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Abstract

We study the geometric flow parabolic equation and its implicit discretization which yields a
family of nonlinear elliptic problems. We show that there are important differences in the study
of those equations in which concerns the propagation of level sets of data. Our study is based
on the previous study of radially symmetric solutions of the corresponding equation. Curiously,
in radial coordinates both equations reduce to suitable singular Hamilton-Jacobi first order
equations. After considering the case of monotone data we point out a new peculiar behavior
for mon-monotone data with a profile of Batman type (g = min{g1, g2}, g1(r) increasing, g2(r)
decreasing and g1(rd) = g2(rd) for some rd > 0). In the parabolic regime, and when the velocity
of the convexity part of the level sets is greater than the velocity of the concavity part, we show
that the level set {u = g(rd)} develops a non-empty interior set for any t > 0. Nothing similar
occurs in the stationary regime. We also present some numerical experiences.

Dedicated to an outstanding mathematician near his 70’s: Juan Luis Vázquez

1 Introduction

This paper deals with several qualitative properties of geometric flows presented here, for simplicity
in dimension 2, while all of our results admit generalizations to higher dimensions. A geometric flow
can be defined as an operator Tt(f) which provides, for an original function f, a family of functions
Tt(f) with t ≥ 0. The geometric character of the flow is due to the assumption that the level set
evolution of function f depends just on the geometry of the boundary of the level sets. We can
formalize this geometric character using the named morphological invariance assumption which can
be expressed as:

Tt(f) ◦ h = Tt(f ◦ h) (1)

for any increasing function h(·). As it was proved in [4] (see also [35]) and [1], under some minimal
architectural assumptions, all the geometric flows are generated by the partial differential equation:

∂u

∂t
= β(curv(u))|Du|, (2)

∗Keywords: Geometric flow, implicit discretization, nonlinear parabolic and elliptic equations, singular first order
Hamilton-Jacobi equations, propagation of level sets, radially symmetric solutions, Batman type profiles.
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where curv(u)(x) is the curvature of the level line containing the point x, that is:

curv(u) = div

(
Du

|Du|

)
, (3)

and β(·) is a nondecreasing function given by:

β(s) =

{
b+s

q, if s ≥ 0,
−b− (−s)q , if s < 0,

(4)

with q, b+, b− ≥ 0 such that b+ + b− > 0. Therefore the geometric flow depends on three parameters,
q, b−, b+. Among the different choices of these parameters we point out the cases q = 1, b− = b+ = 1,
which corresponds to the mean curvature operator and q = 1/3, b− = b+ = 1, which corresponds to
the affine invariant equation studied in [4] (in some works, as for instance [32, page 35], this last
case is considered by assuming b− = 0).

If u(t, x) is the solution of equation (2), for the initial datum f then u(t, x) = Tt(f)(x) and thus
Tt represents the semigroup associated to the parabolic problem. For a level l ∈ R, the associated
level set of function f is defined as Lf (l) = {x : f(x) < l}. The geometric character of the flow
means that the evolution of a level set Lf (l), given by LTt(f)(l), depends just on the geometry of
its boundary ∂Lf (l). Due to its morphological invariance, geometric flows are commonly used in
Computer Vision applications (see, e.g., [37], [1] for an application to shape representation and [36],
[2] for the use of affine invariant distances to a curve).

Our main interest in this paper will be centered in to get some new qualitative properties of
solutions of the parabolic problem

PP(R2)


∂u

∂t
− β

(
div

(
Du

|Du|

))
|Du| = 0 in (0, T )× R2,

u(0, ·) = u0(·) on R2.

Notice that the above mentioned initial datum (the original image function f) is now denoted as u0.
We shall also pay attention to the case of an bounded regular domain Ω ⊂ R2 with homogeneous
Dirichlet boundary conditions. A typical example is the case of homogeneous boundary conditions

PP(Ω)


∂u

∂t
− β

(
div

(
Du

|Du|

))
|Du| = 0 in (0, T )× Ω,

u = 0 on (0, T )× ∂Ω,

u(0, ·) = u0(·) on Ω,

but we shall also consider the case of non-homogeneous boundary data (see Corollary 1).
In some sense, this paper can be understood as continuation of several previous papers by the

authors in which the qualitative properties of solutions of different parabolic problems are analyzed
jointly with the suitable understanding of the qualitative properties of solutions of the stationary
problems resulting from their the implicit Euler discretization. The main connection among the
family of the diverse classes of considered problems comes from the fact that the involved elliptic
operators generate a semigroup of contractions in some Banach space and thus, thanks to the abstract
semigroup theory, the convergence of the discretized solutions is ensured in the corresponding Banach
space. This point of view was applied in [5] to the study of the porous media equation and in [6]
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to a general doubly nonlinear equation involving the p−Laplace operator (see also the work [7]
dealing with the total variation flux which formally can be understood as the limit case p = 1 of
the p−Laplace operator: as a matter of fact, this is exactly the curv (u) operator mentioned before).
Some of the qualitative properties can be connected in this way. In all those equations the correct
Banach space was given by L1(Ω) (or L1(RN) for the associated Cauchy problems). The case in which
the Banach space was L∞(Ω) (or L∞(RN)) was considered in the series of papers [25, 26, 27] for the
case of Monge-Ampere and k-Hessian operators.

Roughly speaking, the accretiveness of the formal operatorA(u) = −β(curv (u))|Du| inBUC(R2),
the set of bounded uniformly continuous functions on R2, was described in Theorem 2 of [4] (see
also Theorem 3 of [35] and Section 9 of [22]) once that the differential operator is understood in the
sense of the Crandall-Lions viscosity solutions framework (see e.g. the presentation made in [22]).
Nevertheless, the usual notion of viscosity solutions requires some slight adaptation as to be applied
to the operator A(u) = −β(curv (u))|Du| such as it was shown in [34] (see also [33]), as we shall
recall in Section 2. In any case, using the Euler implicit discretization we arrive to the family of
stationary problems

−β
(

div

(
Dun
|Dun|

))
|Dun|+ λun = λun−1 n ∈ N, (5)

where λ > 0 and thus un represents an approximation of Tn/λ(f). So, in this paper we shall study
some qualitative properties of solutions of the stationary equation

−β
(

div

(
Dv

|Dv|

))
|Dv|+ λv = g (6)

and the stationary problems

SP(R2) − β
(

div

(
Dv

|Dv|

))
|Dv|+ λv = g in R2, (7)

as well as

SP(Ω)

 −β
(

div

(
Dv

|Dv|

))
|Dv|+ λv = g in Ω,

u = 0 on ∂Ω.

We shall consider too the case of non-homogeneous boundary data (see Corollary 2).
It is well-known that many qualitative properties of solutions for many different elliptic and

parabolic equations are by-products of the previous study of radially symmetric solutions which
later are used as barrier functions (see e.g. the monographs [28], [39]). This is the reason why we
shall pay an special attention to the solvability of equations (2) and (5) in the class of radially
symmetric solutions defined over balls and symmetric rings with different boundary conditions. A
crucial aspect in our study is based on the fact that in the class of radially symmetric solutions u(t, r)
of (2) becomes the singular Hamilton-Jacobi first order equation

∂u

∂t
(t, r)− β

sign

(
∂u

∂r
(t, r)

)
r

∣∣∣∣∂u∂r (t, r)

∣∣∣∣ = 0, (8)
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(notice that sign (∂u
∂r

)
∣∣∂u
∂r

∣∣ = 0 if ∂u
∂r

= 0 and so the spatial operator is single valued). Similarly,
radially symmetric solutions v(r) of the equation (7) must solve the stationary singular Hamilton-
Jacobi first order equation

−β

(
sign

(
v′(r)

)
r

)
|v′(r)|+ λv(r) = g(r). (9)

We point out that equations (8) and (9) keep many resemblances with the hyperbolic and stationary
eikonal equations (specially for solutions for which sign (v′(r)) remains constant for any r). Nev-
ertheless the presence of the singular term 1/r is crucial. This singular term helps to justify the
existence of solutions on balls but it is not enough as to justify the existence of solutions on rings if
the boundary conditions are not well adapted to the transport flux given by the first derivative term.
So, curiously enough we shall present here some non-existence of solutions results (see Corollaries
1 and 2) which seems to be unadvertised in the extensive literature available today on this type of
equations (see e.g. the monographs [32], [17] and their references). In a separated work [3] we shall
present a Lax–Oleinik type representation formula for radially symmetric solutions leading to many
complementary properties.

In contrast to many other previous works dealing with level sets without interior area (see e.g.
[10], [34] and their references) here we shall pay attention to the propagation of level sets which
initially already have a non-empty interior. This methodology is what we adopted in the above
mentioned papers by the authors on other equations. Nevertheless in the case of morphological
invariant geometric flows the study of conditions ensuring that a given level set have a non-empty
interior set or not is specially relevant. For instance, it was shown in [31] (see also [38]) that for a
very special initial datum the solution of the mean curvature geometric flow (q = 1, b− = b+ = 1)
may have some level sets with a non-empty interior set for t > 0 even if all the level sets of the initial
datum have an empty interior set. The explanation given in [31] mentioned the lack of regularity of
this initial datum. In contrast to that, here we shall show that something similar happens for problem
PP(R2) in the class of radially symmetric solutions once we assume b+ > b− (roughly speaking the
velocity of the level sets is privileging the convexity part of them over the concave one). To show
this qualitative property (as well as many other properties) we shall consider the radially symmetric
solutions of (2) and (9) corresponding to data u0(x) = g(|x|) which we shall call as Batman type
profiles and are built as{

g = min{g1, g2}, g1(r) increasing, g2(r) decreasing
g1(rd) = g2(rd) for some rd > 0.

(10)

Notice that now the appearance of a non-empty interior level set is not due to any lack of regularity
of the level set of the initial datum (since in our case all the level sets are circles) but to the condition
b+ > b− (which can be understood as corresponding to the velocity of the level sets is privileging the
concavity part of them over the convex one) and the loss of monotonicity and of the initial datum.

The organization of the paper is as follows: in section 2 we shall recall several results on the
existence and uniqueness of viscosity solutions of problems PP(R2) and PP(Ω) and their adaptations
to get the existence and uniqueness of viscosity solutions of the elliptic problems SP(R2) and SP(Ω).
Section 3 will be devoted to the study of several qualitative properties of solutions of PP(R2) and
PP(Ω), mainly the finite speed of propagation, the finite extinction time property and the non in-
stantaneous extinction of level sets of solutions, independently of the value of the exponent q > 0
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Figure 1: Non-monotone example of Batman profile type data.

involved at the operator (this contrast with which happens in the nonlinear diffusion or Monge-
Ampere operators where only exponents strictly less than one leads to the behavior of solutions).
We collected in Remark 5 many commentaries connecting and comparing those results with previous
ones in the literature. As mentioned before, the crucial point will be the previous study of radially
symmetric solutions. To this respect we shall present some necessary and sufficient conditions for
the solvability of the parabolic equation on rings with different Dirichlet boundary data. The case
of non-monotone initial data with a Batman type profile is considered in Subsection 3.2. We also
present some numerical experiences in Subsection 3.3. The elliptic problem SP(R2) is considered in
Section 4. We present a study of the problem following the same structure than in Section 3 but
pointing out the many differences arising in it with respect the parabolic problem. For instance,
there is no formation of interior free boundaries (of dead core type) neither the singular behavior
for Batman type profiles independently of the values of b+ and b−. We also present some numerical
experiences.

