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1 Introduction

This paper deals with the one dimensional degenerate parabolic equation on a given open
bounded interval I = (L1, L2)

∂tu− (|ux|p−2ux)x + χ{u>0}u
−β = 0 in I × (0,∞),

u(L1, t) = u(L2, t) = 0 t ∈ (0,∞),
u(x, 0) = u0(x) in I,

(1)

where β ∈ (0, 1), p > 2, u0 ≥ 0 and χ{u>0} denotes the characteristic function of the set of points

(x, t) where u(x, t) > 0. The absorption term χ{u>0}u
−β becomes singular when u is near to 0

(but note that we are imposing χ{u>0}u
−β = 0 if u = 0). We shall also consider the associated

Cauchy problem (formally equivalent (1) when I = R).

Problem (1) can be considered as a limit model of a class of problems arising in Chemical
Engineering corresponding to catalyst kinetics of Langmuir-Hinshelwood type(see, e.g. [24] p.
68). Here we assume that the diffusion coefficient, D = |ux|p−2, depends on the gradient of the
concentration. From a mathematical point of view, the pioneering papers on this class of models
were due to Phillips [22] and Bandle and Brauner [2], for the case p = 2 (even posed on an open
bounded set Ω of RN ). Besides, other authors also considered the semilinear case (p = 2); see,
e.g. [20], [8], [25], [10], [7] and their references. The case of quasilinear diffusion operators was
already considered in [17] (for a different diffusion term). We also mention here the case of the
quasilinear problem of porous medium type studied in [18]. Recently, problem (1) was analyzed
in the paper [14] (even under a more general formulation, see also the study of the associated
stationary problem [16]) but the proof of the existence of a weak solution (as limit of solutions
of approximate non-singular problems) is not completely well justified. One of the main goal of
this paper is to get some sharper a priori estimates on the (spatial) gradient of the approximate
solutions to pass to the limit in the approximation of the singular term of the equation.

Roughly speaking, the a priori gradient estimate that we shall prove is of the type

|∂xu(x, t)| ≤ Cu
1− 1

γ (x, t), for a.e (x, t) ∈ I × (0,∞), (2)

for a suitable constant C > 0, and the exponent

γ =
p

p+ β − 1
. (3)

Estimates of this type were already obtained (for the case of p = 2 and bounded initial data)
in [22], [8] and [25]. The degeneracy of the diffusion operator when p > 2 leads, obviously, to a
considerable amount of additional technical difficulties (see, e.g. the study of the unperturbed
equation made in [15]). In addition, as in [7], we want to consider also the case of possibly
unbounded initial data. Let us mention that the exponent γ given by (3) plays a fundamental
role. It arises, in a natural way, when considering the associate stationary problem. It is not
difficult to show that in that case the estimate (2) becomes an equality, for a suitable constant
C. This is the reason why some authors call to this type of gradient estimates as ”sharp gradient
estimates” (see, e.g., [3] for a general exposition of this type of estimates).

As mentioned before, a very delicate point is to require a suitable integrability to the singular
term of the equation. So, before stating our main results, let us define the notion of weak solution
of equation (1) which we shall consider in this paper.

2



Definition 1 Given 0 ≤ u0 ∈ L1(I), a function u is called a weak solution of (1) if u ∈
Lp
loc(0,∞;W 1,p

0 (I)) ∩ L∞
loc(I × (0,∞)) ∩ C([0,∞);L1(I)), u−βχ{u>0} ∈ L1(I × (0,∞)), and u

satisfies equation (1) in the sense of distributions D′(I × (0,∞)), i.e:∫ ∞

0

∫
I
−uϕt + |ux|p−2uxϕx + χ{u>0}u

−βϕ dxdt = 0, ∀ϕ ∈ C∞
c (I × (0,∞)). (4)

Our main existence result indicates also some additional regularity information on the weak
solution:

Theorem 2 Let p > 2, and 0 ≤ u0 ∈ L1(I). Then, there exists a maximal weak solution
u ∈ Lp(0, T ;W 1,p

0 (I)) ∩ C([0, T ];L1(I) of equation (1), i.e, for any weak solution v of equation
(1) we have v ≤ u a.e in I × (0,∞). Besides, u satisfies the additional regularity implied by the
following estimates:

(i) There is a positive constant C = C(p, |I|) such that

∥u(., t)∥L∞(I) ≤ C.t−
1
λ .∥u0∥

p
λ

L1(I)
, for t ∈ (0,∞), λ = 2(p− 1). (5)

(ii) For any τ > 0, there exists a positive constant C = C(β, p, |I|) such that

|∂xu(x, t)| ≤ Cu
1− 1

γ (x, t)

(
τ
−λ+β+1

λp ∥u0∥
1+β
λ

L1(I)
+ 1

)
, for a.e (x, t) ∈ I × (τ,∞), (6)

(iii) For any τ > 0 there is a positive constant C = C(β, p, τ, |I|, ∥u0∥L1(I)) such that

|u(x, t)− u(y, s)| ≤ C
(
|x− y|+ |t− s|

1
3

)
, ∀x, y ∈ I, ∀t, s > τ. (7)

In fact, we shall derive previously estimates (6) and (7) for the case of bounded initial data.
We also point out that conclusion (7) implies that u is continuous up to the boundary. This
result answers an open question stated in the introduction of [25].

A second goal of this paper concerns the study of the quenching phenomenon of solutions.
This property arises due to the presence of the singular term (even if p = 2): the absorption
is stronger than the diffusion and thus there are internal regions of the (x, t)−space where the
solutions vanishes. We shall prove here that this property remains valid also for p > 2. We
start by proving that, even if there is a lack of uniqueness of solutions (see [25] for the case
p = 2), any nonnegative weak solution of equation (1) vanishes in finite time even starting with
a positive unbounded initial data:

Theorem 3 Let p > 2, and 0 ≤ u0 ∈ L1(I). Let v be any weak solution of equation (1). Then,
there is a finite time T0 = T0(β, p, |I|, ∥u0∥L1(I)) such that

v(x, t) = 0, for a.e x ∈ I, for t ≥ T0.

We shall also prove that the quenching phenomenon takes place locally in space (previously
to do that globally in spaces for a time large enough). In contrast to the energy method used,
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to this end, in the paper [10] we shall use here a suitable comparison argument showing the
”uniform localization property” for solutions of the associated Cauchy problem. This also leads
to a similar conclusion for the case of a bounded interval I, problem (1), once that I is large
enough (depending on the support of u0 and ∥u0∥L1(I)).

The paper is organized as follows: Section 2 is devoted to prove the a priori gradient estimate,
which is the main key of proving the existence of solution. In section 3, we shall give the
complete proof of Theorem 2. Section 4 is devoted to prove Theorem 3. Finally, Section 5 will
concerns with the consideration of the associated Cauchy problem: after proving the existence
of a maximal weak solution we study the free boundary defined as the boundary of the support
of the solution, proving the ”uniform localization property” and the extension of the global in
time quenching phenomenon.

Several notations which will be used through this paper are the following: we denote by C a
general positive constant, possibly varying from line to line. Furthermore, the constants which
depend on parameters will be emphasized by using parentheses. For example, C = C(p, β, τ)
means that C only depends on p, β, τ . We also denote by Br(x) = (x− r, x+ r) to the open ball
with center at x and radius r > 0.

2 Gradient estimates

In this section, we shall adapt to our framework the now classical Bernstein’s technique to
obtain an a priori estimate on |ux|. As mentioned at the Introduction, our estimate of |ux| will
involve a certain power of u. We recall that for the semilinear case, p = 2, it is well known
that such type of gradient estimates plays a crucial role in proving the existence of solution (see,
e.g. [22], [8], [25], and [18]). In the sequel, we shall denote simply as gradient estimate to such
estimate on |ux|.

To be similar to the case p = 2, we shall establish previously the gradient estimate for the
solutions of a regularized family of problems. For any ε > 0, we define

gε(s) = ψε(s)s
−β, with ψε(s) = ψ(

s

ε
),

and where ψ ∈ C∞(R), 0 ≤ ψ ≤ 1 is a non-decreasing function such that

ψ(s) =

{
0, if s ≤ 1,
1, if s ≥ 2.

Now, for a given initial data 0 ≤ z0 ∈ C∞
c (I), z0 ̸= 0, we consider the regularizing problems

∂tz − (a(zx)zx)x + gε(z) = 0, in I × (0,∞),
z(L1, t) = z(L2, t) = η, t ∈ (0,∞),
z(x, 0) = z0(x) + η, x ∈ I,

(8)

where 0 < ε < ∥z0∥L∞(I), 0 < η < ε, and

a(u) = b(u)
p−2
2 , b(u) = |u|2 + ηα, with α > 0 is chosen later.

