‖U‖(3)

q,Q+
T

= ‖U‖S+ �
(
T

∣∣ω+
0

∣∣) 1
s′ ‖U‖Z+ .
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The assertion follows now if we substitute this inequality into (3.5) and claim that T is appropriately small: T < T ∗
with

2
(
T ∗∣∣ω+

0

∣∣) 1
s′ = C

and the constant C from (3.5). �
Gathering the above lemmas and applying the Schauder Fixed Point Principle, we conclude that for τ = 1 problem

(3.4) has a fixed point U ∈ S+
R′ with R′ given in (3.9). We summarize these conclusions in the following theorem.

Theorem 3.2. There exists T ∗, depending on |ω+
0 |, n, q , infΩ u0 and supΩ |∇u0| such that for every f ∈ Y+, ψ ∈ X +

problem (3.3) has at least one solution U ∈ Z+ satisfying the estimate

‖U‖Z+ � 2C
(‖f ‖Y+ + ‖φ‖X +

)
(3.10)

with the constant C from (3.5).

Corollary 3.1. M = ‖H−1(0)‖ � 2C with the constant C from (3.10).

Corollary 3.2.

Λ = ∥∥H−1(0)
〈
H(0)

〉∥∥ � 2C

(
T 1/q

(∥∥∥∥�pu0

u0

∥∥∥∥
Lq(ω+

0 )

+
∥∥∥∥ |∇u0|p

u2
0

∥∥∥∥
Lq(ω+

0 )

)
+ ‖P ‖Y+

)
with the constant C from (3.10).

Proof. The estimate follows from (3.10) with

�f = H1(0) = div

(
1

u0
|∇u0|p−2∇u0 − ∇P

)
, ψ = 0. �

3.3. The nonlinear problem

To apply Theorem 3.1 we have to check Lipschitz continuity of the Gateaux derivative of the operator H defined
by

H′(V )〈U 〉 = d

dε
H(V + εU)

∣∣∣∣
ε=0

∈ Y+ × X +, U,V ∈ Z+,

and to ensure the fulfillment of the relations

∀U ∈ Z+, H1(U) ∈ Y+, H2(U) ∈ X +. (3.11)

Given the functions U,V ∈ Z+, we define the matrices

B = I + H(V ) + εH(U) ≡ (
I + H(V )

)
(I + εA), A = (

I + H(V )
)−1H(U),

and B0 = B|ε=0. By the definition

H1(V + εU) = div
(
B∇(Vt + εUt ) + u−1

0 |B|∣∣B−1∇(
u0

∣∣B−1
∣∣)∣∣p−2∇(

B−1∇(
u0

∣∣B−1
∣∣)) − ∇P

)
,

H2(V + εU) = |B| − 1.

Using the easily verified formula

B = I + H(V ) + εH(U) = (
I + ε

(
I + H(V )

)−1H(U)
)(

I + H(V )
)

= (
I + H(V )

)(
I + εA + O

(
ε2))

we find that

|B| = 1 + ε trace A + O
(
ε2), ∣∣B−1

∣∣ = 1 − ε trace A + O
(
ε2).
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Then

H′
1(V )〈U 〉 = div

{
H(U)∇Vt + (

I + H(V )
)∇Ut − u−1

0 trace A
∣∣B−1

0 ∇(
u0

∣∣B−1
0

∣∣)∣∣p−2B−1
0 ∇(

u0
∣∣B−1

0

∣∣)
− (p − 2)u−1

0 |B0|
∣∣B−1

0 · ∇(
u0

∣∣B−1
0

∣∣)∣∣p−4

× (
H(U)−1∇(

u0
∣∣B−1

0

∣∣)B−1
0 ∇(

u0
∣∣B−1

0

∣∣ trace A
)) · (B−1

0 · ∇(
u0

∣∣B−1
0

∣∣))
− u−1

0 |B0|
∣∣|B0|

∣∣B−1
0 ∇(

u0
∣∣B−1

0

∣∣)∣∣p−2

× (
H(U)−1∇(

u0
∣∣B−1

0

∣∣) + B−1
0 ∇(

u0
∣∣B−1

0

∣∣ trace A
))}

,

H′
2(V )〈U 〉 = trace A.