2 Some existence and uniqueness of solutions results

The differential operator under research can be written as −β (curv u) |Du| := F (Du(x),D2u(x))
with

F (p,Z) := −β
(

1

|p|
trace

(
I− p⊗ p

|p|2

)
Z
)
|p|, (11)

for (p,Z) ∈ R2 × S2, where S2 denotes the space of the 2× 2 real and symmetric matrices (I is the
identity matrix) and β : R→ R is the nondecreasing continuous function given by (4) (this section
of the paper remains valid for general nondecreasing continuous functions β such that β(0) = 0).
Then PP(R2) and SP(R2) can be written as{

ut + F (Du,D2u) = 0 in (0, T )× R2,

u(0, ·) = u0(·) on R2,
(12)

F
(
Du,D2u

)
+ λu = g in R2. (13)

Notice that F (p,Z) is continuous if p 6= 0 but it is not well defined for p = 0. It is easy to check
(see e.g. [4], [35], [17]) that the operator F(p,Z) is degenerate elliptic: for any p ∈ R2 \ {0},

F(p,Z1) ≥ F(p,Z2) if Z1 ≤ Z2. (14)
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The operator F(p,Z) satisfies also the property of being geometric (F(λp, λZ + µp⊗ p) = λF(p,Z)
for all Z ∈ S2, p ∈ R2 \ {0}, λ > 0 and µ ∈ R).

As mentioned in [34], the possible singularity which may arise, when Du = 0, can be treated
satisfactorily by means of the theory of viscosity solutions introduced by M.G. Crandall and P.L.
Lions (see, e.g., [22]) when q ∈ [0, 1]. The treatment of this case corresponds to some slight variation
of the important theory developed for mean curvature geometric flows (q = 1, b− = b+ = 1) presented
in [31] or [20] (see [35] and [11]). Nevertheless, if q > 1 the notion of viscosity solution needs to be
suitably adapted as to allow possible singularity around the points where Du = 0 (it corresponds to
a special case of a class of equations which are called as very singular equations in [32]: a different
example of very singular equation is the level set Gaussian curvature flow equation). Such adaptation
was carried out in [34] (see also [33] and [32]). Before recalling this adaptation it is convenient to
observe that merely from (14) there exists a function c ∈ C((0,+∞)) such that

−c(|p|) ≤ F(p, I) ≤ F(p,−I) ≤ c(|p|) for p ∈ R2 \ {0}.

In our case we can take c(s) = max{b+, b−}sq+1 for s > 0. Since we shall deal with possible discon-
tinuous functions, it is convenient to use the notion of upper and lower semi–continuous envelopes
of such discontinuous function. We recall that given a local bounded function v : O → R ∪ {±∞},
O is an open set of (0, T ) × Ω (Ω being an open set of R2) its upper semi–continuous envelope is
defined by

v∗(z) := lim
r↘0

sup {v(ζ) : |z − ζ| ≤ r}, z ∈ O.

Analogously, its lower semi–continuous envelope is defined by

v∗(z) := lim
r↗0

inf {v(ζ) : |z − r̂| ≤ r}, z ∈ O.

Notice that v∗ = −(−v)∗ and that v∗ ≤ v ≤ v∗.
The definition of viscosity solution of equation (12) in O will follows by replacing the differential

expressions of the candidate to solution u by the values of similar differential expressions for an
arbitrary test function ϕ in points z ∈ O where u∗−ϕ have a local finite maximum and u∗−ϕ have
a local finite minimum. If q > 1 we shall need to control D2ϕ and ϕt in points ẑ = (t̂, x̂) ∈ O where
Dϕ(ẑ) = 0 (since a change of variable allows to assume that ẑ is the point where u∗ − ϕ or u∗ − ϕ
have a local finite maximum or a local finite minimum). Let us call for the moment by A(β) to the
set of admissible test functions which we shall define in a while.

Definition 1 i) A function u : O → R ∪ {−∞} is a viscosity sub solution of (12) in O if u∗ < ∞
and for all ϕ ∈ A(β) and all local finite maximum points z of u∗ − ϕ{

ϕt(z) + F(Dϕ(z),D2ϕ(z)) ≤ 0, if Dϕ(z) 6= 0,

ϕt(z) ≤ 0, if Dϕ(z) = 0.

ii) A function u : O → R ∪ {∞} is a viscosity super solution of (12) in O if u∗ > −∞ and for all
ϕ ∈ A(β) and all local finite minimum points z of u∗ − ϕ{

ϕt(z) + F(Dϕ(z),D2ϕ(z)) ≥ 0, if Dϕ(z) 6= 0,

ϕt(z) ≥ 0, if Dϕ(z) = 0.

iii) A function u : O → R is a viscosity solution of (12) in O if u is both a viscosity sub solution
and a viscosity super solution of (12) in O.
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We define now the class of admissible test functions. Following [34] we have:

Definition 2 Let O be an open subset of (0,T)×R2. A function ϕ ∈ C2(O) is admissible (ϕ ∈ A(β))
if for any ẑ = (t̂, x̂) ∈ O such that Dϕ(ẑ) = 0 there is a constant δ > 0,

a function f ∈ C
(
[0,∞)

)
such that f(0) = f ′(0) = f ′′(0) = 0 and f ′′(r) > 0 for r > 0 which satisfy

lim
p→0

f ′(|p|)
|p|

F(p, I) = lim
p→0

f ′(|p|)
|p|

F(p,−I) = 0,

and a function ω ∈ C
(
[0,∞)

)
satisfying lim

r↘0

ω(r)

r
= 0

such that for all (t, x) ∈ Bδ(ẑ)

|ϕ(t, x)− ϕ(t̂, x̂)− ϕt(ẑ)(t− t̂)| ≤ f(|x− x̂|) + ω(|t− t̂|).

As mentioned in [34] the introduction of a class of admissible test functions does not lessen but
rather strengthen the usual requirements for functions to be viscosity solutions. Moreover, it is
immediate that if u ∈ C2(O) satisfies{

ut(z) + F(Du(z),D2u(z)) ≤ 0, if Du(z) 6= 0,

ut(z) ≤ 0, if Du(z) = 0,

or {
ut(z) + F(Du(z),D2u(z)) ≥ 0, if Du(z) 6= 0,

ut(z) ≥ 0, if Du(z) = 0,

then u is, respectively, a viscosity subsolution or a viscosity supersolution of (12) in O. In which
follows, by simplicity, we drop the term viscosity and hereafter simply refer to sub solutions, super
solution and solutions.

Next, we collect some results of [34] which are relevant to our purposes:

Theorem 1 (Comparison: Theorem 1.7 of [34]) Let RT = [0, T )×Ω, Ω ⊂ R2. Let u ∈ USC(RT )
and v ∈ LSC(RT ) be a super solution and a sub solution of (12) in RT . Assume that

lim sup
r↘0

{u∗(z)− v∗(ζ) : (z, ζ) ∈ ∂pQT ×RT ) ∪RT × ∂pQT , |z − ζ| ≤ r} ≤ 0

with ∂pQT = {0} × Ω ∪ [0, T )× ∂Ω. Then u∗ ≤ v∗ in RT . Moreover

lim sup
r↘0

{u∗(z)− v∗(ζ) : |z − ζ| ≤ r} ≤ 0.

Theorem 2 (Existence and uniqueness: Theorem 2.2 of [34]) Let u0 ∈ UC(GR) for each M >
0 where GM = {|u0| < M}. Then there is a unique solution u of PP(R2) such that u ∈ UC(UM) for
each M > 0 with UM = {|u| < M}.
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Concerning problem PP(Ω) we point out that the comparison result remains valid but the exis-
tence results require some additional commentaries. This question was not considered in [34] (neither
in [33]) but it is not difficult to adapt other results in the literature to get a similar version to the
above existence theorem. For instance, as indicated in [11] in other context (see also [22] Section 7
and Subsection 2.3 of [32]), it is convenient to reformulate PP(Ω) as a problem posed on the closed
set [0, T )×Ω by replacing the above differential operator F (p,Z) by a new one F# (x, u, p,Z) given
by

F# (x, u, p,Z) :=

{
F (p,Z) if x ∈ Ω,
u if x ∈ ∂Ω,

(15)

with F (p,Z) defined in (11). In this way, problem PP(Ω) can be read as

PP#(Ω)


∂u

∂t
+ F# (x, u,Du,D2u) = 0 in [0, T )× Ω,

u(0, ·) = u0(·) on Ω.

Now the viscosity solution will satisfy the boundary conditions in the sense that
max

{
∂u

∂t
+ F (Du,D2u) , u

}
≥ 0 on [0, T )× ∂Ω,

min

{
∂u

∂t
+ F (Du,D2u) , u

}
≤ 0 on [0, T )× ∂Ω.

Perron’s method (see [22], [32] and its many references) can be applied in the above mentioned
context of viscosity solutions with test functions ϕ in the admissible set A(β). The following result
is a trivial adaptation of Theorem 2.4.9 of [32] and Theorem 2.2 of [34] to our framework.

Theorem 3 Let h− and h+ be lower and supersolutions of PP#(Ω) with h∗+ < +∞, h−∗ > −∞. If
h− ≤ h+ in [0, T ) × Ω then there is a unique solution u of PP(Ω) that satisfies h− ≤ u ≤ h+ in
[0, T ) × Ω. In particular, if u0 ∈ UC(GM,Ω) for each M > 0 where GM,Ω = {x ∈ Ω : |u0(x)| < M}
then there is a unique solution u of PP(Ω) such that u ∈ UC(UM,QT ) for each M > 0 with UM,QT =
{(x, t) ∈ QT : |u(t, x)| < M}. �

The techniques of the proof of the above results apply without difficulty to the case of SP(R2)
and SP(Ω) once we adapt the notion of viscosity solution on an open subset ω ⊂ Ω. The presence
of the term λv(x) in the right hand side of the equation (6) does not add any new special difficulty
(see e.g. Subsections 2.4.3 and 3.1 of [32]).

Definition 3 A function ϕ ∈ C2(ω) is admissible for the elliptic equation associated to the differential
operator F (which we shall write as ϕ ∈ Ae(β)) if for any x̂ ∈ ω such that Dϕ(x̂) = 0 there is a
constant δ > 0 and

a function f ∈ C
(
[0,∞)

)
such that f(0) = f ′(0) = f ′′(0) = 0 and f ′′(r) > 0 for r > 0 which satisfy

lim
p→0

f ′(|p|)
|p|

F(p, I) = lim
p→0

f ′(|p|)
|p|

F(p,−I) = 0,

such that for all x ∈ Bδ(x̂)
|ϕ(x)− ϕ(x̂)| ≤ f(|x− x̂|).
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Definition 4 i) A function v : ω → R ∪ {−∞} is a viscosity sub solution of (6) in ω if v∗ <∞ and
for all ϕ ∈ Ae(β) and all local finite maximum points x of v∗ − ϕ

F(Dϕ(x),D2ϕ(x)) + λv∗(x)− g∗(x) ≤ 0, if Dϕ(x̂) 6= 0.

ii) A function v : ω → R ∪ {∞} is a viscosity super solution of (6) in ω if v∗ > −∞ and for all
ϕ ∈ Ae(β) and all local finite minimum points x of v∗ − ϕ

F(Dϕ(x),D2ϕ(x)) + λv∗(x)− g∗(x) ≥ 0, if Dϕ(x̂) 6= 0.

iii) A function v : ω → R is a viscosity solution of (6) in ω if v is both a viscosity sub solution and
a viscosity super solution of (6) in ω.

A similar adaptation must be done for SP(Ω) in the lines of the above discussion on the parabolic
Dirichlet problem PP(Ω). In particular we must introduce the problem

F#
(
x, v,Dv,D2v

)
+ λv(x) = g(x) in Ω,

where F# was defined in (15). The following result collects some existence and uniqueness results
for the elliptic problems SP(R2) and SP(Ω) :

Theorem 4 a) Let ω ⊂ Ω ⊂ R2. Let u ∈ USC(ω) and v ∈ LSC(ω) be a super solution and a sub
solution of (6) in ω. Assume that

lim sup
r↘0

{u∗(x)− v∗(ζ) : (x, ζ) ∈ ∂ω × ω) ∪ ω × ∂ω, |z − ζ| ≤ r} ≤ 0.