So, we replace the quasilinear coefficient |zx|p−2 by its regularization a(zx) and the singular term
by its truncation-regularization gε(z). Equation (8) can be understood as a regularization of
equation (1).
In this framework, the gradient estimate can be presented as follows:
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Lemma 4 Let α > 2(γ−1)
γ , and z0 be above. Then, there exists a unique classical solution zε,η

of equation (8). Moreover, there is a positive constant C(β, p) such that

|∂xzε,η(x, τ)| ≤ C(β, p).z
1− 1

γ
ε,η (x, τ)

(
τ
− 1

p .∥z0∥
1+β
p

L∞(I) + 1

)
, ∀(x, τ) ∈ I × (0,∞). (9)

Remark 5 Estimate (9) extends the similar ones for p = 2, in [22], [8], and [25].

Proof: Thanks to some classical results (see, e.g., [19], [26] and [27]), there exists a unique
solution zε,η ∈ C∞(I × [0,∞)) of equation (8). For sake of brevity, let us drop dependence on
ε, η in the notation and put z = zε,η.

It is clear that η (resp. ∥z0∥L∞(I) + η) is a sub-solution (resp. super-solution) of equation
(8). Then, the comparison principle yields

η ≤ z ≤ ∥z0∥L∞(I) + η ≤ 2∥z0∥L∞(I), in I × (0,∞). (10)

For any 0 < τ < T <∞ , let us consider a test function ξ(t) ∈ C∞
c (0,∞), 0 ≤ ξ(t) ≤ 1 such that

ξ(t) =


1, on [τ, T ],

0, outside ( τ2 , T + τ
2 ).

, and |ξt| ≤
c0
τ
,

and put
z = φ(v) = vγ , w(x, t) = ξ(t)v2x.

We briefly denote
a = a(zx), ax = (a(zx))x, axx = (a(zx))xx.

Then, we have

wt − awxx = ξt.v
2
x + 2ξvx(vt − avxx)x − 2ξav2xx + 2ξaxvxx. (11)

From the equation satisfied by z we get

vt − avxx = axvx + av2x
φ′′

φ′ −
gε(φ)

φ′ ,

where φ′ (resp. φ′′) is the first (resp. second) derivative of φ. By combining the last two
equations, we have

wt − awxx = ξtv
2
x + 2ξvx

(
axvx + av2x

φ′′

φ′ −
gε(φ)

φ′

)
x

− 2ξav2xx + 2ξaxvxx.

Now, we define
L = max

I×[0,∞)
{w(x, t)}.

If L = 0, then the conclusion (9) is trivial, and |zx(x, τ)| = 0, in I. If L > 0, then the function
w must attain its maximum at a point (x0, t0) ∈ I × ( τ2 , T + τ

2 ) since w(x, t) = 0 on ∂I × (0,∞)
and w(., t) = 0 outside the interval ( τ2 , T + τ

2 ). This implies
wt(x0, t0) = wx(x0, t0) = 0,
and
0 ≥ wxx(x0, t0) = 2ξ(t0)v

2
xx(x0, t0) + 2ξ(t0)vx.vxxx(x0, t0),
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so we obtain
vx.vxxx(x0, t0) ≤ 0. (12)

Since vx(x0, t0) ̸= 0, we get

wx(x0, t0) = 0 if and only if vxx(x0, t0) = 0. (13)

At the point (x0, t0), (11) and (13) provide us

0 ≤ wt − awxx = ξtv
2
x + 2ξvx

(
axxvx + axv

2
x

φ′′

φ′ + av2x

(
φ′′

φ′

)
x

−
(
gε(φ)

φ′

)
x

)
.

0 ≤ 1

2
ξtξ

−1v2x + vx

(
axxvx + axv

2
x

φ′′

φ′ + av2x

(
φ′′

φ′

)
x

−
(
gε(φ)

φ′

)
x

)
.

Or

−av3x
(
φ′′

φ′

)
x

≤ 1

2
ξtξ

−1v2x + axxv
2
x + axv

3
x

φ′′

φ′ − vx

(
gε(φ)

φ′

)
x

. (14)

By the fact vxx(x0, t0) = 0 and computation, we have
ax(zx)(x0, t0) = (p− 2)b

p−4
2 (zx)φ

′φ′′v3x,(
φ′′

φ′

)
x

=

(
φ′′′φ′ − φ′′2

φ′2

)
vx = −(γ − 1)v−2vx,

(15)

and

axx(zx)(x0, t0) = (p− 2)(p− 4)b
p−6
2 (zx)(φ

′.φ′′)2v6x + (p− 2)b
p−4
2 (zx)(φ

′′2 + φ′φ′′′)v4x+

(p− 2)b
p−4
2 (zx)φ

′2vxvxxx.

By (12), we obtain from the last equation

axx(zx)(x0, t0) ≤ (p− 2)(p− 4)b
p−6
2 (zx)(φ

′.φ′′)2v6x + (p− 2)b
p−4
2 (zx)(φ

′′2 + φ′φ′′′)v4x. (16)

Next, we have

vx

(
gε(φ)

φ′

)
x

= (g′ε − gε
φ′′

φ′2 )v
2
x =

(
ψ′
ε(φ).φ

−β(v)− (β +
γ − 1

γ
)ψε(φ)v

−(1+β)γ

)
v2x.

Since ψ′
ε(.) ≥ 0 and 0 ≤ ψε ≤ 1, we get

vx

(
gε(φ)

φ′

)
x

≥ −(β +
γ − 1

γ
)v−(1+β)γv2x. (17)

Inserting (15), (16), and (17) into (14) yields

1

2
ξtξ

−1v2x + (p− 2)(p− 4)b
p−6
2 (zx)(φ

′φ′′)2v8x + (p− 2)b
p−4
2 (zx)(2φ

′′2 + φ′φ′′′)v6x+

(β +
γ − 1

γ
)v−(1+β)γv2x ≥ (γ − 1)v−2a(zx).v

4
x. (18)
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It is useful to introduce the notation

B := (p− 2)(p− 4)b
p−6
2 (zx)(φ

′φ′′)2v8x + (p− 2)b
p−4
2 (zx)(2φ

′′2 + φ′φ′′′)v6x.

Next, we rewrite B as follows

B = (p− 2)b
p−6
2 (zx)v

6
x

(
(p− 4).(φ′φ′′)2.v2x + (2φ′′2 + φ′φ′′′)b(zx)

)
=

(p− 2)φ′2b
p−6
2 (zx)v

8
x

(
(p− 2)φ′′2 + φ′φ′′′)+ ηα(p− 2)(2φ′′2 + φ′φ′′′)b

p−6
2 (zx)v

6
x =

(p− 2)(p(γ − 1)− γ)γ2(γ − 1)v2(γ−2)φ′2b
p−6
2 (zx)v

8
x︸ ︷︷ ︸

B1

+ ηα(p− 2)γ2(γ − 1)(3γ − 4)v2(γ−2)b
p−6
2 (zx)v

6
x︸ ︷︷ ︸

B2

The fact p(γ − 1)− γ < 0 implies B1 ≤ 0, thereby proves

B ≤ B2. (19)

From (18) and (19), we get

1

2
ξtξ

−1v2x + (β +
γ − 1

γ
)v−(1+β)γv2x + B2 ≥ (γ − 1)v−2a(zx).v

4
x.

The fact that b
p−2
2 (.) is an increasing function since p > 2 leads to

a(zx) = b
p−2
2 (zx) ≥ (v2xφ

′2)
p−2
2 = |vx|p−2γp−2v(γ−1)(p−2).

A combination of the last two inequalities deduces

1

2
ξtξ

−1v2x + (β +
γ − 1

γ
)v−(1+β)γv2x + B2 ≥ (γ − 1)γp−2v(γ−1)(p−2)−2|vx|p+2.

By noting that 2− (γ − 1)(p− 2) = (1 + β)γ, we obtain

1

2
ξtξ

−1v2x + (β +
γ − 1

γ
)v−(1+β)γv2x + B2 ≥ (γ − 1)γp−2v−(1+β)γ |vx|p+2. (20)

By multiplying both sides of inequality (20) with v(1+β)γ , and recalling the expression of B2, we
conclude

1

2
ξtξ

−1v(1+β)γv2x + (β +
γ − 1

γ
)v2x + v(1+β)γB2 ≥ (γ − 1)γp−2|vx|p+2. (21)

Now, we shall divide the study of inequality (21) in two different subcases:

(i) Case: 3γ − 4 ≤ 0.