The elements of the inverse matrix can be expressed through the algebraic adjoints and the determinant, the determi-
nants are polynomials of n-th power. Further, the embedding theorems yield that for q > n + 2

∀U ∈ Z+,
∑

|γ |=2,3

〈
D

γ
y U

〉(α)

Q+
T

� C‖U‖Z+ (3.12)

with some α ∈ (0,1) (see, e.g., [10, Chapter 2, Lemma 3.3]), whence, since U(y,0) ≡ 0,∑
|γ |=2,3

sup
Q+

T

∣∣Dγ
y U

∣∣ � CT α/2‖U‖Z+ . (3.13)

The last estimate implies the inequality∣∣I + H(U)
∣∣ � 1 − C(n)T α/2‖U‖Z+ >

1

2
, (3.14)

provided that ‖U‖Z+ � 1 and T is sufficiently small. It is now straightforward to check that for every V1,V2 ∈ Z+
with ‖Vi‖Z+ � 1/2∥∥(

H′
i (V1) − H′

i (V2)
)〈U 〉∥∥ � L‖V1 − V2‖Z+‖U‖Z+ (3.15)

with L = L(n,ω+
0 , n, T ) → 0 as T → 0. Relations (3.11) follow by the same arguments.

The next theorem is an immediate byproduct of Theorem 3.1.

Theorem 3.3. Let P ∈ W 2
q (Q+

T ) with q > n + 2. Then one may choose T∗ so small that λ = MLΛ < 1/4 with the
constants Λ, M and L from Corollaries 3.1, 3.2 and estimate (3.15), and problem (3.1) has a unique solution

U ∈ Br (0) = {
W : ‖W‖Z+ < r

}
, r = Λ

2λ

(
1 − √

1 − 4λ
)
< 2Λ. (3.16)

The same assertion is true for problem (3.1) in the cylinder Q−
T .

4. Auxiliary linear elliptic problem

In this section we consider the problem of finding a function P satisfying the following conditions: for every
t ∈ [0, T ∗]⎧⎪⎪⎨⎪⎪⎩

MP := div
(
u0

(
J−1

)2∇P
) = (

f (y + ∇U, t) − a χω+
0

)|J| in ω±
0 ,[(

μ
(
J−1

)2∇P − Ψ
) · n

]
γ

= 0,

P = 0 on ∂ω±
0 ,

(4.1)

where U ∈ Z+ is a given function, J = I + H(U) and

Ψ = μ
(
J−1)2∣∣J−1∇(

u0
∣∣J−1

∣∣)∣∣p−2(J−1∇(
u0

∣∣J−1
∣∣)) ∈ W 1

q

(
Q±

T

)
.
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Theorem 4.1. Let U ∈ Z±. Then T ∗ can be taken so small that for a.e. t ∈ (0, T ) problem (4.1) has a solution
P(·, t) ∈ W 2

q (ω±
0 ), and this solution satisfies the estimate

‖P ‖(2)

q,ω±
0

� C
[(

a + ‖f ‖q,Ω

)∥∥Det[J]∥∥
q,ω±

0
+ ‖Ψ ‖W 1

q (ω±
0 )

]
(4.2)

with an absolute constant C.

Proof. Let us take for P in ω+
0 the solution of the Dirichlet problem for the linear uniformly elliptic equation{

MP + = (f − a)|J| in ω+
0 ,

P + = 0 on γ and ∂ω+
0 ,

and then continue P + to ω−
0 by the solution of the problem⎧⎪⎨⎪⎩

MP − = f |J| in ω−
0 ,

P − = 0 on ∂ω−
0 ,

ρ0
(
J−1

)2∇P − · n = ρ0
(
J−1

)2∇P + · n − [Ψ · n]γ .