Then u∗ ≤ v∗ in ω. Moreover

lim sup
r↘0

{u∗(x)− v∗(ζ) : |x− ζ| ≤ r} ≤ 0.

b) If g ∈ UC(GM) for each M > 0 where GM = {x ∈ R2 : |g(x)| < M} then there is a unique
solution v of SP(R2) such that v ∈ UC(VM) for each M > 0 with VM = {x ∈ R2 : |v(x)| < M}.
c) Let h− and h+ be sub and supersolution of SP#(Ω) with h∗+ < +∞, h−∗ > −∞. If h− ≤ h+ in
Ω then there is a unique solution v of SP(Ω) that satisfies h− ≤ v ≤ h+ in Ω. In particular, if
g ∈ UC(GM,Ω) for each M > 0 where GM,Ω = {x ∈ Ω : |g(x)| < M} then there is a unique solution
v of SP(Ω) such that v ∈ UC(VM,Ω) for each M > 0 with VM,Ω = {x ∈ Ω : |v(x)| < M}. �

Remark 1 It was not pointed out clearly enough in the previous literature that the above existence
results on unbounded domains do not require any special behavior on the data. This must be compared
with many previous results on quasilinear equations which attracted the attention of many specialists
and use very different methods adapted to the quasilinear equations under consideration. Restricting
ourselves only to the case of elliptic problems we can mention the works by H. Brezis [16], J.I. Dı́az
and O.A. Oleinik [29], G. Dı́az [24] and L. Boccardo, Th. Gallouet and J.L. Vázquez [14] to mention
only some few of them. For instance, in [22] it is assumed that the data grows at most linearly at
the infinity. A more general framework was considered in Barles et al. [9]. �
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Remark 2 The Perron’s method could be applied also to discontinuous initial data or discontinuous
right hand side data in PP(R2) or SP(R2). Nevertheless, this is a very delicate question (see the
connection with the loss of uniqueness of solutions of PP(R2) in [10]) which require some detailed
analysis ([3]). �

Remark 3 The convergence of solutions of the discretized family of elliptic problems to the solution
of the parabolic problem was shown in [11] (see also [12]).

As mentioned in the Introduction the qualitative properties we shall present in the next sections
will be consequence of the study of the class of radially symmetric solutions of the parabolic and
elliptic equations when they are defined over balls and symmetric rings with different boundary con-
ditions. The existence of this type of radially symmetric solutions requires some kind of compatibility
conditions on the data. In some sense, the existence of some radially symmetric lower and superso-
lutions h− and h+ of the associated problems is not possible unless we assume suitable compatibility
conditions on the data. We shall present such result in the following sections (see Corollaries 1
and 2).

3 On the parabolic problems

3.1 Level set propagation

Our main result on the propagation of level sets with non-empty interior is the following:

Theorem 5 i) (Compact support type estimates and extinction in finite time). Let u0 ∈ UC(GM)
for each M > 0, where GM := {|u0| < M}. Assume that there is a level s such that

{u0(x) = s} ⊃ R2 −BRs(xs) for some xs ∈ R2 and Rs > 0, (16)

(i.e. supp(u0 − s) ⊂ BRs(xs)). Then if u is the solution of PP(R2)

supp(u(t, .)− s) ⊂ BR(t)(xs), R(t) =
(
R(q+1)
s −min(b+, b−)(q + 1)t

)1/(q+1)
. (17)

In particular, u(t, x) ≡ s for any x ∈ R2 for any t ≥ ts := R
(q+1)
s /[min(b+, b−)(q + 1)] and if s = 0

then u is solution of PP(BR0(x0)).
ii) (Unbounded support and dead core type estimates). Assume that there is a level s such that

int{u0(x) = s} 6= φ.

Assume that there exists a ball BRs(xs) contained in {u0(x) = s}. Then, for any

t ≤ Rq+1
s

max{b+, b−}(q + 1)
,

the level s of the solution u satisfies

{x ∈ R2 : u(t, x) = s} ⊃ {x ∈ R2 : |x− xs| ≤
(
Rq+1
s −max{b+, b−}(q + 1)t

) 1
q+1} (18)

In particular, if the level set {u0(x) = s} is unbounded then for any t > 0 the level set s of the
solution, {x ∈ R2 : u(t, x) = s}, is also unbounded.
iii) (No instantaneous level set extinction). Let x0 ∈ int

(
supp(u0− s)

)
. Then x0 ∈ int

(
supp(u(t, .)−

s)
)

for any t > 0 small enough.
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The main tool of the proof is the following result on some special type of solutions which looks
not too different to what some authors call as self-similar solutions for this type of equations when
q = 1 (see, e.g. [20, Lemma 6.1] and [32, page 53]). Nevertheless, our special solutions are not exactly
the same than the indicated self-similar solutions. Moreover, in our framework q > 0 is arbitrary.

Lemma 1 i) Exterior propagation for nonnegative data: Assume b− > 0. Let g ∈ C2([0,+∞))
be a nonincreasing function. Define

ς−(t, r) =
(
rq+1 + b−(q + 1)t

) 1
q+1 .

Then the function
u(t, x) = g

(
ς−(t, |x|)

)
(19)

is a C2((0, T ]× R2) solution of equation PP(R2) with u0(x) = g (|x|). In particular, if

g(r) ≡ s for r ≥ rg ≥ 0, (20)

then
u(t, x) ≡ s for |x| ≥ max

{(
rq+1
g − b−(q + 1)t

) 1
q+1 , 0

}
.

ii) Interior propagation for nonnegative data: Assume b+ > 0. Let g ∈ C2([0,+∞)) be a
nondecreasing function. Define

ς+(t, r) =
(
rq+1 + b+(q + 1)t

) 1
q+1 .

Then the function
u(t, x) = g (ς+(t, |x|)) (21)

is a radially symmetric C2((0, T ]× R2) solution of PP(R2) with u0(x) = g (|x|). In particular, if

g(r) ≡ s for r ∈ [0, rg], (22)

for some s ∈ R then

u(t, x) ≡ s for t ≤
rq+1
g

b+(q + 1)
and 0 ≤ |x| ≤

(
rq+1
g − b+(q + 1)t

) 1
q+1 .

iii) Properties i) and ii) remain valid in the class of (viscosity) solutions if we replace the regularity
g ∈ C2([0,+∞)) by g ∈ C0([0,+∞)).

Remark 4 It seems remarkable that the above solutions does not develop any singularity at the
origin, x = 0, for t > 0, even if the symmetric initial datum g (|x|) have it (for instance when
g′(0) 6= 0). �

Proof of Lemma 1. First, we notice that for any radial function u(t, r), in the points (t, r) where
∂u

∂r
(t, r) 6= 0 we have 

Du(t, x) =
∂u

∂r
(t, |x|) x

|x|
,

div

(
Du

|Du|

)
=

sign

(
∂u

∂r
(t, |x|)

)
|x|

.

11



Therefore, in radial coordinates equation (2) becomes equation (8)

∂u

∂t
(t, r)− β

sign

(
∂u

∂r
(t, r)

)
r

∣∣∣∣∂u∂r (t, r)

∣∣∣∣ = 0. (23)

Let us start by the proof of ii). Let u(t, r) = g(ς+), with ς+(t, r) = (rq+1 + b+(q + 1)t)
1
q+1 and

g ∈ C1(0,+∞)) nondecreasing. Then straightforward computations lead to

∂u

∂t
(t, r)− b+

rq
∂u

∂r
(t, r) = g′(ς+)

(
∂ς+
∂t
− b+

rq
∂ς+
∂r

)
= 0.

Moreover, if g ∈ C2([0,+∞)) then u ∈ C2((0, T )× R2) since from (8)

∂u

∂r
(t, r) =

rq

b+

∂u

∂t
(t, r)

and thus, the radial definition (21) does not generate any singularity at the origin for t > 0.
The proof of i) is analogous since in this case

β(curv(u)) |Du| = −b−
rq

∣∣∣∣∂u∂r (t, r)

∣∣∣∣ =
b−
rq
∂u

∂r
(t, r).

Part iii) is consequence of Theorem 5.6 of [20] (which coincides with the Grey-scale invariance
condition in [4]): if u is a solution then for any θ ∈ C(R), θ nondecreasing then θ◦u is also a viscosity
solution of PP(R2). Then, if g ∈ C

(
[0,+∞)

)
is nondecreasing, by starting with the special case of

g0(r) = r2 then we arrive to the given g ∈ C([0,+∞)) by taking θ(s) = g(
√
s) for any s ≥ 0. The

case of g ∈ C([0,+∞)) nonincreasing is similar. �

Proof of Theorem 5. The existence, comparison and uniqueness of solutions follows from The-
orems 1 and 2. For the proof of i) we shall construct two global super and subsolutions leading to
estimate (17). Let xs ∈ supp(u0 − s) given in (16). It is clear that we can construct two functions
u0 and u0, radially symmetric and of the form g(|x− xs|) and g(|x− xs|), with g nonincreasing and
g nondecreasing, such that, u0 ≤ u0 ≤ u0, u0 − s ≥ 0, u0 − s ≤ 0 and

{u0(x) = s} ⊃ R2 −BRs(xs) and {u0(x) = s} ⊃ R2 −BRs(xs)

(use a regularization of the modulus of continuity of u0, near the boundary of the support of (u0−s)).
Then, by Lemma 1 the solution u corresponding to u0 satisfies that

u(t, x) = g
((
|x− xs|q+1 + b+(q + 1)t

) 1
q+1

)
, x ∈ R2, t > 0.

Analogously the solution u corresponding to u0 is given by

u(t, x) = g
((
|x− xs|q+1 + b−(q + 1)t

) 1
q+1

)
.

12



From Theorem 1 we get that u ≤ u ≤ u which leads to the conclusion. Notice that if min{b+, b−} = 0
the conclusion holds trivially. So we can assume min(b+, b−) > 0 and estimate (17) is always coherent.
To prove ii) we shall use the method of local super and subsolutions ( see,e.g., [28]). So, let x0 ∈
{u0(x) = s} ⊂ GM = {|u0| < M} with M > 0. Then, since u0 ∈ UC(GM) it is clear that that
we can built two functions u0, u0 ∈ C2(R2) of the form u0 = g(|x− xs|) with g nondecreasing, and
u0 = g(|x− xs|) with g nonincreasing, satisfying u0(x) = u0(x) = s for any x ∈ R2 such that
|x− xs| ≤ Rs (use now a regularization of the modulus of continuity of u0 on GM). Define

ts :=
Rq+1
s

max{b+, b−}(q + 1)
.