We observe from the expression of B2 that

B2 ≤ 0.

It follows then from (21) that

(γ − 1)γp−2|vx|p+2 ≤
(
1

2
ξtξ

−1v(1+β)γ + (β +
γ − 1

γ
)

)
v2x. (22)

7



Remind that z = φ(v) = vγ . We infer from (10) and (22) that there is a positive constant
C1 = C1(β, p) such that

|vx(x0, t0)|2 ≤ C1

(
|ξt(t0)|ξ−1(t0).∥z0∥1+β

L∞(I) + 1
) 2

p
. (23)

Thus, from (23) we obtain

w(x0, t0) = ξ(t0)|vx(x0, t0)|2 ≤ C1ξ(t0)
(
|ξt(t0)|ξ−1(t0).∥z0∥1+β

L∞(I) + 1
) 2

p
.

Using Young’s inequality deduces

w(x0, t0) ≤ C1ξ(t0)
1− 2

p |ξt(t0)|
2
p .∥z0∥

2(1+β)
p

L∞(I) + C1ξ(t0).

Since 0 ≤ ξ(t) ≤ 1, |ξt(t)| ≤ c0
τ , and w(x0, t0) = max

(x,t)∈I×[0,∞)
w(x, t), the last estimate yields

w(x, t) ≤ w(x0, t0) ≤ C2.τ
− 2

p .∥z0∥
2(1+β)

p

L∞(I) + C2, ∀(x, t) ∈ I × (0,∞),

with C2 = C2(β, p) > 0. Thus, at time t = τ , we have

w(x, τ) = |vx(x, τ)|2 ≤ C2.τ
− 2

p .∥z0∥
2(1+β)

p

L∞(I) + C2,

which implies

|zx(x, τ)| ≤ C3.z
1− 1

γ

(
τ
− 1

p .∥z0∥
(1+β)

p

L∞(I) + 1

)
, C3 = C3(β, p).

The last inequality holds for any τ > 0, so we get conclusion (9).

(ii) Case: 3γ − 4 > 0 ⇐⇒ p < 4(1− β).

Now b
p−6
2 (.) is a decreasing function and we have

b
p−6
2 (zx) ≤ |zx|p−6 = |vx|p−6γp−6v(γ−1)(p−6).

Thus, we obtain

v(1+β)γB2 ≤ ηα(p− 2)γ2(γ − 1)(3γ − 4)γp−6.v2(γ−2)+(1+β)γ+(γ−1)(p−6).|vx|p.

Note that 2(γ − 2) + (1 + β)γ + (γ − 1)(p− 6) = −2(γ − 1), we get

v(1+β)γB2 ≤ ηα(p− 2)γ2(γ − 1)(3γ − 4)γp−6v−2(γ−1)|vx|p.

Inserting this fact into (21) yields

(γ − 1)γp−2|vx|p+2 ≤ 1

2
ξtξ

−1v(1+β)γv2x + (β +
γ − 1

γ
)v2x + ηα(p− 2)γ2(γ − 1)(3γ − 4)γp−6v−2(γ−1)|vx|p.

Therefore, there is a constant C4 = C4(β, p) > 0 such that

|vx|p+2 ≤ C4

(
|ξt|ξ−1v(1+β)γ + 1

)
v2x + C4.η

α.v−2(γ−1)|vx|p.
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The fact v = z
1
γ ≥ η

1
γ implies

v−2(γ−1) ≤ η
− 2(γ−1)

γ .

which leads to

|vx|p+2 ≤ C4

(
|ξt|ξ−1v(1+β)γ + 1

)
v2x + C4.η

α− 2(γ−1)
γ |vx|p. (24)

At the moment, if |vx(x0, t0)| < 1, then we have

ξ(t0)|vx(x0, t0)|2 < 1,

likewise
w(x, t) ≤ 1, in I × (0,∞).

Thus, the conclusion (9) follows immediately.

If not |vx(x0, t0)| ≥ 1, then we have |vx|p ≤ |vx|p+2. It follows from (24)

|vx|p+2 ≤ C4

(
|ξt|ξ−1v(1+β)γ + 1

)
v2x + C4η

α− 2(γ−1)
γ |vx|p+2,

or (
1− C4.η

α− 2(γ−1)
γ

)
|vx|p+2 ≤ C4

(
|ξt|ξ−1v(1+β)γ + 1

)
v2x.

Since α > 2(γ−1)
γ and η > 0 can be taken small enough, there exists a positive constant C5 =

C5(β, p) > 0 such that

|vx|p+2 ≤ C5

(
|ξt|ξ−1v(1+β)γ + 1

)
v2x. (25)

Note that (25) is just a version of (22). By the same analysis as in (i), we also get (9). This
puts an end to the proof of Lemma 4. �

Now we shall get the other a priori bound (7) for the regularizing problem. For any τ > 0
we shall show that zε,η is a Lipschitz function on I × (τ,∞) with a Lipschitz constant C being
independent of ε, η.

Proposition 6 Let zε,η be the solution of equation (8) above. Then, for any τ > 0 there is a
positive constant C = C(β, p, τ, |I|, ∥z0∥L∞(I)) such that

|zε,η(x, t)− zε,η(y, s)| ≤ C
(
|x− y|+ |t− s|

1
3

)
, ∀x, y ∈ I, ∀t, s > τ. (26)

Proof: We first extend zε,η by η outside I, still denoted as zε,η. Assume without loss of
generality that t > s. To simplify the notation, we denote z = zε,η as above. For any τ > 0 and
for t > s ≥ τ , after multiplying equation (8) by ∂tz, and using integration by parts we get∫ t

s

∫
I
|∂tz|2 + a(zx)zx∂tzx + gε(z)∂tz dxdσ = 0. (27)

We observe that

a(zx)zx∂tzx =
(
|zx|2 + ηα

) p−2
2 .

1

2
∂t(|zx|2) =

1

p
∂t(|zx|2 + ηα)

p
2 .

9



Inserting this fact into equation (27) we deduce∫ t

s

∫
I
|∂tz|2dxdσ ≤

∫
I

1

p

(
|zx(x, s)|2 + ηα

) p
2 dx+

∫
I
Gε(z(x, s))dx,

with

Gε(r) =

∫ r

0
gε(s)ds ≤

∫ r

0
s−βds =

r1−β

1− β
.

Then, we get∫ t

s

∫
I
|∂tz|2dxdσ ≤ 1

p

∫
I

(
|zx(x, s)|2 + ηα

) p
2 dx+

1

1− β

∫
I
z(x, s)1−βdx.

Or ∫ t

s

∫
I
|∂tz|2dxdσ ≤ 1

p

∫
I

(
∥zx(s)∥2L∞(I) + ηα

) p
2
dx+

1

1− β

∫
I

(
∥z0∥L∞(I) + η

)1−β
dx. (28)

By applying Young’s inequality in (28), we obtain∫ t

s

∫
I
|∂tz|2dxdσ ≤ C6

(
∥zx(s)∥pL∞(I) + ∥z(s)∥1−β

L∞(I)

)
+O(η), (29)

with C6 = C6(β, p, |I|), and lim
η→0

O(η) = 0.

By combining (9) and (29), we deduce that there is a constant C7 = C7(β, p, τ, |I|, ∥z0∥L∞(I)) > 0
such that ∫ t

s

∫
I
|∂tz|2dxdσ ≤ C7, ∀t > s ≥ τ. (30)

Thus ∥∂tzε,η∥L2(I×(s,t)) is bounded by a constant which is independent of ε and η.

Next, for any x, y ∈ I, we set

r = |x− y|+ |t− s|
1
3 .

According to the Mean Value Theorem, there is a real number x̄ ∈ Br(y) such that

|∂tz(x̄, σ)|2 =
1

|Br(y)|

∫
Br(y)

|∂tz(l, σ)|2dl =
1

2r

∫
Br(y)∩I

|∂tz(l, σ)|2dl ≤
1

2r

∫
I
|∂tz(l, σ)|2dl (31)

(Note that ∂tz(., t) = 0 outside I).
Next, we have from Holder’s inequality

|z(x̄, t)− z(x̄, s)|2 ≤ (t− s)

∫ t

s
|∂tz(x̄, σ)|2dσ

(31)

≤ (t− s)

2r

∫ t

s

∫
I
|∂tz(l, σ)|2dldσ,

or

|z(x̄, t)− z(x̄, s)|2
(30)

≤ 1

2
C7.(t− s)

2
3 .