These problems have solutions which satisfy the estimates (see, e.g., [11, Chapter 3, Sections 5–6, 15]): for a.e.
t ∈ (0, T ∗)∥∥P +(·, t)∥∥

W 2
q (ω+

0 )
� C

∥∥Det[J]∥∥
q,ω+

0

(
a + ‖f ‖q,Ω

)
,∥∥P −(·, t)∥∥

W 2
q (ω−

0 )
� C

(∥∥Det[J]∥∥
q,ω−

0
‖f ‖q,Ω + ‖Ψ ‖W 1

q (ω−
0 )

)
. �

Corollary 4.1. Under the conditions of Theorem 4.1

‖P ‖Y± � C
(
1 + ‖f ‖q,Q±

T ∗
)(

1 + ‖U‖Z±
)
.

Lemma 4.1. Under the conditions of Theorem 4.1 for every t ∈ (0, T ∗)∣∣P(·, t) − P0
∣∣(1+σ)

ω±
0

� Ctδ, 0 < σ < 1 − n

q
, δ = min{β,α/2},

where α ∈ (0,1) is the exponent from (3.13), β ∈ (0,1) is taken from (1.5), and P0 is the solution of the problem

div(u0∇P0) = f (y,0) − aχω+
0

in ω(0), P0 = 0 on ∂ω±
0 . (4.3)

Proof. Problem (4.3) has a unique solution P0 ∈ W 2
q (ω(0)) ∩ C1+σ (ω(0)) with 0 < σ < 1 − n/q . Since

u0 ∈ W 2
q (ω(0)), this solution automatically satisfies the jump condition [u0∇(P0 − lnu0)]γ = 0. Problem (4.1) is

linear and its solution continuously depends on the data. Let us fix t ∈ (0, T ∗) and consider the function P −P0 which
solves the problem{

div
(
u0∇(P − P0)

) = F in ω±
0 ,[

u0∇(P − P0) · n
]
γ

= σ, P − P0 = 0 on ∂ω±
0

with

F = (
f (y + ∇yU, t) − f (y,0)

) + f (y, t)
(|J| − 1

) + a
(
1 − |J|)χω+

0
∈ Lq

(
ω+

0 ∪ ω−
0

)
,

σ = μ
[((

J−1)2 − I
) · ∇P

]
γ

· n + [μ∇ lnu0 − Ψ ]γ · n + [(
I − (

J−1)2) · Ψ ]
γ

· n.

According to (3.13) and the regularity properties of f we have that

‖F‖q,ω±
0

� Ctδ
(‖1 + ‖U‖Z±

)
,

‖σ‖(1)

ω±
0

� Ctδ
(‖u0‖W 2

q (ω(0)) + ‖P ‖W 2
q (ω±

0 ) + ‖U‖Z±
)
.
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Following the proof of Theorem 4.1, we now find that∥∥P(·, t) − P0
∥∥

W 2
q (ω±

0 )
� Ctδ

and the assertion follows from the embedding theorems in Sobolev spaces. �
Corollary 4.2. By virtue of (3.12), it follows by the same arguments that for every t1, t2 ∈ [0, T ∗]∣∣P(·, t1) − P(·, t2)

∣∣(1+σ)

ω±
0

� C
∥∥P(·, t1) − P(·, t2)

∥∥
W 2

q (ω±
0 )

� C′|t2 − t1|δ.

5. Existence of solutions to the problems in Lagrangian and Euler formulations

Theorem 5.1. There exists T ∗ such that for every T ∈ (0, T ∗) problem (PL) has a solution (U,P ) ∈ Z± ×Y±, which
generates a solution of problem (2.1) with the velocity field defined by (2.10).

Proof. Let us consider the sequences

{Uk} ∈ Z+ ∩ Z−, {Pk} ∈ W 2
q

(
Q+

T

) ∩ W 2
q

(
Q−

T

)
defined iteratively: U0 = 0, for every k � 1 Uk is a solution of problem (3.1) with P = Pk−1, Pk is a solution of
problem (4.1) with U = Uk . By Theorems 3.3 and 4.1 for all sufficiently small T

‖Pk‖Y± + ‖Uk‖Z± � λ

with some absolute constant λ. This estimate together with (3.13) mean that the sequences {Uk} and {Pk} contain
subsequences (which we assume to coincide with the whole of these sequences) such that

Uk → U as k → ∞ weakly in Z±,

D2
ijUk → D2

ijU as k → ∞ in Cα′,α′/2
(
Q±

T

)
,

Pk → P, as k → ∞ weakly in W 2
q

(
Q±

T

)
. (5.1)