Then by Lemma 1 and Theorem 1 we conclude that for any x ∈ R2 and t ∈ [0, ts]

g
i

((
|x− xs|q+1 + b+(q + 1)t

) 1
q+1

)
≤ u(t, x) ≤ gi

((
|x− xs|q+1 + b+(q + 1)t

) 1
q+1

)
,

which proves the estimate (18).
In order to prove the no instantaneous level set disappearance property of part iii) we recall that, as
indicated in the proof of Lemma 1, the function θ◦u is also a solution of PP(R2) for any nondecreasing
function θ : R→ R. Noting that max{s, u(t, x)} = θ(u(t, x)) with

θ(r) =

{
r if r ≥ s,
s if r < s,

we conclude that max{s, u(t, x)} is the solution of PP(R2) corresponding to max{s, u0} as initial
datum. Now, take x0 ∈ int

(
supp(u0 − s)

)
. We can construct a function û0(x) = ĝ(|x− x0|) with ĝ

nonincreasing such that ĝ(r) = s if r ∈ [ ε
2
,+∞) and verifying

û0(x) ≤ max{s, u0(x)}

for any x ∈ R. Then, by Theorem 1 and Lemma 1

ĝ
((
|x− x0|q+1 + b+(q + 1)t

) 1
q+1

)
≤ u(t, x) on B ε

2
(x0).

provided t ∈

[
0,

ε/2

[b−(q + 1)]1/(q+1)

]
. The analogous argument can be applied to min{s, u} and we

get the result. �

Remark 5 Something similar to the propagation results presented in Theorem 5 could be also ob-
tained with the techniques on the finite speed of propagation developed by Goto in [33]. Nevertheless,
as we shall explain now our growth estimates on the location of the level sets are sharper than the
possible ones which could be obtained by applying his technique. Indeed, if to fix ideas we consider
the level s = 0 and we denote by Γ0 the initial interface defined as the boundary of the support of
u0 (which in [33] it is assumed to be compact) then Γ(t) represents the boundary of the support of
u(t) := u(t, ·). The partial differential equations can be understood in the sense that

d

dt
Γ(t) = β

(
curv(u(t)

)−→n (t) (24)
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with −→n (t) := −→n (t, ·) the unit exterior normal vector to the support of u(t). So, the vector

−→
V(t, ·) := β

(
curv(u(t, ·)

)−→n (t, ·)

represents the speed of propagation of the zero level set of the solution. The following notion was
introduced in [33]: given a function u on QT = [0, T )× Ω, given R > 0 we say that u has an upper
speed bound ν(R) for the level s = 0 if ν(R) ≥ 0 is such that

sup
(t,x)∈∆ν

u ≤ c with ∆ν = {(t, x) : t ≥ t0, |x− x0| ≤ R− ν(R)(t− t0)}, (25)

whenever c ∈ R, (t0, x0) ∈ QT satisfy sup|x−x0|≤R u(t0, x) ≤ c. If u and −u have upper speed bounds
we say u has a finite speed. Particularizing Theorem 2.1 of [33] to our case (for any q, b+, b− ≥ 0
with b+ + b− > 0) and if Γ0 is compact then problem PP (R2) have a unique solution with compact
support for any t ∈ [0, T ] and with a finite speed. As consequence it could be possible to get some
estimates on the location of the support of u(t) through the application of the geometric estimate (25).
Nevertheless our estimates are sharper in the sense that even for the special case of radially symmetric
solutions the good estimate on the propagation of the level sets is not of linear type as (25) but have
a nonlinear nature with explicit indication of the values of q, b+ and b−. For instance, in the case of
a radially symmetric initial datum with g ∈ C

(
[0,+∞)

)
nonincreasing and Γ0 = {|x| = rg} the (t, x)

domain where u vanishes is of the form

|x|q+1 ≥ max
{
rq+1
g − b−(q + 1)t, 0

}
.

Analogously, for g ∈ C([0,+∞)) nondecreasing with Γ0 = {|x| = rg} the vanishing domain of u is

|x|q+1 ≤ rq+1
g − b+(q + 1)t.

We recall that in [33] the superlinear case problem corresponding to q > 1 is reached as limit of a
sequence of problems growing linearly and that the solutions of this family of problems already have
(a uniformly bounded) finite speed. This explain why his definition is ”too linear” in contrast to our
direct approach. Finally we point out that in the special case of radially symmetric solutions the
equation of the evolution of the level set (24) (which in fact resembles to the differential equation of
the interface for free boundary problems like the porous media equation: see [39]) now becomes simply

d

dt
Γ(t) = b−

sign (g′(ς−))

rq
−→n (26)

for the case g nonincreasing (i.e. with sign
(
g′(ς−)

)
= 1 if g′ < 0) and

d

dt
Γ(t) = b+

sign (g′(ς+))

rq
−→n (27)

for the case g nondecreasing (i.e. with sign
(
g′(ς+)

)
= 1 if g′ > 0). Since −→n = x/ |x| in the case of g

nonincreasing satisfying (20) and −→n = −x/ |x| in the case of gnondecreasing satisfying (22) we get
that curiously, in both cases Γ(t) is moving monotonically in time contracting it towards the origin
(it does not matter if g is either nonincreasing or nondecreasing). As far as we know, this kind of
retracting free boundary (extended in i) of Theorem 5 to non-necessarily radially symmetric initial
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data) only appears, for the case of reaction-diffusion problems, in the presence of a strong absorption
term. Moreover, Lemma 1 and part i) of Theorem 5 show that, in contrast with many other free
boundary problems, there is no waiting time phenomenon (independently of the behavior of the initial
data in a neighborhood of the boundary of its support). See e.g. [5], [6], [8] and [39]. Notice also
that although estimate (??) is less precise that (17) it applies to the case in which supp(u0 − s) is
unbounded (in contrast with part i) and the results of [33]). Several authors analyzed the singularity
formed at the origin in the extinction time for the case of mean curvature geometric flows (q = 1)
for many different initial hypersurfaces as level sets of suitable initial data: see e.g. the exposition
made in the Introduction of [32]. Finally, we point out that in contrast with part iii) of Theorem 5,
if int

(
supp(u0 − s)

)
is empty then the level set {u− s} may extinct instantaneously (this result was

initially proved in [31] and generalized later by different authors to different frameworks: see [32]
Subsection 4.7). �

Remark 6 Radially symmetric geometric flows given by the Gauss curvature in RN corresponds to
q = N − 1, which is superlinear for N > 2 (see. e.g. [32] page 52). In this way, Lemma 1 is of
interest in order to get qualitative properties of (non-necessarily radially symmetric) solutions of the
equation

∂u

∂t
− |Du| det

((
I− Du⊗Du

|Du|2

)
D2u

|Du|

(
I− Du⊗Du

|Du|2

)
+

Du⊗Du

|Du|2

)
= 0

(see [32] page 39 and [34]).This will be presented in a future work by the authors. �

Remark 7 In the special case of q = 1/3 (corresponding to the affine curvature case) it is possible
to replace the radially symmetric level sets of the above self-similar type solutions in Lemma 1 by
solutions having all its level sets given by ellipses. Indeed, as it is shown in [4], for any a > 0, if
u(t, x) is a solution of PP (R2) then u(t, x · (a, 1/a)T ) is also a solution of PP (R2). In particular,
if u(t, x) is a radially symmetric solution then the level sets of u(t, x · (a, 1/a)T ) are ellipses for any
t ≥ 0. This could be used to get a variation of the estimates given in Theorem 5 for the special case
q = 1/3 but we shall not enter into details here. �

Remark 8 Theorem 5 applies also to the solutions of problem PP (Ω) and in fact there is not any
kind of peculiar behavior near the boundary similar to the Höpf maximum principle (ensuring that
Du · −→n < 0 if u0 ≥ 0). �

By arguing as in the proof of Lemma 1 it is possible to get some necessary and sufficient conditions
for the existence of symmetric solutions on the equation of PP(R2) now on symmetric rings and balls.
The following result collects this fact (we omit its proof since it is based on obvious adaptations).

Corollary 1 Let Ω be the ring {x ∈ R2: r0 < |x| < r1} for some 0 < r0 < r1, or the ball Br1(0) =
{x ∈ R2: |x| < r1}. Given h0(t), h1(t) ≥ 0 we consider the problem

∂u

∂t
− β

(
div

(
Du

|Du|

))
|Du| = 0 in (0, T )× Ω,

u(t, x) = h0(t) t ∈ (0, T ), |x| = r0,
u(t, x) = h1(t) t ∈ (0, T ), |x| = r1,
u(0, ·) = u0(·) on Ω,

(28)

15



or simply 
∂u

∂t
− β

(
div

(
Du

|Du|

))
|Du| = 0 in (0, T )× Ω,

u(t, x) = h1(t) t ∈ (0, T ), |x| = r1,
u(0, ·) = u0(·) on Ω,

(29)

in the case of the ball Ω = Br1(0). Let u0(x) = g(|x|) be a C0[r0, r1] radially symmetric function.
i) Assume b+ > 0 and g(r) nondecreasing. Then problem (28) have a nondecreasing solution if and
only if

h0(t) = g
((
rq+1

0 + b+(q + 1)t
) 1
q+1

)
for t ∈ (0, T ),

and

h1(t) = g
((
rq+1

1 + b+(q + 1)t
) 1
q+1

)
for t ∈ (0, T ). (30)

In the case of problem (29) the necessary and sufficient condition is (30) h0(t), the solution is
given by

u(t, x) = g
((
|x|q+1 + b+(q + 1)t

) 1
q+1

)
, (31)

and thus u(t, 0) = g
(

(b+(q + 1)t)
1
q+1

)
is nondecreasing in t.

ii) Assume b− > 0 and let g(r) be nonincreasing. Then problems (56) has a nonincreasing solution
if and only if

h0(t) = g
((
rq+1

0 + b−(q + 1)t
) 1
q+1

)
for t ∈ (0, T ),

and

h1(t) = g
((
rq+1

1 + b−(q + 1)t
) 1
q+1

)
for t ∈ (0, T ). (32)

In the case of problem (29) the necessary and sufficient condition is (32), the solution is given by

u(t, x) = g
((
|x|q+1 + b−(q + 1)t

) 1
q+1

)
, (33)

and thus u(t, 0) = g
(

(b−(q + 1)t)
1
q+1

)
is nonincreasing in t.

3.2 Non-monotone radially symmetric solutions

In Lemma 1 we have presented some special radially symmetric solutions of PP(R2). The crucial
argument which allowed merely the continuity of the initial data was the monotonicity of the radial
profile g(r). In this section we shall construct several radially symmetric solutions with a non-
monotone profile g. We shall see that the loss of monotonicity of g(r) leads to new qualitative
properties of the associated solutions of PP(R2).

Our main interest in this Subsection is on the case of an initial datum u0(x) = g(|x|) with g given
by as we colloquially called as a Batman type profile (10) in the introduction. First, by using Lemma
1 we shall estimate a lower bound for the solution u(t, r) of PP(R2) corresponding to u0(x) = g(|x|).
We recall that the solutions u1(t, r), u2(t, r) associated to g1(r) and g2(r) areu1(t, r) = g1

(
(rq+1 + b+(q + 1)t)

1
q+1

)
,

u2(t, r) = g2

(
(rq+1 + b−(q + 1)t)

1
q+1

)
.

(34)
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We can make a short of puzzle with the above mentioned solutions by using a general principle:

Proposition 1 For i = 1, 2, let ui be a supersolution of PP(R2) corresponding to the initial datum
u0,i(x). Then u = min(u1, u2) is a supersolution of PP(R2) corresponding to the initial datum
u0 = min(u0,1, u0,2).

Proof. Since u0,i ≥ min(u0,1, u0,2) then by Theorem 1 ui is also a supersolution of PP(R2) corre-
sponding to the initial datum u0 = min{u0,1, u0,2}. Moreover, since it is well-known that the minimum
of two supersolutions is a supersolution (see [34]) we get the result. �

Remark 9 The above simple result gives a parabolic viscosity version to the junction lemma of [13]
applied in many contexts when the junction between two functions is not smooth. �

Our main interest now is to show that in the case of initial data given by a radially symmetric
Batman profile g satisfying (10) we can be more exact since as we shall prove min(u1, u2) coincides
in fact (when b+ ≤ b−) with the solution u corresponding to u0 = min(u0,1, u0,2) or (if b+ > b−) there
is a level set {u = g(rd)} which have a non-empty interior for any t > 0 although this is not the case
of the level set {u0 = g(rd)}. The crucial fact is the different velocities corresponding to the convex
and concavity parts of the level sets.