Then, we obtain

|z(x̄, t)− z(x̄, s)| ≤ C8.(t− s)
1
3 , ∀t > s ≥ τ, (32)
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with C8 =
√

1
2C7. Now, it is sufficient to show (26). Indeed, we have the triangular inequality

|z(x, t)− z(y, s)| ≤ |z(x, t)− z(y, t)|+ |z(y, t)− z(y, s)|
≤ |z(x, t)− z(y, t)|+ |z(y, t)− z(x̄, t)|+ |z(x̄, t)− z(x̄, s)|++|z(x̄, s)− z(y, s)|,

where x̄ ∈ Ir(y) is above. Then, the conclusion (26) just follows from (32), gradient estimate
(9), and the Mean Value Theorem. This puts an end to the proof of Proposition 6. �

Next, we will pass to the limit as η → 0 in order to get gradient estimate (9) for the ”least
regularized problem”

∂tzε −
(
|∂xzε|p−2∂xzε

)
x
+ gε(zε) = 0 in I × (0,∞),

zε(L1, t) = zε(L2, t) = 0 t ∈ (0,∞),
zε(x, 0) = z0(x) on I.

(33)

Theorem 7 Let p > 2, and 0 ≤ z0 ∈ L∞(I). Then, there exists a unique weak solution zε of
equation (33). Furthermore, zε fulfills the gradient estimate (9)

|∂xzε(x, t)| ≤ C(β, p).z
1− 1

γ
ε (x, t)

(
t
− 1

p .∥z0∥
1+β
p

L∞(I) + 1

)
, for a.e (x, t) ∈ I × (0,∞), (34)

Moreover, zε also satisfies (26), i.e., zε is a Lipschitz function.

Proof: Equation (33) is just the limit of equation (8) as η → 0, see [27], or [26]. Note that
one can regularize initial data z0 if necessary. Thus, estimate (34) follows from (9). �

3 Proof of Theorem 2

The proof of Theorem 2 is divided into three parts. In the first part, we show the existence
and uniqueness of solution uε of equation (33) with initial data u0 ∈ L1(I). Moreover, we also
prove a gradient estimate for |∂xuε| involving the terms of uε and ∥u0∥L1(I) (see Theorem 8 be-
low). After that, passing ε→ 0 yields equation (1). Finally, the conclusion that u is a maximal
solution will be proven in Proposition 11 below.

We first have the following result.

Theorem 8 Let p > 2, and u0 ∈ L1(I), u0 ≥ 0. Then, there exists a unique weak solution uε
of equation (33). Moreover, uε satisfies the following additional estimates:
(i) There is a constant C(p, |I|) > 0 such that

∥uε(., t)∥L∞(I) ≤ C(p, |I|).t−
1
λ .∥u0∥

p
λ

L1(I)
, for t ∈ (0,∞). (35)

Recall here λ = 2(p− 1).
(ii) For any τ > 0, there is a constant C(β, p, |I|) > 0 such that

|∂xuε(x, t)| ≤ C(β, p, |I|).u
1− 1

γ
ε (x, t).

(
τ
−λ+β+1

λp ∥u0∥
1+β
λ

L1(I)
+ 1

)
, for a.e (x, t) ∈ (τ,∞). (36)

(iii) There exists a constant C = C(β, p, τ, |I|, ∥u0∥L1(I)) > 0 such that

|uε(x, t)− uε(y, s)| ≤ C
(
|x− y|+ |t− s|

1
3

)
, ∀x, y ∈ I, ∀t, s > τ. (37)

11



Proof: (i) Uniqueness. The uniqueness result follows from the lemma below.

Lemma 9 Let v1 (resp. v2) be a weak sub-solution (resp. super-solution) of equation (33).
Then, we have

v1 ≤ v2, in I × (0,∞).

We skip the proof of Lemma 9 and give its proof in the Appendix.

(ii) Existence. Wemake a regularization to initial data u0 by considering a sequence {u0,n}n≥1 ⊂
C∞
c (I) such that

u0,n
n→∞−→ u0, in L1(I); and ∥u0,n∥L1(I) ≤ ∥u0∥L1(I).

Let uε,n be a unique (weak) solution of the equation (see details in [27], or [26])
∂tuε,n −

(
|∂xuε,n|p−2∂xuε,n

)
x
+ gε(uε,n) = 0 in I × (0,∞),

uε,n(L1, t) = uε,n(L2, t) = 0 t ∈ (0,∞),
uε,n(x, 0) = u0,n(x) on I

(38)

We will show that uε,n converges to uε, which is a solution of equation (33). The proof contains
some steps.
Step 1: A priori estimates.
First of all, we observe that uε,n is a sub-solution of the following equation

∂tvn −
(
|∂xvn|p−2∂xvn

)
x
= 0 in I × (0,∞),

vn(L1, t) = vn(L2, t) = 0 ∀t ∈ (0,∞),
vn(x, 0) = u0,n(x) in I

(39)

Therefore, the comparison principle yields

uε,n ≤ vn, in I × (0,∞). (40)

Using smoothing effect L1 − L∞ deduces (see, e.g., Theorem 4.3, [12])

∥vn(., t)∥L∞(I) ≤ C(p, |I|).t−
1
λ .∥vn(0)∥

p
λ

L1(I)
≤ C(p, |I|).t−

1
λ .∥u0∥

p
λ

L1(I)
, ∀t > 0, (41)

By (40) and (41), we obtain

∥uε,n(., t)∥L∞(I) ≤ C(p, |I|).t−
1
λ .∥u0∥

p
λ

L1(I)
, ∀t > 0. (42)

Now, for any τ > 0, we apply Theorem 7 to uε,n by considering uε,n(
τ
2 ) as the initial data instead

of uε,n(0) in order to get

|∂xuε,n(x, t)| ≤ C(β, p).u
1− 1

γ
ε,n (x, t)

(
(t− τ

2
)
− 1

p ∥uε,n(
τ

2
)∥

1+β
p

L∞(I) + 1

)
, for a.e (x, t) ∈ I×(

τ

2
,∞),

which implies

|∂xuε,n(x, t)| ≤ C(β, p)u
1− 1

γ
ε,n (x, t)

((τ
2

)− 1
p ∥uε,n(

τ

2
)∥

1+β
p

L∞(I) + 1

)
, (43)
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for a.e (x, t) ∈ I × (τ,∞). It follows from (42) and (43) that there exists a positive constant
C(β, p, |I|) such that

|∂xuε,n(x, t)| ≤ C(β, p, |I|).u
1− 1

γ
ε,n (x, t)

(
τ
−λ+β+1

λp ∥u0∥
1+β
λ

L1(I)
+ 1

)
, for a.e (x, t) ∈ (τ,∞). (44)

In view of (42) and (44), uε,n(t) and |∂xuε,n(t)| are bounded on I × (τ,∞) by the positive
constants which are independent of ε and η.
Thanks to Proposition 6, there is a positive constant C = C(β, p, τ, |I|, ∥u0∥L1(I)) such that

|uε,n(x, t)− uε,n(y, s)| ≤ C
(
|x− y|+ |t− s|

1
3

)
, ∀x, y ∈ I, ∀t, s > τ, (45)

Step 2: Passing to the limit as n → ∞. To avoid relabeling after any passage to the limit, we
want to keep the same label. Now, we observe that (45) allows us to apply the Ascoli-Arzela
Theorem to uε,n, so there is a subsequence of {uε,n}n≥1 such that

uε,n
n→∞−→ uε, uniformly on every compact of I × (τ,∞).

Furthermore, the diagonal argument asserts that there is a subsequence of {uε,n}n≥1 such that

uε,n(x, t)
n→∞−→ uε(x, t), pointwise in I × (0,∞). (46)

Thus, uε also satisfies (42) and (45).
Next, we claim that for any 0 < τ < T <∞

∂xuε,n
n→∞−→ ∂xuε, in L1(I × (τ, T )). (47)

To prove (47), we borrow an idea of L. Boccardo and F. Murat [5] (the so called almost everywhere
convergence of the gradients, see also in [4]). Let us put

wn,m = uε,n − uε,m, for n,m ∈ N,

and

Tk(s) =

{
s, if |s| ≤ k,
k.sign(s), if |s| > k,

and

Sk(u) =

∫ u

0
Tk(s)ds =

1

2
|u|2χ{|u|<k} + k(|u| − 1

2
k)χ{|u|≥k}.