By the method of construction, each of the pairs (Uk,Pk−1) satisfies (2.6) with v defined by (2.10), which allows
us to pass to the limit as k → ∞. It remains to check the bijection of the mapping y �→ x. According to ( 3.13) the
Jacobian |J| is bounded away from zero and infinity in Q±

T (for small T ) and the mapping ω±
0 � y �→ x ∈ ω±(t) is

locally invertible in a neighborhood of every interior point of Q±
T . It is then sufficient to check that T can be chosen so

small that the images of two arbitrary boundary points y, z ∈ ∂ω±
0 (or y, z ∈ γ ), y 
= z, do not coincide on the interval

[0, T ∗]. The arguments are the same for the three possibilities. For example, fix two arbitrary points y, z ∈ ∂ω+
0 and

denote by X(y, t) and X(z, t) their images at the instant t . By the definition X(s, t) = s + ∇U(s, t). Further,∣∣X(y, t) − X(z, t)
∣∣ = ∣∣y − z + ∇(

U(y, t) − U(z, t)
)∣∣

� |y − z| −
∫

L(y,z)

∣∣∣∣ d

dl
∇U(s, t)

∣∣∣∣dS,

where L(y, z) ⊂ ω0 is a curve connecting y and z. For every surface ∂ω+
0 ∈ C0,1 the curve L(y, z) can be chosen

Lipschitz-continuous and there exist finite positive constants K1, K2 (depending on the geometry of ∂ω+
0 ) such that

K1|y − z| �
∫

L(y,z)

dS � K2|y − z|.

By (3.13)∣∣X(y, t) − X(z, t)
∣∣ � |y − z| −

n∑
i,j=1

sup
ω+

0

∣∣D2
ijU

∣∣ ∫
L(y,z)

dS � |y − z|(1 − CK2T
α/2)

with the constant C from Theorem 5.1. Since C is defined through the data of problem (PL), it follows that the
trajectories of two arbitrary points separated at the initial instant cannot touch if T ∗ is chosen appropriately small. �
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6. Solution of problem (1.4). Proof of Theorems 1.1–1.2

6.1. According to Theorems 2.1 and 5.1 the pair (u,C) defined by formulas (2.7) is a solution of problem (2.1).

Lemma 6.1. There exists T ′ such that |∇xu| � ε/2 in C′ = C ∩ {t < T ′}.

Proof. By the definition u(x, t) = u0(x)|J−1| in C, whence

∇xu = ∇yu0(y) · J−1
∣∣J−1

∣∣ + u0(y)∇y
(∣∣J−1

∣∣) · J−1

and

|∇xu| � ε
(
1 − O

(
t−α/2)) − sup

Ω

u0O
(
t−α/2) � ε/2 as t → 0. �

Corollary 6.1. Let C± be the domains bounded by the surfaces Γμ and �±. Then u < μ in C− ∩ {t < T ′} and u > μ

in C+ ∩ {t < T ′}.

The value of T ′ can be taken so small that γ × [0, T ′] ⊂ C, and there exist smooth vertical surfaces σ± ⊂ C± ∩
{t < T ′}. Let S± be the cylinders with the lateral boundaries {∂Ωi × (0, T ′+}, and {∂Ωe × (0, T ′−}. Consider the
problem⎧⎪⎪⎨⎪⎪⎩

N v ≡ vt − �pv + f = 0 in S−,

v − u = 0 on σ−,

v − φ = 0 on ∂Ωe × (0, T ′],
v(x,0) − u0(x) = 0,

(6.1)

where u(x, t) is the constructed solution of problem (2.1).

Lemma 6.2. Let the conditions of Theorem 1.1 be fulfilled. Then problem (6.1) has a solution v ∈ W
2,1
q (S+) such that

‖v‖
W

2,1
q (S−)

� C
[‖u0‖W 2

q (Ω) + ‖f ‖q,S− + ‖u‖
W

2,1
q (C−)

+ ‖φ‖
W

2− 2
q ,1− 1

q
q (∂Ωe×(0,T ′])

]
.

Moreover, if f � 0 in S, then v < μ in S.