Theorem 6 Let g satisfying (10) with g1 strictly increasing and g2 strictly decreasing. Let u1, u2

be the corresponding solutions of PP(R2) given by (34). Let u be the unique continuous (viscosity)
solution of PP(R2) of initial datum u0(x) = g(|x|). Then we have the following alternative:
i) If b+ ≤ b− then

u(t, r) = min
{
u1(t, r), u2(t, r)

}
for any t > 0.

ii) If b+ > b− then for any t > 0

u(t, r) =

{
g(rd) if r+(t) < r < r−(t)

min
{
u1(t, r), u2(t, r)

}
otherwise,

where

r+(t) = max
{

0,
(
rq+1
d − b+(q + 1)t

) 1
q+1

}
,

r−(t) = max
{

0,
(
rq+1
d − b−(q + 1)t

) 1
q+1

}
.

(35)

Before to give the proof we anticipate now that several numerical experiences, giving idea of the
above alternative, will be presented in the next subsection. We point out that r+(t), r−(t) can be
understood as defined trough the characteristics of the Hamilton-Jacobi equation (8) and that the
above results shows an anomalous behavior of solutions with respect to other hyperbolic first order
equations once we assume b+ 6= b−. If b+ ≤ b− in the points where the characteristics meet there
is no shocks of the solutions (but of its derivatives) and the solution is continuous. If b+ > b− the
characteristics do not fulfill all the (t, x) domain but instead to appear a rarefaction wave (see e.g.
[30]) the not-covered region is occupied by a flat level set even if initially this level set was with
an empty interior. As mentioned in the introduction, this rather simple example contrasts with the
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complexity of other examples on this phenomenon in the previous literature (see [31] and [38] for the
case of mean curvature geometric flows q = 1, b− = b+ = 1).

In order to give the proof of Theorem 6 it is convenient to start by considering the easier case in
which the non-monotone radially symmetric initial datum u0(x) = g(|x|) is given by a regularization
of the characteristic function of an interval [r1, r2]. We will use the well-known family of mollifier
functions ϕε(r) given by

ϕε(r) =

 K

ε
e
− ε2

(ε2−r2) if r ≤ ε,

0 if r > ε,
(36)

where K is chosen such that

∫
R
ϕε(r)dr = 1. We consider g(r) = gs,r1,r2,ε(r) given by

gs,r1,r2,ε(r) = sχ[r1,r2] ∗ ϕε(r), (37)

where s > 0, ε > 0 and χ[r1,r2](r) denotes the characteristic function of the interval [r1, r2].

Lemma 2 The solution of PP(R2) for u0(x) = g(|x|) = gs,r1,r2,ε(|x|) is given by

us,r1,r2,ε(t, r) =


gs,r1,r2,ε

((
rq+1 + b+(q + 1)t

) 1
q+1

)
if r < rε,1(t),

s if rε,1(t) ≤ r < rε,2(t),

gs,r1,r2,ε

((
rq+1 + b−(q + 1)t

) 1
q+1

)
if r ≥ rε,2(t),

(38)

where

rε,1(t) = max
{

0,
(
(r1 + ε)q+1 − b+(q + 1)t

) 1
q+1

}
,

rε,2(t) = max
{

0,
(
(r2 − ε)q+1 − b−(q + 1)t

) 1
q+1

}
,

for any t such that
rε,1(t) ≤ rε,2(t).

Proof. We point out that the functions g1(r) = gs,r1,∞,ε(r) and g2(r) = gs,0,r1,ε(r) are mono-
tone nondecreasing and nonincreasing, respectively. Then, by applying Lemma 1, we have that the
functions

u1(t, r) = g1(rq+1 + b+(q + 1)t),

u2(t, r) = g2(rq+1 + b−(q + 1)t),

are the corresponding solutions of PP(R2) and satisfy that

u1(t, r) = s if r ≥ rε,1(t),

u2(t, r) = s if r ≤ rε,2(t).

Therefore if
rε,1(t) ≤ rε,2(t)

18



both solutions intersect in a smooth way on the level sets {u1(t, .) ≡ s} and {u2(t, .) ≡ s} and thus,
by the uniqueness of solutions, we obtain that us,r1,r2,ε(t, r) given by (38) coincides with the solution
of PP(R2) corresponding to the initial datum u0(x) = gs,r1,r2,ε(|x|). �

In a next step we shall prove that in the case of Batman profile initial data min {u1, u2} is not
always strictly greater that the solution u corresponding to u0 = min{u0,1, u0,2}.

Lemma 3 Let g = min{g1, g2} satisfying (10). Then the solution u(t, x) of the parabolic problem
corresponding to u0(x) = g(|x|) with g = min{g1, g2} satisfies that

u(t, r) ≥ min {u1(t, r), u2(t, r)}

for any t, r ≥ 0 such that
s = min {u1(t, r), u2(t, r)} ≤ g(rd).

Proof. Assume first that

s = min {u1(t, r), u2(t, r)} = u1(t, r).

We consider rs1, r
s
2 given by

[rs1, r
s
2] = {r : min{g1, g2} ≤ s}.

We observe that as s ≤ g(rd), then rs2 ≥ rs1 and as g2 is decreasing we have that

rs1 =
(
rq+1 + b+(q + 1)t

) 1
q+1 ,

rs2 ≥
(
rq+1 + b+(q + 1)t

) 1
q+1 ,

and
min{g1, g2}(r) ≥ gs,rs1+ε,rs2−ε,ε(r) for r ≥ 0.

Then by applying Lemma 2 (using the variable t′, r′ to avoid misleading with respect to the variables
t, r used here) and by comparison we have that

u(t′, r′) ≥ s

for any ε small enough and t′, r′ given in Lemma 2. Then, passing to the limit when ε → 0+ we
obtain

u(t′, r′) ≥ s if max
{

0,
(
(rs1)q+1 − b+(q + 1)t′

) 1
q+1

}
≤ r′ ≤ max

{
0,
(
(rs2)q+1 − b−(q + 1)t′

) 1
q+1

}
for any t′ such that

max
{

0,
(
(rs1)q+1 − b+(q + 1)t′

) 1
q+1

}
≤ max

{
0,
(
(rs2)q+1 − b−(q + 1)t′

) 1
q+1

}
.

By applying the above inequality we have that u(t′, r′) ≥ g1

(
(rq+1 + b+(q + 1)t)

1
q+1

)
if

max
{

0,
(
rq+1 + b+(q + 1)t− b+(q + 1)t′

) 1
q+1

}
≤ r′ ≤

(
max{0, (rs2)q+1 − b−(q + 1)t′}

) 1
q+1
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for any t′ such that

max
{

0,
(
rq+1 + b+(q + 1)t− b+(q + 1)t′

) 1
q+1

}
≤ max

{
0,
(
(rs2)q+1 − b−(q + 1)t′

) 1
q+1

}
.

Now we observe that the values r′ = r and t′ = t satisfy the above inequalities and then we obtain
that

u(t, r) ≥ u1(t, r).

The case min {u1(t, r), u2(t, r)} = u2(t, r) is analogous. �

Proof of Theorem 6. First we observe that the function ū(t, r) = min {u1(t, r), u2(t, r), g(rd)}
is a supersolution because is the minima of 3 solutions and g(r) ≤ min {g1(r), g2(r), g(rd)} (see
Proposition 1). On the other hand

min {u1(t, r), u2(t, r)} > g(rd)

if and only if (
rq+1 + b−(q + 1)t

) 1
q+1 < rd <

(
rq+1 + b+(q + 1)t

) 1
q+1 ,

which is only possible in the case b+ > b−. Operating in this inequality we obtain

max
{

0,
(
rq+1
d − b+(q + 1)t

) 1
q+1

}
< r < max

{
0,
(
rq+1
d − b−(q + 1)t

) 1
q+1

}
, (39)

therefore, by Lemma 3 if (t, r) does not satisfy the above inequality then

u(t, r) ≥ min {u1(t, r), u2(t, r)} ,

which concludes i) and part of the statement of ii). In the case (t, r) satisfying (39), to show that
u(t, r) = g(rd) we use a comparison strategy. Let δ > 0 and sδ = g(rd)− δ. We consider rs1, r

s
2 given

by
[rsδ1 , r

sδ
2 ] = {r : min{g1, g2} ≥ s},

for ε > 0 small enough. Consider the function gsδ,r
sδ
1 −ε,r

sδ
2 +ε,ε(r). Then

gsδ,r
sδ
1 −ε,r

sδ
2 +ε,ε(r) ≤ min{g1, g2}(r),

and therefore, by comparison and passing to the limit when ε→ 0+ we obtain

u(t, r) ≥ s if max
{(

(rsδ1 )q+1 − b+(q + 1)t
) 1
q+1

}
≤ r ≤

(
max{0, (rsδ2 )q+1 − b−(q + 1)t′}

) 1
q+1 .

Next, passing to the limit when δ → 0+ we obtain

u(t, r) ≥ g1(rd) if max
{

0,
(
rq+1
d − b+(q + 1)t

) 1
q+1

}
≤ r ≤ max

{
0,
(
rq+1
d − b−(q + 1)t′

) 1
q+1

}
,

which concludes the proof of ii) taking into account that g(rd) is an upper bound of u(t, r). �
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Remark 10 We point out that from Theorem 6 we obtain that in the case b+ ≤ b−, the solution
u(t, r) can be expressed as

u(t, r) =

 g1

(
(rq+1 + b+(q + 1)t)

1
q+1

)
if r ≤ r(t)

g2

(
(rq+1 + b−(q + 1)t)

1
q+1

)
if r > r(t),

where r(t) represents the interface separating the regions where u(t, r) is defined according to g1 or g2.
The curve r(t) is implicitly defined by the relation

g1

((
r(t)q+1 + b+(q + 1)t

) 1
q+1

)
= g2

((
r(t)q+1 + b−(q + 1)t

) 1
q+1

)
. (40)

It is easy to see that r(t) is at least a Lipschitz continuous function once that g1, g2 ∈ C1(0,+∞).
In the next subsection we shall study this interface r(t) which is not any characteristic curve of the
evolution problem. �

3.3 On the interface of discontinuity of derivatives if b+ ≤ b−

The following result allows to identify the interface r(t) mentioned in Theorem 6 when b+ ≤ b−.

Proposition 2 Let u as in Theorem 6 with g1, g2 ∈ C1(0,+∞) and assume b+ ≤ b−. Let r = r(t)
with r(0) = rd be the curve C separating two regions of the (t, x) space where u = u1 to the left of the
curve C from where u = u2, to the right under the assumption that u1 and u2 are radially symmetric
solutions of the equation of PP(R2). Define

wl(t) =
∂u

∂r
(t, r(t)−) and wr(t) =

∂u

∂r
(t, r(t)+).

Then u is a solution of the equation of PP(R2) if and only if

r′(t) = −b+r(t)
−pwl(t)− b−r(t)−pwr(t)

(wl(t)− wr(t))
a.e. t > 0. (41)

Proof. Let us calculate the jump of the derivatives across the interface r(t). In the class of
radially symmetric solutions, since ∂u

∂r
(0, t) = 0, by using the odd prolongation (f(−r) = f(r))

problem PP(R2) becomes the Hamilton-Jacobi type problem
∂u

∂t
+H

(
r,
∂u

∂r

)
= 0 t ∈ (0, T ), in R,

u(0, r) = u0(r) on R,
(42)

with H(r, q) the (convex) Hamiltonian

H(r, q) =


− b+

|r|p
q if q > 0

− b−
|r|p

q if q < 0.
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As in [19], by making w =
∂u

∂r
, differentiating in (42) we see that the viscosity solutions are trans-

formed in Kruzkov solutions of the conservation laws problem
∂w

∂t
+

∂

∂r
H(r, w) = 0 t ∈ (0, T ), in R,

w(0, r) = w0(r) on R,
(43)

and reciprocally any Kruzkhov solution of (43) generate a (viscosity) solution of (42). We know that
w is smooth on either side of the smooth curve C given by r = r(t) with r(0) = rd. Let V be an
open region V ⊂ (0, T )×R, let Vl be the part of V on the left of the curve and Vr that part on the
right. By taking a smooth test function ψ(t, r) with support on Vl (respectively Vr ) we know that

∂w

∂t
+

∂

∂r
H(r, w) = 0 in Vl ∪ Vr . (44)

Selecting now a smooth test function ψ(t, r) with compact support in V we get

0 =

∫ T

0

∫ +∞

0

(w
∂ψ

∂t
+H(r, w)

∂ψ

∂r
)drdt =

∫ ∫
Vl

[· · · ] +

∫ ∫
Vr

[· · · ].