Then, we have

∂twn,m −
(
|∂xuε,n|p−2∂xuε,n − |∂xuε,m|p−2∂xuε,m

)
x
+ gε(uε,n)− gε(uε,m) = 0.

Multiplying both sides of the last equation with Tδ(wn,m) and using the integration by part yield∫
I
Sδ(wn,m(x, T ))dx+

∫ T

τ

∫
I

(
|∂xuε,n|p−2∂xuε,n − |∂xuε,m|p−2∂xuε,m

)
.∂xTδ(wn,m)(x, s)dxds+

∫ T

τ

∫
I
(gε(uε,n)− gε(uε,m))Tδ(wn,m)dxds =

∫
I
Sδ(wn,m(x, τ))dx. (48)
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Since Sk(.) ≥ 0, and Sk(s) ≤ k|s|, we get∫ T

τ

∫
I

(
|∂xuε,n|p−2∂xuε,n − |∂xuε,m|p−2∂xuε,m

)
.∂xTδ(wn,m)(x, s)dxds

≤ δ

∫ T

τ

∫
I
(gε(uε,n) + gε(uε,m)) dxds+ δ

∫
I
|wn,m(τ)|dx. (49)

Next, for any t > 0, we have L1−estimate∫
I
uε,n(t)dx+

∫ t

0

∫
I
gε(uε,n)dxds ≤

∫
I
uε,n(0)dx ≤ ∥u0∥L1(I), ∀n ≥ 1. (50)

Combining (49) and (50) yields∫ T

τ

∫
I

(
|∂xuε,n|p−2∂xuε,n − |∂xuε,m|p−2∂xuε,m

)
∂xTδ(wn,m)(x, s)dxds ≤ 4δ∥u0∥L1(I). (51)

Thus, it follows from the strong monotonicity of p−Laplace operator (see Lemma 22) that there
is a positive constant c such that

c

∫
{wn,m<δ}∩I×(τ,T )

|∂xwn,m(x, s)|pdxds ≤ 4δ∥u0∥L1(I). (52)

By Holder’s inequality, we obtain

∫
{wn,m<δ}∩I×(τ,T )

|∂xwn,m(x, s)|dxds ≤ C(|I|, T )

(∫
{wn,m(x,t)<δ}

|∂xwn,m(x, s)|pdxds

) 1
p

. (53)

From (52) and (53), we deduce∫
{wn,m<δ}∩I×(τ,T )

|∂xwn,m(x, s)|dxds ≤ Cδ
1
p , (54)

with C = C(|I|, T, c, ∥u0∥L1(I)).
On the other hand, we have∫
{wn,m(x,t)≥δ}∩I×(τ,T )

|∂xwn,m(x, s)|dxds ≤ ∥∂xwn,m∥L∞(I×(τ,T )).mes ({wn,m(x, t) ≥ δ} ∩ I × (τ, T )) .

Insert gradient estimate (44) into the last inequality to get∫
{wn,m(x,t)≥δ}∩I×(τ,T )

|∂xwn,m(x, s)|dxds ≤ C1.mes ({wn,m(x, t) ≥ δ} ∩ I × (τ, T )) , (55)

where the constant C1 only depends on β, p, |I|, τ, ∥u0∥L1(I).
A combination of (54) and (55) provides us∫ T

τ

∫
I
|∂xwn,m(x, s)|dxds ≤ C2.

(
mes ({wn,m(x, t) ≥ δ} ∩ I × (τ, T )) + δ

1
p

)
.
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Let n,m→ ∞ in the above inequality. Note that (46) implies

lim
n,m→∞

mes ({wn,m(x, t) ≥ δ} ∩ I × (τ, T )) = 0,

thereby proves

lim
n,m→∞

∫ T

τ

∫
I
|∂xwn,m(x, s)|dxds ≤ Cδ

1
p .

The last estimate holds for any δ > 0, so we get claim (47) after passing δ → 0.
According to (47) and (44), we obtain

∂xuε,n
n→∞−→ ∂xuε, in Lq(I × (τ, T )), ∀q ∈ [1,∞), (56)

and there is a subsequence of {∂xuε,n} such that

∂xuε,n
n→∞−→ ∂xuε, for a.e (x, t) ∈ I × (0,∞). (57)

Thus, the conclusion (36) follows from (57) and (44).
Next, we claim that

uε ∈ C([0,∞);L1(I)). (58)

It suffices to demonstrate that

uε ∈ C([0, T ];L1(I)), for any T ∈ (0,∞). (59)

Indeed, we first observe that for any ε > 0 fixed, gε(uε,n) is bounded by ε−β. Moreover, (46)
deduces

gε(uε,n)
n→∞−→ gε(uε), pointwise in I × (0,∞).

Therefore, the Dominated Convergence Theorem yields

gε(uε,n)
n→∞−→ gε(uε), in L1(I × (0, T )). (60)

As a consequence of (60) and (50), we get∫ ∞

0

∫
I
gε(uε(x, s))dxds ≤ ∥u0∥L1(I). (61)

Next, we take δ = 1 in equation (48) to obtain∫
I
S(wn,m(t))dx ≤

∫ t

τ

∫
I
|gε(uε,n)− gε(uε,m)|dxds+

∫
I
|wn,m(τ)|dxds, for t ∈ (τ, T ).

Passing τ → 0 in the above inequality provides us∫
I
S(wn,m(x, t))dx ≤

∫ t

0

∫
I
|gε(uε,n)− gε(uε,m)|dxds+

∫
I
|wn,m(0)|dxds, for 0 < t < T.

By (60), we derive∫
I
S(wn,m(x, t))dx ≤

∫ T

0

∫
I
|gε(uε,n)− gε(uε,m)|dxds+

∫
I
|u0,n − u0,m|dxds = o(n,m) (62)
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where o(n,m)
n,m→∞−→ 0.

Moreover, we have a relation between wn,m and S(wn,m) as follows (see also in [7])∫
I
wn,m(x, t)dx ≤

√
2|I|

∫
I
S(wn,m(t))dx+ 2

∫
I
S(wn,m(x, t))dx, ∀t > 0. (63)

Combining (62) and (63) yields∫
I
wn,m(x, t)dx ≤ C(|I|)

(√
o(n,m) + o(n,m)

)
, ∀t > 0. (64)

Then

lim
n,m→∞

sup
t∈[0,∞)

∫
I
wn,m(x, t)dx = 0, uniformly on [0, T ].

This implies claim (58).

Now, it is enough to show that uε is a weak solution of equation (33). In fact, we observe
that (56) and (60) allows us to pass to the limit as n → ∞ in the equation satisfied by uε,n to
obtain

∂tuε −
(
|∂xuε|p−2∂xuε

)
x
+ gε(uε) = 0, in D′(I × (0,∞)).

Or, we get the proof of Theorem 8. �
To complete the proof of Theorem 2, it remains to pass to the limit as ε→ 0. We first show

that {uε}ε>0 is a non-decreasing sequence, thus we have uε(x, t) ↓ u(x, t). We note that the
monotonicity of {uε}ε>0 will be intensively used in what follows.
In fact, for any ε > ε′ > 0, it is clear that

gε′(v) = ψ(
v

ε′
)v−β ≥ ψ(

v

ε
)v−β = gε(v), for v ∈ R.

Thus
∂tuε −

(
|∂xuε|p−2∂xuε

)
x
+ gε′(uε) ≥ ∂tuε −

(
|∂xuε|p−2∂xuε

)
x
+ gε(uε) = 0,

which implies that uε is a super-solution of equation satisfied by uε′ , so Lemma 9 yields

uε(x, t) ≥ uε′(x, t), in I × (0,∞), (65)

or we get the result.