Proof. The proof is an imitation of the proof of Theorem 3.2. We make use of the modified Newton’s method and
search a solution of problem (6.1) as the limit of the sequence {vk} with

vk+1 = vk − (
N ′(0)

)−1〈N vk

〉
, v0 = u0.

Here N ′(0) is the Frechét differential of N at the initial function u0. For every w ∈ W
2,1
q (S) with q > n + 2 we have

(see (3.13))

wt,�pw ∈ Lq(S−), w ∈ W
2− 2

q
,1− 1

q
q (σ−), w ∈ W

2− 2
q
,1− 1

q
q

(
∂Ωe × (0, T ′]).

According to Theorem 3.1, the proof of existence of a solution to problem (6.1) reduces to and checking the Lipschitz-
continuity of the operator N linearized at an arbitrary element of W

2,1
q (S−) and solving the problem linearized at the

initial function u0. The latter has the form⎧⎨⎩wt − div
(|∇u0|p−2

[∇w + (p − 2)(∇w · ν) · ν]) = ψ ∈ Lq(S−), ν = ∇u0

|∇u0| ,
w(x,0) = 0, w = g on σ−, w = h on ∂Ωe × (0, T ′].

Since p > 1 and |∇u0| � ε > 0 this is a uniformly parabolic equation with the data satisfying the zero-order compat-
ibility conditions. For every ψ ∈ Lq(S−), g ∈ W

2−2/q,1−1/q
q (σ−), h ∈ W

2−2q,1−1/q
q (∂Ωe × (0, T ′]) with q > n + 2

the linearized problem has a unique solution w ∈ W
2,1
q (S−) which satisfies the estimate



Author's personal copy

492 J.I. Díaz, S. Shmarev / J. Math. Anal. Appl. 352 (2009) 475–495

‖w‖
W

2,1
q (S−)

� C
[‖u0‖W 2

q (Ω) + ‖ψ‖q,S− + ‖g‖
W

2− 2
q ,1− 1

q
q (σ−)

+ ‖h‖
W

2− 2
q ,1− 1

q
q (∂Ωe×(0,T ′])

]
.

This gives the estimate on ‖(N ′(0))−1‖. Solving the linearized problem with ψ = Nu0, g = u0 and h = u0, we obtain
the estimate∥∥(

N ′(0)
)−1〈N (u0)

〉∥∥ � CT 1/q‖u0‖W 2
q (Ω).

Checking the Lipschitz-continuity of the operator N ′(w) with w ∈ W
2,1
q (S−), q > n + 2, is straightforward (see the

proof of Theorem 3.2).
By Corollary 6.1 u < μ in C− ∩ {t < T ′}. The inequality u < μ in S− follows then the maximum principle because

vt − �pv � 0 in S−, and v < μ on the parabolic boundary of S−. �
The continuation from C+ ∩ {t < T ′} to the rest of D+

T ′ is performed in the same way. We solve the problem⎧⎪⎪⎨⎪⎪⎩
wt − �pw = −f + a in S+,

w − u = 0 on σ+,

w − φ = 0 on ∂Ωi × (0, T ′],
w(x,0) − u0(x) = 0.

The only difference between this case and the already considered one is the claim a − f � 0. Since w > μ on the
parabolic boundary of S+, this claim yields the inequality u > μ in S+.

Let us define the function

ũ(x, t) =
⎧⎨⎩

u(x, t) in DT ′ \ (S+ ∪ S−),

v(x, t) in S−,

w(x, t) in S+.

By construction, for every smooth test-function η(x, t)∫
DT

[
ηt ũ − ∇η · |∇ũ|p−2∇ũ − η f (x, t) + aηhũ

]
dxdt +

∫
S±

η
[|∇ũ|p−2∇ũ

] · ndS =
∫
Ω

ũη dx

∣∣∣∣t=T

t=0
.

Since ũ ∈ W
2,1
q (S+) ∩ W

2,1
q (S−) ∩ W

2,1
q (C), then [∇ũ]S± · n = 0 and the assertion of Theorem 1.1 follows.

The conclusion about the regularity of Γμ follows from the representation and the inclusions

x|Γμ = (y + ∇U)|y∈γ , U ∈ W 4
q

(
Q±

T

)
, Ut ∈ W 2

q

(
Q±

T

)
.