But

∫ ∫
Vl

(
w
∂ψ

∂t
+H(r, w)

∂ψ

∂r

)
drdt = −

∫ ∫
Vl

(
∂w

∂t
+

∂

∂r
(H(r, w))

)
ψdrdt+

∫
C

(
wlν

t+H(r, wl)ν
r
)
ψdl

and analogously∫ ∫
Vr

(
w
∂ψ

∂t
+H(r, w)

∂ψ

∂r

)
drdt = −

∫ ∫
Vr

(
∂w

∂t
+

∂

∂r
H(r, w)

)
ψdrdt−

∫
C

(
wrν

t+H(r, wr)ν
r
)
ψdl

where −→ν = (νr, νt) is the unit normal to the curve C, pointing from Vl to Vr (the subscripts ”l”, ”r”
mean the limit from the left and the limit from the right respectively). Then, adding both identities
and recalling (44) we get∫

C

[
(wl − wr)νt +

(
H(r, wl)−H(r, wr)

)
νr
]
ψdl = 0,

and it must holds for any test function ψ as above. We conclude that

(wl − wr)νt +
(
H(r, wl)−H(r, wr)

)
νr = 0 along C.

Since the curve C is represented by {(t, r) | r = r(t)} for some smooth r : [0,+∞) → [0,+∞) we
can take

−→ν = (νr, νt) =
1√

1 + r′(t)
(1, r′(t)).

In consequence
H
(
r(t), wl(t)

)
−H

(
r(t), wr(t)

)
= r′(t)(wl(t)− wr(t))

which is (41). �
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3.4 Numerical experiments for the parabolic problem

In this subsection we present some numerical experiments to illustrate the theoretical results obtained
for the problem PP(R2). In Remark 11 below we present some details on the used implementation.
We point out that the numerical experiments have just illustration purposes and we do not intend
to perform any rigorous numerical analysis of the equation (see to this respect, e.g. [21] and [18]).
In Figure 2 we illustrate the solution of equation (8) in the case of g(r) = χ[1,2] ∗ϕ0.1(r). In Figures 3
and 4 we illustrate the solution of (8) in the case of the Batman profile presented in Figure 1 (given
by g(r) = min{|r|3,max{0, 0.5(

√
1.1− |r| −

√
0.1)}}). In Figure 5 we illustrate the solution of (8)

in the case of g(r) = min{r, 2− r}. Figure 5 also presents the interfaces given by (35) and (40). An
straightforward computation yields the following expressions for the interfaces of Figure 5

r(t) =
√

max{0, 1− 2t} if b+ = b− = 1

r(t) =

√
max

{
0,
t2 − 40t+ 16

16

}
if b+ = 0.5 and b− = 1{

r+(t) =
√

max{0, 1− 2t}
r+(t) =

√
max{0, 1− t}

if b+ = 1 and b− = 0.5.

Figure 2: Shape of the solutions of (8) with b+ = b− = 1 for g(r) = χ[1,2] ∗ ϕ0.1(r) and different values of t. On the

left, shape of u(t, r) for q = 1/3 and, on the right, shape of u(t, r) for q = 1.
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Figure 3: Shape of the solution of (8) for the Batman profile appearing in Figure 1 when b+ = b− = 1, for different

values of t. On the left, shape u(t, r) for q = 1/3 and, on the right, shape of u(t, r) for q = 1.

Figure 4: Shape of the solution of (8) for the Batman profile appearing in Figure 1 for q = 1/3 using different values

for b+ and b−. On the left, b+ = 1 and b− = 0.5., and, on the right, b+ = 0.5 and b− = 1.
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Figure 5: Shape of the solution u(t, r) of (8) with q = 1 and the interfaces given by (35) and (40) for g(r) =

min{r, 2 − r} and different values of t. In the first row we present the case b+ = b− = 1, in the second row b+ = 0.5

and b− = 1, and in the third row b+ = 1 and b− = 0.5.
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Remark 11 In the case of monotone radially symmetric solutions of the parabolic problem the per-
formed numerical computation is straightforward: for a given t > 0, we discretize the spatial variable

r using rn = n · δr with n ∈ N and we just evaluate u(t, rn) = g
(

(rp+1
n + β1(p+ 1)t)

1
p+1

)
. When g is

not monotone we follows the arguments of the proof of Theorem 6. Slightly more involved arguments
are needed for the stationary case (see Remark 17 below). �

4 On the elliptic problems

4.1 Level sets propagation for the stationary problem

Now we consider the stationary problem SP(R2). Our main goal is to study when it is possible that
the level {v(x) = s} have a non-empty interior and then to study some properties of the interfaces
∂{v(x) = s}. As we shall see, some of the propagations properties collected in Theorem 5 admits
a stationary version but, which is quite curious, some other properties do not have any similar
correspondent statement in the time-discretized problem.

The global finite speed of propagation, (property i) of Theorem 5, remains valid thanks to the
construction of global super and subsolutions in the same style than the 1974 pioneering paper by
H. Brezis [15].

Theorem 7 Let g ∈ UC(GM) for each M > 0, where GM := {|g| < M}. Let v ∈ UC(VM) for each
M > 0, with VM := {|v| < M}, be the unique solution of SP(R2). Assume that there is a level s such
that

{g(x) = λs} ⊃ R2 −BRs(xs) for some xs ∈ R2 and Rs > 0. (45)

Then, for any q > 0, the s−level set of v satisfies also that

{v(x) = s} ⊃ R2 −BRs(xs). (46)

Remark 12 . Notice that, in fact, the above result implies that v(x) = s for any x ∈ ∂{g(x) =
λs}∩∂BRs,(xs). So, there is no dilatation of the part of ∂{g(x) = λs} which coincides with ∂BRs(xs),
independently of the growth of the continuous function g. This contrasts with what occurs with solu-
tions of most of the quasilinear second order stationary problems where such non-dilatation properties
of the support of the right hand side data g only appears for sufficiently flat growing decay of g near
the boundary of its support (see [28], [5] and [6]). We do not know if this non-dilation phenomenon
occurs on the parts of ∂{g(x) = λs} which are different of a part of ∂BRs(xs). �

The following result shows the limitations of the application of the method of local and super-
solutions to the stationary problems SP(R2) and SP(Ω) (for a general presentation of this method
see, e.g., [28]). Although a stationary version of property iii) of Theorem 5 remains valid now this is
not the case of property ii) dealing with dead core type estimates. So, in contrast with the evolution
problem, if the level set {g(x) = λs} have a non-empty interior and it is compact then the corre-
sponding s−level set of the solution {v(x) = s} not only loses the property of having a non-empty
interior but it can even disappear.
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Theorem 8 Let g ∈ UC(GM) for each M > 0, where GM := {|g| < M}. Let v ∈ UC(VM) for each
M > 0, where VM := {|v| < M}, be the unique solution of SP(R2). Let s ∈ R be an arbitrary level.
i) If g(x0) > λs for some x0 ∈ R2 then v(x0) > s.

ii) If g(x) > λs in the boundary of a ball, ∂Br0(x0), for some x0 ∈ R2 and r0 > 0, then v(x) > s in
the whole ball Br0(x0).

iii) In the special case of g(x) = λχ[R0,∞) ∗ ϕε(|x|) (i.e. with g(x) = 0 on BR0−ε(0) and g(x) = 1
on R2−BR0+ε(0)) we have v(x) > 0 for any x ∈ R2, and if g(r) = λχ

[0,R0]
∗ϕε(r) ( i.e. with g(x) = 1

on BR0−ε(0) and g(x) = 0 on R2 −BR0+ε(0)) we have v(x) < 1 for any x ∈ R2.

Remark 13 Parts ii) and iii) show that the behaviors of the parabolic and elliptic problem are
completely different in which concerns level set propagation: as shown in Theorem 5, the interior
area of a level set evolves in a smooth way with respect to t, however, in the elliptic problem, some
level sets of g can completely disappear for v, for any λ > 0. �

4.2 Monotone radially symmetric solutions

As in the parabolic case, the key stone of the proofs of the above level set propagation results is the
study of radially symmetric solutions of SP(R2). For convenience, in which follows, in some occasions
we shall use the notation

gλ(x) =
g(x)

λ
.

As for the parabolic case, in radial coordinates the equation of SP(R2) becomes simpler. In this case
it is reduced to a first order ordinary differential equation which keeps many resemblances with the
eikonal equation for solutions in which sign (v′(r)) remains constant for any r. It is the equation (9)
quoted in the introduction and that we can also write as

−β

(
sign

(
v′(r)

)
r

)
|v′(r)|+ λv(r) = λgλ(x). (47)

The following result analyzes the shape of some radially symmetric monotone solutions of equation
(47) on generic intervals [r0, r1].

Lemma 4 i) Let b+ > 0, r1 > r0 ≥ 0, and g ∈ C[r0, r1). Let vr0 ∈ R be such that

vr0 > λg(r)e
− λ
b+(q+1)

(rq+1−rq+1
0 )

+
e

λ
b+(q+1)

rq+1
0

b+

∫ r

r0

g(σ)σqe
− λ
b+(q+1)

σq+1

dσ ∀r ∈ [r0, r1). (48)

Then the function v(r) given by

v(r) = vr0e
λ

b+(q+1)
(rq+1−rq+1

0 ) − e
λ

b+(q+1)
rq+1

b+

∫ r

r0

g(σ)σqe
− λ
b+(q+1)

σq+1

dσ (49)

is a C1[r0, r1) radially nondecreasing solution of (47) in [r0, r1) and satisfies v(r0) = vr0.
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ii) Let b− > 0, r1 > r0 ≥ 0 and g ∈ C[r0, r1). Let vr0 ∈ R be such that

vr0 < λg(r)e
− λ
b−(q+1)

(rq+1−rq+1
0 )

+
e

λ
b+(q+1)

rq+1
0

b−

∫ r

r0

g(σ)σqe
− λ
b−(q+1)

σq+1

dσ ∀r ∈ [r0, r1). (50)

Then the function v(r) given by

v(r) = vr0e
λ

b−(q+1)
(rq+1−rq+1

0 ) − e
λ

b−(q+1)
rq+1

b−

∫ r

r0

g(σ)σqe
− λ
b−(q+1)

σq+1

dσ (51)

is a C1[r0, r1) radially nonincreasing solution of (47) in [r0, r1) and satisfies v(r0) = vr0 .
iii) In the above cases, if r0 = 0 then v′(0) = 0.
iv) Statements i) and ii) are also true for r1 =∞ or when r1 < r0 (in this last case we must replace
the interval [r0, r1) in the above statements by (r1, r0]).

Proof. Since we are searching nondecreasing solutions v(r) of (47) then necessarily we must have

−v′(r) +
λ

b+

rqv(r) =
λ

b+

rqgλ(r). (52)

From (52) we obtain that in fact v(r) is nondecreasing iff v(r) < gλ(r) for all r ≥ r0. By operating,
we obtain that (52) can be equivalently written as(

ve
− λ
b+(q+1)

rq+1
)′

= − λ

b+

rqe
− λ
b+(q+1)

rq+1

gλ(r).