It is obvious that the estimates in the proof of Theorem 8 are independent of ε. Thus, a
similar analysis as in the proof of Theorem 8 implies that there exists a function u such that

∂xuε
ε→0−→ ∂xu, for a.e (x, t) ∈ I × (0,∞),

∂xuε
ε→0−→ ∂xu, in Lq(I × (τ, T )), for 0 < τ < T <∞, ∀q ≥ 1,

(66)

so u satisfies the estimates (5), (6) and (7) of Theorem 2.
Next, we shall show that there is a subsequence of {gε(uε)}ε>0 such that

gε(uε)
ε→0−→ u−βχ{u>0}, in L1(I × (0,∞)). (67)
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Let us emphasize that (67) implies the conclusion

u ∈ C([0,∞);L1(I)) (68)

by following the proof of (58).
By (61) and Fatou’s lemma, there is a function Φ ∈ L1(I × (0,∞)) such that

lim inf
ε→0

gε(uε) = Φ, in L1(I × (0,∞)). (69)

By the monotonicity of {uε}ε>0, we have

gε(uε)(x, t) ≥ gε(uε)χ{u>0}(x, t),

which implies

lim inf
ε→0

gε(uε)(x, t) ≥ u−βχ{u>0}(x, t), for a.e (x, t) ∈ I × (0,∞). (70)

From (69) and (70), we deduce

u−βχ{u>0} ≤ Φ, and u−βχ{u>0} ∈ L1(I × (0,∞)). (71)

Now, for any η > 0 fixed, we use the test function ψη(uε)ϕ, ϕ ∈ C∞
c (I × (0, T )) in the equation

satisfied by uε. Then, the integration by parts yields∫
Supp(ϕ)

−Ψη(uε)ϕt +
1

η
|∂xuε|pψ′(

uε
η
)ϕ+ |∂xuε|p−2∂xuε.∂xϕ.ψη(uε) + gε(uε)ψη(uε)ϕ dxds = 0,

where

Ψη(u) =

∫ u

0
ψη(s)ds.

Thanks to the Dominated Convergence Theorem and (66), going to the limit as ε → 0 in the
indicated equation yields∫

Supp(ϕ)
−Ψη(u)ϕt +

1

η
|∂xu|pψ′(

u

η
)ϕ+ |∂xu|p−2∂xu∂xϕψη(u) + u−βψη(u)ϕ dxds = 0. (72)

After that, we pass to the limit as η → 0 in equation (72). It is not difficult to verify that

lim
η→0

∫
Supp(ϕ)

Ψη(u)ϕtdxds =

∫
Supp(ϕ)

u.ϕtdxds,

lim
η→0

∫
Supp(ϕ)

|∂xu|p−2∂xu.∂xϕ.ψη(u)dxds =

∫
Supp(ϕ)

|∂xu|p−2∂xu.∂xϕdxds,

lim
η→0

∫
Supp(ϕ)

u−βψη(u)ϕdxds =

∫
Supp(ϕ)

u−βχ{u>0}ϕdxds.

(73)

While

lim
η→0

∫
Supp(ϕ)

1

η
|∂xu|pψ′(

u

η
)ϕdxds = 0. (74)
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Indeed, the fact that u satisfies gradient estimate (6) leads to

1

η

∫
Supp(ϕ)

|∂xu|p|ψ′(
u

η
).ϕ|dxds ≤ C

1

η

∫
Supp(ϕ)∩{η<u<2η}

u1−βdxds

≤ 2C

∫
Supp(ϕ)∩{η<u<2η}

u−βdxds,

where the constant C > 0 is independent of η.
Thanks to (71), and the Dominated Convergence Theorem, we obtain

lim
η→0

∫
Supp(ϕ)∩{η<u<2η}

u−βdxds = 0,

which implies the conclusion (74). Combining (72), (73) and (74) it yields∫
Supp(ϕ)

(
−uϕt + |∂xu|p−2∂xu∂xϕ+ u−βχ{u>0}ϕ

)
dxds = 0. (75)

Therefore, u satisfies equation (1) in D′(I × (0,∞)).
Next, the fact that uε is a weak solution of (33) gives us∫

Supp(ϕ)

(
−uεϕt + |∂xuε|p−2∂xuε∂xϕ+ gε(uε)ϕ

)
dxds = 0.

Letting ε→ 0 deduces∫
Supp(ϕ)

(
−uϕt + |∂xu|p−2∂xu∂xϕ

)
dxds+ lim

ε→0

∫
Supp(ϕ)

gε(uε)ϕdxds = 0. (76)

A comparison between (75) and (76) leads to

lim
ε→0

∫ ∞

0

∫
I
gε(uε)ϕdxds =

∫ ∞

0

∫
I
u−βχ{u>0}ϕdxds. (77)

According to (69) and (77), we obtain∫ ∞

0

∫
I
u−βχ{u>0}ϕdxds ≥

∫ ∞

0

∫
I
Φϕdxds, ∀ϕ ∈ C∞

c (I × (0,∞)), ϕ ≥ 0.

The last inequality and (71) imply

u−βχ{u>0} = Φ, in I × (0,∞).

Thereby, we get (67). Thanks to (66), (68) and (75), u is a weak solution of equation (1).

Remark 10 The reader should note that (75) is not sufficient to conclude that u is a weak
solution by following Definition 1. Thus, it is necessary to prove (67) in order to get (68).

We end this Section by proving that u is the maximal solution of equation (1).

Proposition 11 Let v be any weak solution of equation (1). Then, we have

v(x, t) ≤ u(x, t), for a.e (x, t) ∈ I × (0,∞).
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Proof: For any ε > 0, we observe that

gε(v) ≤ v−βχ{v>0}.

Then
∂tv −

(
|∂xv|p−2∂xv

)
x
+ gε(v) ≤ ∂tv −

(
|∂xv|p−2∂xv

)
x
+ v−βχ{v>0} = 0,

which implies that v is a sub-solution of equation satisfied by uε.
Thanks to Lemma 9, we get

v(x, t) ≤ uε(x, t), for a.e (x, t) ∈ I × (0,∞).

Letting ε→ 0 yields the result. This puts an end to the proof of Theorem 2. �

Remark 12 If u0 ∈ L∞(I), then u also satisfies estimate (34).

4 Global quenching phenomenon in a finite time

In this section, we will show that any weak solution of equation (1) must quench (Theorem
3). According to Proposition 11, it is enough to prove that the maximal solution u vanishes
identically after a finite time. Then, we have the following result

Theorem 13 Let u0 ∈ L1(I), u0 ≥ 0. Then, there exists a finite time T0 such that

u(x, t) = 0, ∀x ∈ I, ∀t > T0.

Furthermore, T0 can be estimated by a constant depending on β, p, |I|, ∥u0∥L1(I).

Proof: For any τ > 0, we put

m (τ, u0) = C(p, |I|).τ−
1
λ .∥u0∥

p
λ

L1(I)
,

the a priori bound of u(x, t) on [τ,∞), see (42) or (5).

Let Γε(t) be a flat solution of equation (33), i.e,
∂tΓε(t) + gε(Γε) = 0, t > 0,

Γε(0) = m (τ, u0) .
(78)

Then, the strong comparison deduces

uε(x, s+ τ) ≤ Γε(s), ∀(x, s) ∈ I × (0,∞).

It is straightforward to show that

Γε(t)
ε→0−→ Γ(t) =

(
m (τ, u0)

1+β − (1 + β)t
) 1

1+β

+
, for t > 0.

Then, we obtain
u(x, s+ τ) ≤ Γ(s), for (x, s) ∈ I × (0,∞),
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which implies

u(x, t) = 0, for any t ≥ τ +
m1+β(τ, u0)

1 + β
, and for x ∈ I. (79)

Now, we try to estimate the value of the quenching time T0. By (79), we can choose T0 as
follows

T0 = min
τ>0

{τ + m1+β(τ, u0)

1 + β
} = C(β, p, |I|).∥u0∥

(1+β)p
1+β+λ

L1(I)
.

This completes the proof of Theorem 13, thereby proves Theorem 3. �

Remark 14 If u0 ∈ L∞(I), then we can take T0 =
∥u0∥1+β

L∞(I)

1 + β
.

Remark 15 In the previous works, (see e.g, [14], [8] and references therein) the estimate of
quenching time T0 depends on ∥u0∥L∞(I), which obviously requires u0 ∈ L∞(I). Thus, our result
is sharp because we merely assume u0 ∈ L1(I).

Next, we will point out an upper bound and a lower bound of any solution of equation (1)
at the quenching time.

4.1 Upper bound at the quenching time

Assume that Tmin is the minimal extinction time. It is clear that Tmin ≤ T0. Then, it follows
from Proposition 6 that

|u(x, t)− u(x, Tmin)| ≤ C.|Tmin − t|
1
3 , for (x, t) ∈ I × (

Tmin

2
, Tmin),

with constant C = C(β, p, |I|, Tmin, ∥u0∥L1(I)) > 0. Therefore, we get

u(x, t) ≤ C.(Tmin − t)
1
3
+, for (x, t) ∈ I × (

Tmin

2
, Tmin),

which implies

lim sup
t→T−

min

(
(Tmin − t)−

1
3 .∥u(t)∥L∞(I)

)
≤ C.