6.2. Theorem 1.2 is an immediate byproduct of Theorems 1.1 and 5.1 with the function p defined as a solution of
the problem⎧⎨⎩

div(u∇p) + aχω+(t) = 0 in ω±(t),

[∇p · n]|Γμ(t) = [∇ lnu · n]|Γμ(t),

p = 0 on ∂ω±(t).

(6.2)

By Theorem 1.1, the constructed solution of problem (1.4) ũ(x, t) ∈ W
2,1
q (DT ′). It follows that ∇ũ ∈ Cα,α/2(DT ′)

whence [∇ ũ · n]Γμ(t) = 0, and problems (1.11), (6.2) are equivalent for ũ ∈ W
2,1
q (C).

Since p is defined as the solution of problem (1.11), we also have p ∈ W 2
q (ω(t)) ∩ C1+σ (ω(t)) with

σ ∈ (0,1−n/q). By Corollary 4.2 ∇xp = ∇yP ·J−1 is Hölder continuous with respect to t , whence Hölder continuity
of v in C and relation (1.12) follows.

7. Higher regularity. Proof of Theorem 1.3

Fix an arbitrary m ∈ N and define the function spaces
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Z±
m = {

v: v(k) ≡ tkDk
t v ∈ Z±, k = 0,1,2, . . . ,m

}
,

Y±
m = {

f : f (k) ≡ tkDk
t f ∈ Y±, k = 0,1,2, . . . ,m

}
,

X ±
m = {

φ: φ(k) ≡ tkDk
t φ ∈ X ±, k = 0,1,2, . . . ,m

}
with the norms

‖v‖Z±
m

=
m∑

i=0

1

Mii!
∥∥v(i)

∥∥
Z± ,

‖f ‖Y±
m

=
m∑

i=0

1

Mii!
∥∥f (i)

∥∥
Y±,

‖φ‖X ±
m

=
m∑

i=0

1

Mii!
∥∥φ(i)

∥∥
X ± .

Here M is a constant which depends on n, q and the differential properties of γ and ∂ω± and will be chosen later.

Lemma 7.1. For every u,v ∈ Z±
m ‖uv‖Z±

m
� ‖u‖Z±

m
‖v‖Z±

m
.

Proof. The assertion immediately follows from the Cauchy permutation formula(
m∑

i=0

|Di
t v|

Mii!

)
×

(
m∑

i=0

|Di
t u|

Mii!

)
=

m∑
n=0

1

Mn

∑
i+j=n

1

i!j !
∣∣Di

t u
∣∣∣∣Dj

t v
∣∣

�
m∑

n=0

1

Mn

∣∣∣∣∣
n∑

i=0

Di
t uDn−i

t v

i!(n − i)!

∣∣∣∣∣ =
m∑

n=0

1

Mnn!

∣∣∣∣∣
n∑

i=0

(
i

n

)
Di

t uDn−i
t v

∣∣∣∣∣
=

m∑
n=0

|Dn
t (uv)|

Mnn! . �

The next assertion is a byproduct of (3.13).

Lemma 7.2. For every u ∈ Z±
m with q > n + 2

m∑
k=0

∑
|γ |=2,3

sup
Q+

T

∣∣Dγ
y
(
tkDk

t u
)∣∣ � CT α/2‖u‖Z̃± .

Since Z±
m ⊂ Z±, to prove Theorem 1.3 it suffices to check that the constructed solution (U,P ) ∈ X ± × Y± of

problem (2.14 )–(2.15) belongs to Z±
m × Y±

m . Let us revise the proofs of Theorems 3.3, 4.1, 5.1.

Lemma 7.3. Let the conditions of Theorem 1.3 be fulfilled and P ∈ Y±
m with m ∈ N. Then T can be chosen so small

that problem (3.1) has a solution U ∈ Z±
m such that ‖U‖Z±

m
� C(T ) → 0 as T → 0.