Then by integrating and assuming that v(r0) = vr0 we get

v(r) = vr0e
λ

b+(q+1)
(rq+1−rq+1

0 ) − λ

b+

e
λ

b+(q+1)
rq+1

∫ r

r0

gλ(σ)σqe
− λ
b+(q+1)

σq+1

dσ. (53)

Thus, we conclude that v′(r) ≥ 0 if and only if (48) holds. The proof of ii) is analogous. The proof
of iii) and iv) are obvious from (52) and its similar version in case ii). �

As an application of Lemma 4, we can construct now some explicit solutions of (47) corresponding
to monotone data g (what could be consider as a stationary alternative to the explicit solutions built
in Lemma 1 for the parabolic case). In fact, by an approximation argument, we can drop the
continuity assumption on g.

Lemma 5 i) Assume g(σ)σqe
− λ
b+(q+1)

σq+1

∈ L1(r0,+∞). Let

vr0 =
e
λ
b+

r
q+1
0
q+1

b+

∫ ∞
r0

g(σ)σqe
− λ
b+(q+1)

σq+1

dσ,

and assume that g(r) is nondecreasing for r ≥ r0. Then the function v(r) given by

v(r) =
e
λ
b+

rq+1

q+1

b+

∫ ∞
r

g(σ)σqe
− λ
b+(q+1)

σq+1

dσ
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is a radially nondecreasing solution of (9) satisfying g(r) ≤ λv(r) for r ≥ r0

ii) Assume g(σ)σqe
− λ
b+(q+1)

σq+1

∈ L1(r0,+∞). Let

vr0 =
e
λ
b−

r
q+1
0
q+1

b−

∫ ∞
r0

g(σ)σqe
− λ
b−(q+1)

σq+1

dσ,

and assume that g(r) is nonincreasing for r ≥ r0. Then the function v(r) given by

v(r) =
e
λ
b−

rq+1

q+1

b−

∫ ∞
r

g(σ)σqe
− λ
b−(q+1)

σq+1

dσ

is a radially nonincreasing solution of (9) satisfying g(r) ≥ λv(r) for r ≥ r0.

Proof. By an approximation argument (as in [34]), it is enough to check condition (48) of Lemma
4 when g is continuous. We have that

gλ(r)e
− λ
b+(q+1)

(rq+1−rq+1
0 )

+
λ

b+

e
λ

b+(q+1)
rq+1
0

∫ r

r0

gλ(σ)σqe
− λ
b+(q+1)

σq+1

dσ

= gλ(r)
λ

b+

e
λ
b−

r
q+1
0
q+1

∫ ∞
r

σqe
− λ
b+(q+1)

σq+1

dσ +
λ

b+

e
λ

b+(q+1)
rq+1
0

∫ r

r0

gλ(σ)σqe
− λ
b+(q+1)

σq+1

dσ := I.

Moreover, as gλ(r) is nondecreasing for r ≥ r0

I <
λ

b+

e
λ
b−

r
q+1
0
q+1

∫ ∞
r

g(σ)σqe
− λ
b+(q+1)

σq+1

dσ +
λ

b+

e
λ

b+(q+1)
rq+1
0

∫ r

r0

g(σ)σqe
− λ
b+(q+1)

σq+1

dσ

= e
λ

b+(q+1)
rq+1
0

∫ ∞
r0

λ

b+

g(σ)σqe
− λ
b−(q+1)

σq+1

dσ = vr0 .

Then by applying Lemma 4 we obtain that the function v(r) given by

v(r) = e
λ

b+(q+1)
rq+1

∫ ∞
r0

λ

b−
gλ(σ)σqe

− λ
b−(q+1)

σq+1

dσ − λ

b+

e
λ

b+(q+1)
rq+1

∫ r

r0

gλ(σ)σqe
− λ
b+(q+1)

σq+1

dσ

= e
λ

b+(q+1)
rq+1

∫ ∞
r

λ

b−
gλ(σ)σqe

− λ
b−(q+1)

σq+1

dσ

is a radially nondecreasing solution of (47). Moreover, as gλ(r) is nondecreasing for r ≥ r0 we have

v(r) = e
λ
b+

rq+1

q+1

∫ ∞
r

λ

b+

gλ(σ)σqe
− λ
b+(q+1)

σq+1

dσ ≥ gλ(r)e
λ
b+

rq+1

q+1

∫ ∞
r

λ

b+

σqe
− λ
b+(q+1)

σq+1

dσ = gλ(r).

The proof of ii) is analogous. �
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Remark 14 Motivated by the study made in [22] for data growing linearly at the infinity, it is
illustrative to mention that function

v(r) = e
λ
b+

rq+1

q+1

((
b+(q + 1)

λ

) 1
q+1

Γ

(
q + 2

q + 1
,
λ

b+

rq+1

q + 1

))

is the radially nonincreasing solution of (9) corresponding to gλ(r) = r, where the function Γ ([23])
is given by

Γ (a, z) =

∫ ∞
z

sa−1e−sds.

�

An interesting application of Lemma 5 corresponds to the choice of gλ(r) given by gs,0,r1,ε(r) =
sχ[0,r1] ∗ ϕε(r) (with χ[0,r1] and ϕε(r) defined by (37) and (36) respectively). In such case, a solution
vs,0,r1,ε(r) of (47) is given by

vs,0,r1,ε(r) = e
λ
b−

rq+1

q+1

∫ ∞
r

λ

b−
sχ[0,r1] ∗ ϕε(σ)σqe

− λ
b−(q+1)

σq+1

dσ. (54)

We observe that vs,0,r1,ε(r) is nonnegative, nonincreasing and satisfies vs,0,r1,ε(r) = 0 if r ≥ r1 + ε
and vs,0,r1,ε(r) = s if r ≤ r1 − ε. In fact, as the following result shows (54) is the only nonnegative
and bounded solution of (47) for gλ(r) = gs,0,r1,ε(r). Let us consider, more in general, the case of
nonincreasing nonnegative data g with compact support:

Lemma 6 Let g(r) ≥ 0 be nonincreasing for r > 0 and with a compact support given by the interval
[0, R0]. Then:
i) the function

v(r) =
e
λ
b−

rq+1

q+1

b−

∫ R0

r

g(σ)σqe
− λ
b−(q+1)

σq+1

dσ (55)

is a solution of (47) for r ≥ 0 and satisfies v(r) = 0 for r ≥ R0 and 0 ≤ v(r) ≤ λg(0).
ii) if v(r) is any other solution of (47) for r ≥ R0 such that v(R0) > 0 then limr→∞ v(r) = ∞.
In particular, the function v(|x|) with v given by (55) is the only solution of SP(R2) corresponding
to g(|x|).

Proof. i) v(r) is the solution provided by Lemma 5 corresponding to r0 = 0 and as g(r) = 0 for
r ≥ R0 the integral in the expression of v(r) is equal to 0 and then v(r) = 0 for r ≥ R0. On the other
hand, as 0 ≤ g(r) ≤ g(0) we have

0 ≤ v(r) ≤ gλ(0)e
λ
b−

rq+1

q+1

∫ ∞
r

λ

b−
σqe

− λ
b−(q+1)

σq+1

dσ = gλ(0).

To show ii) we point out that if v(R0) > 0, v(r) is solution of (47) and gλ(r) = 0 for r ≥ R0. Then
for r ≥ R0 we have

v′(R0) =
λ

b+

rqv(R0) > 0.
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Therefore, for any r ≥ R0 the function v(r) can not decreases and it satisfies

v′(r) =
λ

b+

rqv(r) ≥ λ

b+

rqv(R0) > 0.

Then limr→∞ v(r) =∞. Therefore, if v(r) is a nonnegative bounded solution of (47) then v(R0) = 0
and from the uniqueness of solutions for SP(R2) it has to be the one provided in i) (since such
solution must be nonnegative and bounded). �

Remark 15 Theorems 7 and 8 apply also to solutions of the Dirichlet problem SP (Ω) and in fact
there is not any kind of peculiar behavior near the boundary of Ω (in contrast with Höpf maximum
principle ensuring that Dv · −→n < 0 if v ≥ 0).

By arguing as in the previous lemmas it is possible to get some necessary and sufficient conditions
for the existence of symmetric solutions on the stationary equation of SP(R2) but now on symmetric
rings and balls. The following result collects this fact. We drop its proof since it based on obvious
adaptations. To simplify the statement we shall assume g ∈ C1 and thus since the radial solutions
are C2 they are automatically (viscosity) solutions of the second order equation.

Corollary 2 Let Ω be the ring {x ∈ R2: r0 < |x| < r1} for some 0 < r0 < r1 or the ball Br1(0) =
{x ∈ R2: |x| < r1} if r0 = 0. Given h0, h1 ≥ 0 we consider the problem

−β
(

div

(
Dv

|Dv|

))
|Dv|+ λv = g(x) in Ω,

v = h0 |x| = r0,
v = h1 |x| = r1,

(56)

or simply  −β
(

div

(
Dv

|Dv|

))
|Dv|+ λv = g(x) in Ω,

v = h1 if |x| = r1,
(57)

in the case of the ball Ω = Br1(0). Let g(x) = g(|x|) be a C1[r0, r1] radially symmetric function.
i) Assume b+ > 0 and g(r) nondecreasing. Then problems (56) or (57) have a C2 nondecreasing
solution if and only if

h1e
−
λr

(q+1)
1

b+(q+1) − h0e
−
λr

(q+1)
0

b+(q+1) = − λ

b+

∫ r1

r0

g(σ)σqe
− λ
b+(q+1)

σq+1

dσ. (58)

In particular, in the case of a ball (r0 = 0) and g ≡ 0, for any h1 > 0 the solution is given by

v(x) = h1e
− λ
b+(q+1)

(r
(q+1)
1 −|x|(q+1))

, (59)

and thus v(0) = h1e
−
λr

(q+1)
1

b+(q+1) > 0. Moreover, if r0 > 0 and h0 = 0 then problem (56) has a nontrivial
C2 positive solution if and only if ∫ r1

r0

g(σ)σqe
− λ
b+(q+1)

σq+1

dσ < 0.
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ii) Assume b− > 0 and let g(r) be nonincreasing. Then problems (56) or (57) have a C2 nonin-
creasing solution if and only if

h1e
−
λr

(q+1)
1

b−(q+1) − h0e
−
λr

(q+1)
0

b−(q+1) = − λ

b−

∫ r1

r0

g(σ)σqe
− λ
b−(q+1)

σq+1

dσ. (60)

In particular, in the case of a ball (r0 = 0) and h1 ≥ 0 there exists a nontrivial nonincreasing C2

positive solution (and then v(0) > 0) if and only if (60) and

h1 = −e
λr

(q+1)
1

b−(q+1)

b−

∫ r1

r0

g(σ)σqe
− λ
b−(q+1)

σq+1

dσ

hold. Moreover, if r0 > 0, h0 > 0 and h1 = 0 then problem (56) has a nontrivial positive solution if
and only if

h0 =
e
λr

(q+1)
0

b−(q+1)

b−

∫ r1

r0

g(σ)σqe
− λ
b−(q+1)

σq+1

dσ.

4.3 Non monotone radially symmetric solutions

As in the parabolic case, the loss of monotonicity of the datum g(r) leads to new qualitative properties
of the associated solutions of SP(R2). Again, as in subsection 3.2, we shall concentrate our attention
on the case of Batman profiles type g(|x|) satisfying (10). As in the parabolic case, we can produce
a puzzle of monotone solutions by means of a general principle which now can be stated as follows
(the proof is similar to the one of the parabolic case).