This conclusion also holds for any solution of equation (1), since u is the maximal solution.

4.2 Lower bound at the quenching time

For any τ > 0, let Γε be a solution of equation (78) with initial data ∥u(τ)∥L∞(I). By the
same argument with the proof of Theorem 13, we obtain

Γε
ε→0−→ Γ(t) =

(
∥u(τ)∥1+β

L∞(I) − (1 + β)t
) 1

1+β

+
, for t > 0.

This leads to

Tmin ≤ T0 ≤ τ +
∥u(τ)∥1+β

L∞(I)

1 + β
.

Thus, we obtain

lim inf
τ→T−

min

(
(Tmin − τ)

− 1
1+β .∥u(τ)∥L∞(I)

)
≥ (1 + β)

1
1+β .
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5 On the associated Cauchy problem

In this section, we extend the result of the existence of weak solutions of equation (1) to the
Cauchy problem: 

∂tU − (|Ux|p−2Ux)x + χ{U>0}U
−β = 0 in R× (0,∞),

U(x, 0) = U0(x), in R,
(80)

Besides, we also study the quenching phenomenon and the free boundary of solutions of equation
(80), which arise due to the singular absorption term.

5.1 The existence of a weak solution

We have a existence result of problem (80).

Theorem 16 Let p > 2, and β ∈ (0, 1), and 0 ≤ U0 ∈ L1(R) ∩ L∞(R). Then, there exists a
bounded solution, U ∈ C([0,∞);L1(R)) ∩ Lp(0, T ;W 1,p(R)) satisfying equation (80) in D′(R ×
(0,∞)). Besides, there is a positive constant C = C(β, p) such that

|∂xU(x, t)| ≤ C.U
1− 1

γ (x, t)

(
t
− 1

p .∥U0∥
1+β
p

L∞(R) + 1

)
, for a.e (x, t) ∈ R× (0,∞). (81)

As a consequence of (81) and Proposition 6, U is a locally Lipschitz function, i.e., for any τ > 0
and for r > 0, there is a positive constant C = C(β, p, r, τ, ∥U0∥L∞(R)) such that

|U(x, t)− U(y, s)| ≤ C
(
|x− y|+ |t− s|

1
3

)
, ∀t, s > τ, ∀x, y ∈ Br. (82)

Proof: The proof of this theorem is most likely to the one of Theorem 2 at many points, so
we just point out the main different ideas. For any ε > 0 and for r > 0, let ur,ε be the unique
solution of the problem

∂tu− (|ux|p−2ux)x + gε(u) = 0 in Br × (0,∞),
u(−r, t) = u(r, t) = 0, ∀t ∈ (0,∞),
u(x, 0) = U0(x), in Br,

(83)

see Theorem 8. Thanks to the comparison principle, we have

∥ur,ε(., t)∥L∞(Br) ≤ ∥U0∥L∞(R), for any t ∈ (0,∞). (84)

And L1-estimate yields

∥ur,ε(., t)∥L1(Br) ≤ ∥U0∥L1(R), for any t ∈ (0,∞). (85)

We infer from (34) and (84) that there is a constant C(β, p) > 0 such that

|∂xur,ε(x, t)| ≤ C(β, p).u
1− 1

γ
r,ε (x, t)

(
t
− 1

p .∥U0∥
1+β
p

L∞(R) + 1

)
, for a.e (x, t) ∈ Br × (0,∞). (86)
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Next, we will pass to the limit when r → ∞, and ε → 0. Let us start by passing firstly to
the limit as r → ∞. For any ε > 0 fixed, we observe that {ur,ε}r>0 is a non-decreasing sequence.
Then, there exists a nonnegative function Uε such that

ur,ε(x, t) ↑ Uε(x, t), for (x, t) ∈ R× (0,∞), (87)

so, we have from (84), (85), (87), and the Monotone Convergence Theorem
∥Uε(., t)∥L∞(R) ≤ ∥U0∥L∞(R), for any t ∈ (0,∞),

ur,ε(., t) → Uε(t), in L1(R), for any t ∈ (0,∞),

∥Uε(., t)∥L1(R) ≤ ∥U0∥L1(R), for any t ∈ (0,∞).

(88)

By the same analysis as in the proof of (47), we also have

∂xur,ε(x, t)
r→∞−→ ∂xUε(x, t), for a.e (x, t) ∈ R× (0,∞),

up to a subsequence. Thus, it follows from (86)

|∂xUε(x, t)| ≤ C(β, p).U
1− 1

γ
ε (x, t)

(
t
− 1

p .∥U0∥
1+β
p

L∞(R) + 1

)
, for a.e (x, t) ∈ R× (0,∞), (89)

and
∂xur,ε −→ ∂xUε, in Lq

loc(R× (0,∞)), ∀q ∈ [1,∞). (90)

Thanks to (87), (88) and (90), passing to the limit as r → ∞ in the equation satisfied by ur,ε
yields

∂tUε −
(
|∂xUε|p−2∂xUε

)
x
+ gε(Uε) = 0, in D′(R× (0,∞)). (91)

Now, we shall pass to the limit when ε→ 0. We first claim that {Uε}ε>0 is a non-decreasing
sequence. Indeed, we mimic the proof of (65) to get for any r > 0,

ur,ε ≥ ur,ε′ , in Br × (0,∞), ∀ε > ε′ > 0,

so the above claim follows when r → ∞. Then, there exists a function U such that

Uε(x, t) ↓ U(x, t), for (x, t) ∈ R× (0,∞). (92)

In similar, we also get
∂xUε → ∂xU, for a.e (x, t) ∈ R× (0,∞).

Therefore, the conclusions (81) follows from (89) when ε→ 0.
In addition, by repeating the argument of (67), there is a subsequence of {gε(Uε)}ε>0 such that

gε(Uε) → U−βχ{U>0}, in L1(R× (0,∞)). (93)

The above results allows us to mimic the proof (72)− (75) in order to pass to the limit as ε→ 0
in equation (91) to get

∂tU −
(
|Ux|p−2Ux

)
x
+ U−βχ{U>0} = 0, in D′(R× (0,∞)), (94)
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Next, using the local argument as in the proof of (58) yields

U ∈ C([0,∞);L1
loc(R)).

Now, to prove u ∈ C([0,∞);L1(R)), it suffices to show that u(t) is continuous at t = 0 in L1(R),
i.e

lim
t→0

∫
R
|U(x, t)− U0(x)|dx = 0,

and the conclusion for t > 0 is proved in the same way. In fact, we have for any m ≥ 1∫
R
|U(x, t)− U0(x)|dx ≤

∫
Im

|U(x, t)− U0(x)|dx+

∫
R\Im

|U(x, t)− U0(x)|dx

≤
∫
Im

|U(x, t)− U0(x)|dx+

∫
R\Im

U(x, t)dx+

∫
R\Im

U0(x)dx =∫
Im

|U(x, t)− U0(x)|dx−
(∫

Im

(U(x, t)− U0(x))dx

)
+

∫
R
U(x, t)dx−

∫
Im

U0(x)dx+

∫
R\Im

U0(x)dx.

By (88) and (92), we have ∫
R
U(x, t)dx ≤

∫
R
U0(x)dx,

which implies∫
R
|U(x, t)− U0(x)|dx ≤ 2

∫
Im

|U(x, t)− U0(x)|dx+

∫
R
U0(x)dx−

∫
Im

U0(x)dx+

∫
R\Im

U0(x)dx =

2

∫
Im

|U(x, t)− U0(x)|dx+ 2

∫
R\Im

U0(x)dx.

Taking lim sup
t→0

both sides of the indicated inequality deduces

lim sup
t→0

∫
R
|U(x, t)− U0(x)|dx ≤ 2 lim sup

t→0

∫
Im

|U(x, t)− U0(x)|dx+ 2

∫
R\Im

U0(x)dx.

By U ∈ C([0,∞);L1
loc(R)), we obtain from the last inequality

lim sup
t→0

∫
R
|U(x, t)− U0(x)|dx ≤ 2

∫
R\Im

U0(x)dx.

Then the result follows as m→ ∞.
Finally, the conclusion U ∈ Lp(0, T ;W 1,p(R)) is a classical result for the initial data U0 ∈
L1(R) ∩ L∞(R). Then, we leave the detail for the reader. In summary, we complete the proof
of the above theorem. �

Remark 17 By the boundedness of U , it is clear that U ∈ C([0,∞);Lq(R)), for q ∈ [1,∞).

