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ON THE EXISTENCE OF A FREE BOUNDARY FOR A CLASS
OF REACTION-DIFFUSION SYSTEMS*®

"%, ILDEFONSO DIAZY AnD JESUS HERNANDEZ?

Abstract. Some nonlinear stationary reaction-diffusion systems involving nonlinear terms which may be
discondnuous are considered. Such systems occur, for instance, in the study of chemieal reactions, and the
discontinuities correspond to reactions of order zero. In such concrete models, the set where the reactant
vanishes plays an important role. Here we prove the existence of selutions for 2 general class of such systems
satisfying Dirichlet or nonlinear boundary conditions. Necessary and sulficient conditions are given assuring
that the reactant component vanishics on a set of positive measure. Estimates on the location of such sef are
given.
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Introduction, Many papers have been devoted during recent years to the study of
reaction-diffusion systems which arise very often in applications such as, maihemauczﬂ
biology, chemical reactions, and combustion theory,

Here we consider a system describing a smble, irreversible, nonisothermic sta-’

tionary reaction of the form

(0.1) —Au+piFu)er™ V=0 @,
—Av—ylF{u)e? V=0 in R,
(0.2) EE“FE(::— 1}=0 ondf,

5;+§(v-1)=0 on 982,

where § is a bounded open subset of R, p? is the Thiele number, » is the Prater
temperature and y is the Arrhenius number {see [3]). