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Introduction. In this paper we study the behaviour, for

large time, of the solution of the problem

ut(t,x) -AR(u(t,x)) = 0 0D<t, x €9
5] Blult,x)) = Q 0<t, x6&a
u(0,%x) = ug(x) X 6§

where ) is an open bounded set of IRN and B is a continuocus
non~decreasing real function such that B(0) = 0 (or, more
penerally, a maximal monotone graph of R®, such that 0 € 8(0),
c.f. Brezis [6]). Equations of this sort arise in many ap-
pli--~tions: flow in a porous media, the Stefan problem, biologi-
cal models, etc. It azlso arises in the study of phenomena of
"electron heat conduction" in a plasma where the ther-

mal conductivity is a function of the temperature (see [18] Chap.

X and also [161).
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1214 DIAZ AND DIAZ

We are interested in charecterizing the class of B for

which the solution u of (1) has a finite extinction time, i.e.

there exists a To such that wu(t,x) = 0 for t > Tp. Our main
result establishes that the necessary and sufficient condition on

B to have that extinction is that

1
(2) ' [-1 WB%?) < 4o

»

for a genmeral class of data up (e.g. ug GLp(m), max{28/M+2,7 <

< p < 4w,

Finite extinction time for particular formulations of (1)
have been studied by Sabinina [15], [16], Evans [10], Berryman
and Holland [5] and Benilan and Crandall [3]. Reference on this

phenomena in other equations can be found in DIaz [9].

It is interesting to note that our main result does not

apply if Q@ =R, N> 3. If B() = |r|® sign v  the extinc-
tion only appears for 0 < m < Eiz {gee Proposition 10 of

Benilan and Crandall {3]).

An essentizl tool in our study of (1) is the consideraticr

of the "dual" problem
v (£,x) + B(-bv(t,x)) =0 t>0, =6 e
(3 vit,x) = 0 t >0, x&an

v(0,x) = vg(x) x €0
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for whose solutions we establish the finite time of extinction.
This will be obtaimed by means of comparison with suiltable func
tions. Fimally, duality arguments will be used to get the abo-

ve main result.

The plan of this paper is as follows: In Section 1 results
on existence and uniqueness of solutions of (1) and (3) are
.collected, specifying thelsense of duality between both equations
and ,.ving some criteria of comparison. In Section 2, extinction
for problem (3) is obtained, Finally, in Section 3, the main
theorem is established. Among other remarks, the case of

nonhomogeneous equation is alsc considered.

1.~ Preliminaries.

Let £ be a regular bounded open set of EN. Le us note by
A = «A the canonical isomorphism from the Hilbert space
H;(Q) = Wt’z(ﬂ) onto its dual H—l(ﬂ). By abuse of motation
we shall identify A™" with (~-0)"'. It will be useful to remind
that by the 1P estimates one has that if u 6 LP(2) N B (Q)

1

1< p<-+e, then (-A) u 6 WZ’P(Q) M H;(Q). (See Agmon,

Dou;  and Niremberg [11).

In the following B will be a continuous nondecreasing
function from R onto R such that 0 = B(0), altough the
results that will be obtained remain valid in the general case
in which 8 4is & maximal monotone graph such that

CR(B) = D(B) =R and 0 € B(0).
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The abstract theory of evolution equations governed by
accretive operators (see, e.g. [7] and [10]) allows to comnsider
the problems (1) and (3) in the frame of several functional

spaces.

Concretely, the problem (1) canm be treated on H_l(ﬂ) or on

1.} (Q). TIndeed, the operators A and B given by

pa) = lue K@ B(w) 6 I}, G@ =1 @),
A = -AB(u) if u 8 DIA)
and
D(B) = {u € L1@: Blw) 6 W' (@), 48(w) € L' @),

Bu = -AB(u) (in the weak-L! sense) if u & D(B)

are m-accretives in H—l(ﬂ) and LY'(R) respectively (see

Brezis [6] and Benilan [2]).

On the other hand, problem (3) can be studied on Hy () or
on LW(Q). As a matter of fact, the m—accretivity in ui(Q)  of

the operator given by
D) = {v 6 HL(®: Ay 6 L1(R) and B(-bv) € H(MW],
Cv = B(-Av) if v & D(C}

is an unpublished result by Brezis. It is also knmown that the

operator E, defined by



FINITE EXTINCTION TIME 1217
DEE) = {veir () N EYD 0 B@: B(-Av) & L7}
Ev = B(-Av) if v 8 D(E)

is m-accretive in Lm(ﬂ). (S5ee Benilan and Ha [4] and also

Ronisni [131).

A fact that we will exploit is the existing duality between
problem (1) and (3) being governed by the operators A and C
respectively. Concretely, given uo & H ' () such that
(—A)”l ug € D(CY, 1if u € C([0,®): Hul(ﬂ)) is the solution of
(1), then the function w(t) = (--A)—1 u(t), v & ¢({0,=): Hi{D))
is the unique solution of (3) corresponding to v¢ = {—A)hlug.
Indeed, let be h-> 0 and define ap = uy, and a & H—l(ﬁ)

ntl

be means of

a , ~a
o+l n
T Mg -0
+ -1 ) I}
or, more precisely, a = (L + AA) a . By defining
-1 4 . -1 —
bn = (=0) a_ s the limearity of (-A) determines that bn+1—

= (I + AC)ﬂlbn. Considering now the function uk(t} = an(resp.

VA(“\ = bn) for nA < t £ (otl)X, then the theory of semigroups
implies that U Tu (resp. vy ~+ v), solution of (1) (resp. (3))
in H_I(Q) (resp. HE ()} uniformly on compact subsets of [0,%).

Finally, by the continuity of (-ij v(t) = (—A)_Iu(t).

In what follows it will also be of great importance the
fact that the problems (1) and (3) have propertieg of comparison,

being governed by B and E. For example, in [2] it is shown
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that B is T-accretive and hence if Wiy e LY and uy is

the corresponding solutiom of (1) (i=1,2), then

(4) Uy 2uy, Inm Q= wt,x) £ uat,x) for all t8[0,=},
2

a.e. x 6 0Q,

When (3) is governed by E one also has simllar results. This
can be obtained from the following lemma, which we will use in
Section 2:

f=-]

Lema L. Let vy € D(E)L and v be the solutiomn of (3).

1,1 o 72 1 we 17
Let be vy g wloc(o’ : LO(2)) with Avi g Lloc(o, : L)) and

such that
dv

o (e,) + Blbv, (£,7)) =, (£,0) ave. t6(0,), in L

o

v, (t,x) = g, (£,%) a.e. (t,x)€(0,=)*o0

vi(O,x) = . % & .

(
Py
=

—~
W
<
w
1

i= 1,2, Let us also assume that £y £ 0 < f;, g1 2 0<% g2

and v, , S v 2 vy 5. Them wilt,x) < v(t,x) < valt,x) for
and , ihen = = for

E

all t & [0,%) and a.e. x 6.

Proof. Due to the continuity in L (Q) of the semligroup
generated by E, it will suffice to establish the result for
vy € D(E). The Theorem 2 of [4] then ensures that the solution
in the sense of semigroups is such that v{t,*) € D(E) for
a.e. t and also v(t,°) is derivable in the G(LM(Q), L))

topology. We will show that v € vy. In a similar way one can
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prove the other inequality. Let us note by comvenience
v(t,) = vl£), vaft,*) = vo(t) and £,(t,*) = f{t). One has

that

dv
dt

(5) - < () + B(-dvle)) - Bl-bva(e))= - £2(t).
We will now use the semi~inner product defined by

T(a,b) = lime  (|lateb || - b }) if a,b € L7(R).
et0

Due to a result of Sato ({L7], p. 433) one knows that

T(a,b) = lim ess sup {(sign a(x)) * b(x): x 6 R(a,=)}
et0 '
if a+# 0

being fi(a,e) = {x € Q: |a(x)| > |la||,-<c}. Let us assume that
wt) = () w2 (e’ 40 for some t'> 0.
One has that a.e. t € (0, «)
Tw(t), BEAV(E)Y - 8(-Ava (£))) > O

because otherwise for gsome t and € > 0 one would have B(—Av(t)j—
~B  2(£))<0 om Q{w(t),g). The monotonicity of B would Lead

to AW - va(t)) > 0. As (w(t) - vo(£)) =[lw(®) |~ in

the boundary of Q(u(t), €), the application of the maximum

principle would lead to 2 contradiction. Hence

dv
dtc

dva
T (£)) > 0.

T(a{t), - £{t) - (&) +

Then, for a2ll & small enough
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dwv
dt

(t) f_—%ﬁ%— (£) a.e. in Qw(t),s)

and, in particular, v{t')-ve £ val(t')-v, , a.e. 1in Qw (D, e)
1

from what one deduces Hw(t')”Do < €& . Letting € + 0 ome

obtains the desired contradiction.#

The above lermma, with the mentioned duality, allows to state
the following criterion of comparison for (1), in contrast with

that given by (4)

-1 -
Corollary 1. Let be uy ;6H (ALY such that (-A) 1u0 ; €
——— H 3

©0

8 D(E)L . Let uy be the solutions of the corresponding problems

(1). Thep
)y, € 0 Ty, = ) T ur (6,1 € (+A) T g (6,%)
for all t & [0,»), a.e. x 6§,

#

2. The dual problem.

In this Section we will study problem (3). Such a equation
appears in problems of elasticity with damping ( see in Duvaut-Lions
[11], the "probleme semistatique, p. 175). The study of som
problems of the Bellman—Dirichlet type leads also to a similar

formulation (see the "parabolic-elliptic case” inLions [14]).
With respect to the extinction one has:

Proposition 1. Let wvo & Hé(ﬂ) such that Avy € Lm(ﬂ).

Let v € C{[0,=): Lw(ﬂ)) the solution of (3). Then the neces-—
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sary and sufficient condition for the existence of a To > 0

such that v(t,x) = 0, a.e. x 8, for every t > Ty is the

fulfiliment of hypethesis (2).

Proof. NECESSITY. Without loss of generality we can assume

1
J ds  _ oo

B(s}

and vy, > 0, vy # 0. Due to lemma 1 it will enough to comstruct
a subsolution v, v(t,x) # 0 for every ¢t > 0. We will try
v(t,x) = ¢(t) ¢(x). So, let. R> 0, k> 0 and %€ { be such that

vo(x) > k for x €Q N B(xy,2R). Let v € C2(Q) satisfying

Y&} = 0 for |z - x¢| > 2R

%-g‘w(x) < k end -Ap(x) > 0 for |x-xy| <R, x 8Q
0<¥G) <% and -Mp(x) <O for R < [xmg| < 2R, x€0

On the other hand, let ¢: (0,1} + [0,») be the strictly de-

creasing function

1
ds

k
':l(z) = 5 Jz g(@s) °

whe. . 0 is & positive constant to be determined. Then the
function ¢(t) = g (t) satisfy: ¢(t) >0 V& > 0, ¢(0) =1

and ¢'{t) = ~-BO(LI) -{2; if t > 0,

Finally v 4s a subsolution of (?) if © is large enough,

because
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a) xt(t,x) + B(=av(i,x)) = ' (P + Bl-¢(e)Aplx}) = f(e,x)

Being  £(t,%) < -B(BH(E)) " 25+ Bl-p()A()) < O
in |x-x| <R, x 80, and £(r,x) < pl-¢p(e)Mmx)) <0

in R < |x-x4), % & Q.

b)Y w(t,x) =0 a.e. (£,%) € (0,=) % 23Q

e) v(0,x) = ¢(0) h(x) £k < vy (x) =a.e. x 6 Q.

surrIcIENCY. 158 Step. Let vp € D(E). Again without loss of
generality, by Lemma 1, one can vg > 0 and so it will suffice
to construct a2 supersolution v with the property of extimetion.
We will choose Vv again in the form vit,x) = ¢ty X(x). Let

r > 0 be such that { < B{0,r) and let us define ¥{x) =

I

2 - 1xl?, It is clear that -Oy(x) = 2N. Let us mote b
¥y
2

M=r1r? =max ¥ and m=min ¥ on { . On the other hand, let

q: [0,2) + [0,%) be the strictly increasing function given by
qfz) = ¥ Jz _E%ET_ for all =z > 0.
9

Tn fact, we can assume without loss of generality that q
is onto, because reasoning as in [4, Theoreme 2] one can modif
as willing B out of the interval (- I Evo Hm, | Evo Hw ). It
is clear that the inverse function ¢! satisfies that

-1
(q_l(z))’ = _Eﬂﬁ_ﬁiill_ if =z » 0., How let us define

a  ((Te-t)2w) - 1/28 1f 0 <t £ To
L) =

0 if £ > To
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where Tp; 1is a positive comstant to be determined. The function

e W ((0,=) x Q) satisfies
i) v, o+ BAY) 2 9" (M + B=$(£)AXG)) 2
> —10q"1) " ((To~£) 2) I+ B(q™ ((To-t) <2N)) = 0
in (0,%) % Q

i1) V(£,x) > 0 a.e. (t,x) 8 (0,%) x &R

141)  $(0,x) = ¢(0) + X(x) >(1/2Mq  (2N-To)*m a.e. x €.

Hence, in order that v be a supersolution of (3) it will

be enough to have v(0,x) > vo(x), which is true taking

(5) To 2(1/200a B0 o ) -

'an Step. Let us assume Vo § He (D) such that Avg € Lm(ﬂ) and
B eventually multivalued. We will use now an argument of ap-
progimation of B and a further pass to the limit. Let BE be
a “~mily of increasing, lipschitzian, real functions with BE(O)=0
and such that BE(I) } B(r) when & + 0 uniformly on compacts.
Due to the lipschitz condition on § one has that vy 8 D(EE)
where E. is the operator defined in Section 1 taking BE instead
of B (note that bvg € LT(R) = wo € L (@ N H(R). The
previous step says that the solution v cf the corresponding

lva Hm).

o
problem (3) venishes afrer a T5 >(1/2M)q (-T— °
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The convergence of Ve to v, solution of {3), is assured
by some technical results (Proposition 1.24 of [2] and Theorem I.17
of [12]). Finally, it is clear that de + q and =0 T% < Tg,

T given by (5).#

Remark 1. As a matter of fact, the following property has

also been obtained in the proof

Corollary 2. Let B does not satisfy hypothesis (2). Ler
S — 7

v and wvo are as in Proposition 1 and ' be an gpen set of

0 of positive measure such that vo(x) > 0 (zesp. < 0) for

a.e. x 60'. Them v(t,x) >0 (resp, < 0) for a.e. x g Q'

znd for all t > 0. "

3. The main result.

The result announced in the Introduction is the following

Theorem. ug 6 H1 ) N LYY be such that (-0) ug 8

Let
8 Lm(ﬂ). Tet u he the solution of (1). Then, the hypothesis
i

(2) is the necessary and sufficient condition for the existence

of & Tg > 0 such that u(t,x) =0, &z.e. x 8 @, for all

t > Tp.

Before giving the proof, we state, as an example, the

following

Corollary 3. The conclusion of the above Theorem remains valid

for ug € Lp(ﬂ) with p such that

max {28/N+2, N/2} < p < 4=,
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Proof of the Corollary 3. By the ilmbedding theorem, one

NZ
N+2

(-7 w8 L7 iF uwo 6 LP(@) for p > 1. ]

1

then LP@c B ' (R) and by LP-estimates

has that 1f p >

Proof of the Theorsm. 15° Step. Let wuy 6 Lm(Q). Due to

the fact that the operator A is the subdifferential of a convex
functional, l.s.c on HHI(Q), one has a smoothing efect for (1)
_in the sense in which for all ¢t > 0, u(t, <) € D(A) (see
Brez.. [6]). Also, from the maximum theorems it is known that
u(t, -) 8 Lm(ﬂ) for all t > 0. We use these facts to get the
gsufficiency. TFixed & > 0, the function wu;(x) = u(d,x) satls
fies wu; € Lm(ﬂ) and B(ui) € Hi(R). Let w{t,x) be the solu-
tion of (3) corresponding to the datum vg = (—A)f} 1. It is
clear that wvg € Hy (), AvoeLm(ﬂ) and also vq € D(C) so one
has wv(t, ) GVD(C) for all t > 0. Hence the function u(t,*)=
= —Av(t, *) verifies (1) for the initial datum wu; and vanishes
(as v does). TFinally, by unigueness, ua(t, *) = u{t+§,*) for all

t > 0, being u the solution of (1) for ug.