From the construction of U above, we have an observation as follows

Corollary 18 Assume that I is a bounded interval in R. Let U be the solution of equation (80),
and u be the maximal solution of equation (1) in I × (0,∞). Then, we have

u(x, t) ≤ U(x, t), ∀(x, t) ∈ I × (0,∞). (95)
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Proof: In fact, we have for any r large enough such that I ⊂ Br

uI,ε ≤ ur,ε, in I × (0,∞). (96)

Passing r → ∞ and ε→ 0 in (96) yields conclusion (95). �

Next, we will show that any weak solution W of equation (80) quenches after a finite time.

Theorem 19 Let p > 2, and β ∈ (0, 1), and U0 ∈ L1(R) ∩ L∞(R). Then, there exists a finite
time T0 so that W satisfies

W (t) = 0, ∀t ≥ T0, with T0 =
∥U0∥1+β

L∞(R)

1 + β
.

Proof: Recall here Γε is the solution of the equation
∂tΓε(t) + gε(Γε) = 0, t > 0,

Γε(0) = ∥U0∥L∞(R).

It is straightforward to show that

Γε(t) → Γ(t) =
(
m1+β

0 − (1 + β)t
) 1

1+β

+
, for t > 0.

We observe that W is a sub-solution of equation (33) in R× (0,∞). By the strong comparison
theorem, we obtain

W (x, t) ≤ Γε(t), for (x, t) ∈ R× (0,∞),

which implies the result as ε→ 0. �

5.2 The uniform localization property and the global quenching in a finite
fime

Here, we study the uniform localization property of solutions of Cauchy problem (80). This
implies the finite speed of propagation of solutions, that any solution with compact support
initially has compact support at all later times t > 0. In fact, we shall show that Supp(W (t)) is
uniformly bounded for any t > 0 (the uniform localization property ), if Supp(U0) ⊂⊂ R, where
W is a weak solution of equation (80).

Let us first make a simple argument to show the finite speed of propagation property. Indeed,
let V be the unique solution of the unperturbed equation

∂tV − (|Vx|p−2Vx)x = 0 in R× (0,∞),

V (x, 0) = U0(x), in R.
(97)

Thanks to the strong comparison theorem, we have

W (x, t) ≤ V (x, t), for any (x, t) ∈ R× (0,∞).
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Moreover, it is well known that for any t > 0, Supp(V (t)) is bounded by a function of t (see
[11]). This implies the result.

Besides, we have (see [12])

Supp(V (t1)) ⊆ Supp(V (t2)), ∀t2 > t1 > 0. (98)

However, property (98) is not true for W , see Theorem 19 above. Nevertheless, we will show
that Supp(W (t)) can be contained in a ball with its radius independent of t.

Theorem 20 Let p > 2, and β ∈ (0, 1), and 0 ≤ U0 ∈ L1(R) ∩ L∞(R). Assume Supp(U0) ⊂
B(0, r0), for some r0 > 0. Then, any weak solution W of equation (80) satisfies

Supp (W (t)) ⊂ B(0, r0 +
m

1
γ

0

l0
), for any t > 0,

with l0 = ( 1
γp−1(γ−1)(p−1)

)
1
p , and m0 = ∥U0∥L∞(R).

Proof: For any ε > 0, let wε be a non-negative solution of the following equation
−(|w′

ε|p−2w′
ε)

′ + gε(wε) = 0, in R+,
wε(0) = m0,
limx→∞wε(x) = 0.

(99)

It is not difficult to show that

wε(x) → w(x) =

(
m

1
γ

0 − l0x

)γ

+

, for x > 0,

To obtain the conclusion, it is sufficient to show that

W (x, t) ≤ w(x− r0), for x > r0, t > 0, (100)

then v(x, t) = 0, for any x ≥ m0, and for t > 0. The same argument for the case x < −R0

implies v(x, t) = 0, for any x ≤ −m0, and for t > 0, thereby proves the above Lemma.

Now, we prove (100). It is clear thatW is a sub-solution of equation (33) in (R0,∞)×(0,∞).
Moreover, we have 

W (x, t) |x=R0≤ ∥u0∥L∞ = wε(x−R0) |x=R0 ,

W (x, 0) = 0 ≤ wε(x−R0), for x > R0.

By the comparison principle, we obtain

W (x, t) ≤ wε(x), for (x, t) ∈ (R0,∞)× (0,∞).

Letting ε→ 0 yields conclusion (100). This puts an end to the proof of Theorem 20. �

As a consequence of Theorem 20, we have the following corollary
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Corollary 21 Let u0 ∈ L∞(I). Assume Supp(u0) ⊂ B(0, r0), for some r0 > 0. Assume more
that

B(0, r0 +
m

1
γ

0

l0
) ⊂ I (101)

with l0 and m0 above. Then, the Cauchy solution U of (80) coincides with the maximal solution
u of (1) in I × (0,∞).

Proof: Thanks to the condition (101) and Theorem 20, we observe that the restriction to I
of U is a weak solution of the homogeneous zero Dirichlet boundary condition of problem (1) in
I × (0,∞). This implies that

U(t) ≤ u(t), in I × (0,∞), (102)

because u is the maximal solution of equation (1). Thus, the conclusion follows from (102) and
Corollary 18. �

6 Appendix

We first have a well-known result because of the strong monotonicity of the diffusion operator.

Lemma 22 For any v1, v2 ∈W 1,p
0 (I), there is a constant c > 0 such that∫

I

(
|∂xv1|p−2.∂xv1 − |∂xv2|p−2.∂xv2

)
(∂xv1 − ∂xv2) dx ≥ c.∥∂xv1 − ∂xv2∥pLp(I).

(see, e.g., [9] or [23]). Before giving the proof of Lemma 9, let us define a weak sub-solution
(resp. super-solution) of equation (33).

Definition 23 v is called a weak sub-solution (resp. super-solution) of equation (33) if v ∈
C([0,∞);L1(I)) ∩ L∞

loc(I × (0,∞)) ∩ Lp
loc(0,∞;W 1,p

0 (I)) satisfies

∂tv1 − (|∂xv1|p−2∂xv1)x + gε(v1) ≤ 0, in D′(I × (0,∞)) (resp. ≥ 0).

The proof of Lemma 9: We recall the function Tk(s) and Sk(s) as in the proof of Theorem
8 (see 13-pages). Then, a subtraction between two equations satisfied by v1 and v2 gives us

∂t(v1 − v2)− ∂x
(
|∂xv1|p−2∂xv1 − |∂xv2|p−2∂xv2

)
+ gε(v1)− gε(v2) ≤ 0.

Multiplying both sides of the above equation with the test function T1(w), w = (v1 − v2)+; and
using integration by part yield∫

I
S1(w(x, t))dx+

∫ t

τ

∫
I

(
|∂xv1|p−2∂xv1 − |∂xv2|p−2∂xv2

)
(∂xT1(w)) dxds+∫ t

τ

∫
I
(gε(v1)− gε(v2)) .T1(w)dxds ≤

∫
I
S1(w(x, τ))dx, for t > τ > 0.

It follows from Lemma 22, and the fact that gε is a global Lipschitz function∫
I
S1(w(x, t))dx ≤ C(ε)

∫ t

τ

∫
I
|v1 − v2|T1(w)dxds+

∫
I
S1(w(x, τ))dx,
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where C(ε) > 0 is the Lipschitz constant of gε. Letting τ → 0 in the above inequality deduces∫
I
S1(w(x, t))dx ≤ C(ε)

∫ t

0

∫
I
|v1 − v2|T1(w)dxds.

In addition, we have
|v1 − v2|T1(w)(x, t) ≤ 2S1(w(x, t)).

Inserting this fact into the indicated inequality yields∫
I
S1(w(x, t))dx ≤ 2C(ε)

∫ t

0

∫
I
S1(w(x, t))dxds.

Then, we arrive to the following ordinary differential equation
d
dty(t) ≤ 2C(ε)y(t), t > 0,

y(0) = 0.

with

y(t) =

∫
I
S1(w(x, t))dx.

It follows from Gronwall’s lemma that

y(t) = 0, ∀t > 0,

which implies
w(t) = 0, ∀t > 0.

In other words, we get the above lemma.

Remark 24 The result of Lemma 9 also holds for any sub-solution v1 and super-solution v2 of
equation (33) satisfying v2 ≥ v1 on the boundary.
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