Following the proof of Theorem 3.3, we study first the linearized problem (3.3). The existence of a solution U ∈ Z+
is already proven in Theorem 3.2. Let us assume that for some s � 0 the function

W(s) = t s

Mss!D
s
t (�U)

solves problem (3.6) with the data

�f (s) = 1

Mss! t
sDs

t (�f ), φ(s) = 1

Mss! t
sDs

t φ
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and satisfies the estimate∥∥W(s)
∥∥

Z+ � C
(∥∥f (s)

∥∥
Y+ + ∥∥φ(s)

∥∥
X +

)
.

The problem for the function W(s+1) has the form (recall that p = 2)⎧⎪⎪⎨⎪⎪⎩
W

(s+1)
t − �W(s+1) = 1

M
W

(s)
t + τf (s+1) in Q+

T ,

W(s+1) − τψ(s+1) = 0 on γ × [0, T ],
W(s+1) = 0 on S+

T , W(s+1)(y,0) = 0 in ω+
0 .

To pose the initial condition for W(s+1) we use the fact that if gt ∈ Lq(Q+
T ), then tgt → 0 as t → 0. By Lemma 3.1∥∥W(s+1)

∥∥
Z+ � τC

(∥∥f (s+1)
∥∥

Y+ + ∥∥φ(s+1)
∥∥

X +
) + C

M

∥∥W(s)
∥∥

Z+ .

Let us claim that M > 2C and then take the sum of these estimates for s = 0,1, . . . ,m − 1:

‖W‖Z+
m

=
m∑

s=0

∥∥W(s)
∥∥

Z+ � τC
(‖f ‖Y+

m
+ ‖φ‖X +

m

) + 1

2
‖W‖Z+

m
,

whence the estimate

‖W‖Z+
m

� 2τC
(‖f ‖Y+

m
+ ‖φ‖X +

m

)
.

The rest of the proof of Theorem 3.3 does not need any substantial change and consists in applying Lemmas 7.1, 7.2
to estimate the nonlinear terms.

Lemma 7.4. T ∗ can be chosen so small that for every U ∈ Z±
m and a.e. t ∈ (0, T ∗) problem (4.1) has a solution

P(·, t) ∈ Y±
m which satisfies the estimate

‖P ‖Y±
m

� C
(
1 + ‖U‖Y±

m

)
.

Derivation of this estimate is similar to the parabolic case. Set P (s) = 1
Mss!D

s
t P . This function satisfies the condi-

tions ⎧⎪⎪⎪⎨⎪⎪⎪⎩
div

(
u0

(
J−1

)2∇P (s)
) = − ats

Mss!D
s
t

(|J|)χω+
0

− divΦs in ω±
0 ,[(

μ
(
J−1

)2∇P (s) − Ψ (s)
) · n

]
γ

= [Φs · n]γ ,

P (s) = 0 on ∂ω±
0

(7.1)

with

(Φs)r = u0

s−1∑
j=0

(
j

s

)
t s−j

Ms−j (s − j)!
n∑

i=1

D
s−j
t

((
J−1)2)

ir
DiP

(j)

+ u0
t s

Mss!
n∑

i=1

Ds
t

((
J−1)2)

ir
DiP, r = 1, . . . , n.

By Lemmas 7.1, 7.2, for every U ∈ Z±
m∥∥divΦs(·, t)

∥∥
q,ω±

0
� 2sC(t)

s−1∑
j=0

∥∥P (j)
∥∥

W 2
q (ω±

0 )
with C(t) → 0 as t → 0.

By Theorem 4.1 the solution of problem (7.1) satisfies the estimate

∥∥P (s)
∥∥

W 2
q (Q±

T )
� C

(
1 + ‖U‖Z±

m
+ ‖Ψ ‖W 1

q (Q±
T )

) + C(T )

s−1∑
j=0

∥∥P (j)
∥∥

W 2
q (Q±

T )
.
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Summing these estimates for s = 1,2, . . . ,m and taking T appropriately small we find that

‖P ‖Y±
m

� C
(
1 + ‖U‖Z±

m

)
.

The sequence {(Uk, Pk−1)} contains a subsequence that converges (weakly) to a solution (U, P ) of problem (PL).
At the same time, this subsequence is uniformly bounded in the norm of Z±

m × Y±
m , which yields the assertion of

Theorem 1.3.
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