With respect to the necessity, we observe that if ug # 0,
then 1;(x) = u(d,x) is different from zero, for 0§ small enough
Being -0 an isomorphism, the function vy = (---A)'—l u; is not
zero and by Corollary 2 wv(t, *) # 0 for all t > 0. Finally

ult,*) = -Av{t,*) (= u{t+§,*)) dis different from zero.

2nd Step. Let ug € H_I(Q) N LI(Q) be such that

-1 =)
(-A) " uy 8L (R). We can assume up > 0, for convenience.

Proceeding by truncation, we define U s o 6N by
’
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n if  ue(x) > n
ug(x)  if 0 < uy(x) < n.

One has LI g Lm(ﬂ) and then, since pro a < ug, the neces-
L] 3

sity follows from the previous step.

On the other hand, it is clear that u, g in LY
E

and that [ (-0  u_ || < [|¢-8)"'wg || . Then, by standard
L

0
arguments, un(t, ) = ult, *) 4in LY(Q) for all t > 0. Frum
(5) we oberve that the T, 0 depend increasingly on

?

(=8~

! and the conclusion holds. 4

un,nllm ?
The above result had been obtained for 8 € C*@), &' > 0,

B" <0 and u¢ 6 Wé’m by Sabinina [15] for the case N = L and

in [16] fer N > 1. 1In this situation, (N = 1) the behavior of

u mnear the extinction time has beenconsidered by Berryman and

Holland [5]. On the other hand, if B(r) = |r{™ sign r and

up 8 Lm(Q), the techniques of [3] can be applied to abtain the

extinction if 0 < m < 1. (See also Evans [10]).

If =]RN5 N > 3, the situation is different, because

Benilan and Crandall [3] the property of extinction is obtained
for solutions in LIQRN) and B{r) = |r1m gign r when 0 <m<
< (N-2)/2. Inthis case, a result by Benilan and Aronson shows

N2 m< 1.

the non extinction for N =
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Remark 2. When studying thePRenomenon of extinction for the
non—homogeneous equation and £, in general, a maximal graph

of R?, i.e. the problem

u (£,%) - AB(u(t,x)) 3E(t,x) a.e. (t,x) 8 (0,2) x Q
(8) Blult,x)) > 0 a.e. (t,x) 6 (0,=) x 3Q

u(0,x) = ug(x) a.e. x € Q
one serves that a mnecessary condition is
(7 -AB(0) @ f(t,*) for t large enough.

Assuming B(0) = 0, this implies that there exist tg > 0
such that £(t,*) = 0 for all & > tg and then the Theorem is

still wvalid for (6), because one can argue for t > tg.

If & dis multivalued im 0, i.e. B(0) = (8, 871, condi

tion (7) is "almost sufficient', and we have the

Proposition 2. Let uwp 8 H () N L'@, (-0)7 u &L (),

fe Lioc((ﬂ,w): 7)) and u be the solution of (6). Assuming

the .here exists to > 0 and € > 0 such that

B +e< (=)t £(r,m) < B e,

a.e. (t,x) & (ty,») *Q

then there exists z finite time of extipction for u.
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Proof. Proceeding as in the Theorem, one can assume

1

ug 6 Lm(ﬂ) and then the funetion v(t,*) = (-A) = u(t,+)

satisfies

v (t,") + B(-v(t,*)) 3 (-8 E(t,0) a.e. t & (0,m), in L ()

I
Q

v(t,x) a.e. (t,x)8(0,=) x aQ

v(0,%) = (-0 ug (x) ae. x 80

and hence it sufficesto apply Corollary 1 of I. Diaz [9].#
Remark 3. It is interesting to observe how equation (1)
exhibits an "almost" curious alternative, depending on PB:
either the sclution has a finite time of extinction (hypothesis
(2)), or there exists a finite speed of propagation of signals
(which can be seen in I. Diag [8] under the hypothesis (2) for
B;z), except obviously if B and B_l do not satisfy (2),

which includes the corresponding problem of the linear heat

equation.
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