Proposition 3 i) Let vi be a supersolution of SP(R2) corresponding to the datum gi(x), i = 1, 2.
Then v = min(v1, v2) is a supersolution of SP(R2) corresponding to the datum g = min(g1, g2).
ii) Let g1, g2 be C1[r0, r1] radially symmetric functions with g1 nondecreasing and g2 nonincreasing
and let hi0, h

i
1 ≥ 0 with i = 1, 2. Assume that the corresponding conditions (58) (60) hold with g = gi

and h0 = hi0 and h1 = hi1 respectively. Let v1, v2 be the corresponding C2 solutions of (56) or (57).
Then the function v = min{v1, v2} (respectively v = max{v1, v2)}) is a (viscosity) supersolution
(respectively subsolution) of (56) or (57) with h0 = min{h1

0, h
2
0} and h1 = min{h1

1, h
2
1} (respectively

h0 = max{h1
0, h

2
0} and h1 = max{h1

1, h
2
1}).

The following result proves, that in contrast with what happens for the parabolic problem (see
Theorem 6) now it is not so relevant the possible difference among velocities corresponding to the
convex and concavity parts of the level sets of solutions v. In fact, we shall consider a slightly more
general case than the Batman profiles of subsection 3.2.

Theorem 9 Let g1,g2 ∈ C[0,∞) be such that g1(r) is a nondecreasing function, g2(r) is a nonin-
creasing function, {r : g1(r) = g2(r)} 6= ∅ and rd = min{r : g1(r) = g2(r)}. Let v∞(r) be given
by

v∞(r) =
e
λ
b−

rq+1

q+1

b−

∫ ∞
r

g2(σ)σqe
− λ
b−(q+1)

σq+1

dσ.
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Consider the function

vd(r) = v∞(rd)e
λ

b−(q+1)
(rq+1−rq+1

d ) − e
λ

b−(q+1)
rq+1

b−

∫ r

rd

g1(σ)σqe
− λ
b−(q+1)

σq+1

dσ.

Let rm = min{r ≥ 0 : λvd(r) ≤ g1(r)} and define the function

vm(r) = vd(rm)e
λ

b+(q+1)
(rq+1−rq+1

m ) − e
λ

b+(q+1)
rq+1

b+

∫ r

rm

g1(σ)σqe
− λ
b+(q+1)

σq+1

dσ.

Then, the function

v(r) =


vm(r) for r ∈ [0, rm]
vd(r) for r ∈ [rm, rd]
v∞(r) for r ≥ rd

is a C1[0,∞) solution of equation (47) for g(r) = min{g1(r), g2(r)}.

Proof. First we point out that by Lemma 5, v∞(r) is a solution of (47) for r ≥ rd satisfying
v∞(r) ≤ gλ,2(r). On the other hand as vd(rd) = v∞(rd) ≤ gλ,2(rd) = gλ,1(rd) then rm ≤ rd is well
defined. We point out that since vd(r) ≤ gλ,1(r) in [rm, rd] then v′d(r) = λ(vd(r) − gλ,1(r)) ≤ 0
in [rm, rd] and then vd(r) is a solution of (47) in [rm, rd]. Finally, in the interval [0, rm], as gλ,1(r) is
nondecreasing and vm(rm) = vd(rm) = gλ,1(rm) we obtain that for r < rm, gλ,1(r) ≤ gλ,1(rm) = vd(rm)
and then

vm(r) = vd(rm)e
λ

b+(q+1)
(rq+1−rq+1

m )
+

λ

b+

e
λ

b+(q+1)
rq+1

∫ rm

r

gλ,1(σ)σqe
− λ
b+(q+1)

σq+1

dσ ≥

≥ vd(rm)e
λ

b+(q+1)
(rq+1−rq+1

m )
+

λ

b+

e
λ

b+(q+1)
rq+1

gλ,1(r)

∫ rm

r

σqe
− λ
b+(q+1)

σq+1

dσ =

= (vd(rm)− gλ,1(r))e
λ

b+(q+1)
(rq+1−rq+1

m )
+ gλ,1(r) ≥ gλ,1(r).

Therefore v′m(r) = λ(vm(r) − gλ,1(r)) ≥ 0 in [0, rm] and then vm is a solution of equation (47).
Concerning the regularity of v(r) notice that v′d(rd) = v′∞(rd) because gλ,1(r), gλ,2(r) are continuous
and gλ,1(rd) = gλ,2(rd). Finally since vm(rm) = vd(rm) = gλ,1(rm) then v′m(rm) = v′d(rm) = λ(vm(rm)−
gλ,1(rm)) = 0. �

Remark 16 We point out that if g1(r), g2(r) are nonnegative and g(r0) = min
{
g1(r0), g2(r0)

}
> 0

then the solution provided by the previous theorem satisfies that v(r) > 0 for any r < r0. Indeed, we
observe that the functions vm(r), vd(r) and v∞(r) are nonnegative and if g(r) > 0 in a region, then
this positive value is propagated towards the left. We also observe that in this stationary case the
assumption b+ 6= b− does not introduce any kind of singularity in the derivatives of the solution. �

4.4 Proof of the general level propagation results

Proof of Theorem 7. The existence, comparison and uniqueness of solutions follows from The-
orem 4. For the proof of i) we shall construct two global super and subsolutions leading to estimate
(46). Let xs ∈ supp(g − s) given in (45). It is clear that we can construct two radially symmetric
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functions of the form g(|x− xs|) and g(|x− xs|), with g nonincreasing and g nondecreasing, such
that, g ≤ g ≤ g, g − s ≥ 0, g − s ≤ 0 and

{g = s} ⊃ R2 −BRs(xs) and {g = s} ⊃ R2 −BRs(xs),

(use a regularization of the modulus of continuity of g near the boundary of the support of (g− s)).
Then, by Lemma 6 the solution v corresponding to g is given by

v(r) =
e
λ
b−

rq+1

q+1

b−

∫ Rs

r

g(σ)σqe
− λ
b−(q+1)

σq+1

dσ, (61)

and satisfies v(r) = 0 for r ≥ Rs and 0 ≤ v(r) ≤ λg(0). Analogously, the solution v corresponding
to g is given by

v(r) =
e
λ
b+

rq+1

q+1

b+

∫ Rs

r

g(σ)σqe
− λ
b−(q+1)

σq+1

dσ, (62)

and satisfies v (r) = 0 for r ≥ Rs and 0 ≥ v(r) ≥ λg(0). From Theorem 4 we get that v ≤ v ≤ v
which leads to the conclusion. Notice that if min{b+, b−} = 0 the conclusion holds trivially. So we
can assume min(b+, b−) > 0 and estimate (46) is coherent in both cases. �

Proof of Theorem 8. i) If g(x0) > 0 and g is continuous then there exists a ball Br0(x0) such
that λg(x) ≥ s > 0 for any x ∈ Br0(x0). Next we consider the solution vs,0,r1−ε,ε(|x − x0|) given in
(54). Then, for ε > 0 small enough by comparison we obtain that

v(x0) ≥ vs,0,r1−ε,ε(0) = s > 0.

ii) As ∂Br0(x0) is a compact set and g is continuous there exist s, δ > 0 such that

λg(x) ≥ s for x ∈ Br0(x0)\Br0−δ(x0).

Therefore for ε > 0 small enough

λg(x) ≥ sχ[r0−ε,,r0−δ+ε] ∗ ϕε(|x− x0|) for x ∈ R2.

Then, by comparison and applying Theorem 9 and Remark 16 we obtain that v(x) > 0 in Br0(x0).
The proof of iii) is consequence of formula (54). �

4.5 Numerical experiments for the elliptic problem SP(R2)

In this section we present some numerical experiments to illustrate the theoretical results obtained
for problem SP(R2). In Figure 6 we illustrate the solution of equation (9) provided by Lemma 5 in
the case of gλ(r) = χ[0,2] ∗ϕ0.1(r) and gλ(r) = χ[1,∞) ∗ϕ0.1(r). In Figure 7 we illustrate the solution of
equation (9) in the case of gλ(r) = χ[1,2] ∗ϕ0.1(r) = min{χ[0,2] ∗ϕ0.1(r), χ[1,∞) ∗ϕ0.1(r)}. We illustrate
in this figure that for the elliptic problem (9) the minimum of two solutions is not a solution of the
equation (in contrast to the result for the parabolic problem quoted in Theorem 6 when b+ ≤ b−). In
Figure 8 we show the solution of equation (9) in the case of g(r) = min{|r|3,max{0, 0.5(

√
1.1− |r|−√

0.1)}}. We point out, again, that for the elliptic problem (9) no singularity appears in the case
b+ 6= b−.
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Figure 6: Shape of the solution of for (9) for λ = 1, b+ = b− = 1 and different values of q. On the left we present

the shape of v(r) for gλ(r) = χ[0,2] ∗ ϕ0.1(r) and on the right for gλ(r) = χ[1,∞) ∗ ϕ0.1(r).

Figure 7: On the left we present the function v(r) = min{v1(r), v2(r)}, where v1(r), v2(r) are the solutions of

(9) for gλ,1(r) = χ[0,2] ∗ ϕ0.1(r) and gλ.2(r) = χ[1,∞) ∗ ϕ0.1(r). On the right we show the solution v(r) of (9) for

gλ(r) = min{gλ,1(r), gλ,2(r)}.

Remark 17 Such as it was proved before, a nonincreasing radially symmetric solution of the elliptic
problem SP(R2) is given by

v(r) =
e
λ
b−

rp+1

p+1

b−

∫ ∞
r

g(σ)σpe
− λ
β−1(p+1)

σp+1

dσ.

As in the parabolic problem, we discretize the spatial variable r using rn = n · δr and we approximate
v(rn) by using the expression

v(rn) = lim
A→∞

e
λ
b−

rp+1

p+1

b−

∫ A

rn

g(σ)σpe
− λ
β−1(p+1)

σp+1

dσ. (63)

To compute numerically the integral in the above expression we use the following scheme based on
the basic Simpson rule∫ b

a

f(σ)dσ ≈
M−1∑
k=0

f
(
a+ k b−a

M

)
+ 4f

(
a+ (k + 0.5) b−a

M

)
+ f

(
a+ (k + 1) b−a

M

)
6

b− a
M

,
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Figure 8: Shape of the solution of (9) for the Batman profile appearing in Figure 1, λ = 10 and different values of

q. From left to right we present the results for b+ = b− = 1, b+ = 0.5, b− = 1 and b+ = 1, b− = 0.5.

where M ∈ N is big enough. In practice, in this paper we fix M as M =
⌊
b−a
10−4

⌋
+1, where bsc is the

largest integer not greater than s. Finally, to compute numerically the limit in expression (63) we
use the following iterative algorithm: we fix A0 � rn and we define Am = A0 + m for m ∈ N. We
initially define

v(rn) =
e
λ
b−

rp+1

p+1

b−

∫ A0

rn

g(σ)σpe
− λ
β−1(p+1)

σp+1

dσ.

Then we iteratively update the v(rn) value in the following way

v(rn) = v(rn) +
e
λ
b−

r
p+1
n
p+1

b−

∫ Am+1

Am

g(σ)σpe
− λ
β−1(p+1)

σp+1

dσ for m ∈ N.

In practice, we stop iterations when∣∣∣∣e λ
b−

r
p+1
n
p+1

∫ Am+1

Am

g(σ)σpe
− λ
β−1(p+1)

σp+1

dσ

∣∣∣∣ < 10−10 |v(rn)| .

We recall that if ∫ ∞
0

g(σ)σpe
− λ
β−1(p+1)

σp+1

dσ <∞

then

lim
m→∞

∫ Am+1

Am

g(σ)σpe
− λ
β−1(p+1)

σp+1

dσ = 0.

In the case of using as function g(.) given by the convolution with a mollifier function, that is
g(r) = f ∗ ϕε(r) where supp{ϕε} = [−ε, ε], then to compute numerically f ∗ ϕε(r) we discretize the
convolution operator in the following way:

f ∗ ϕε(r) =
k=M∑
k=−M

f
(
r + k

ε

M

)
ϕε

(
k
ε

M

) ε

M
,

where M ∈ N is big enough. In practice, our numerical experiments assumed M = 104.
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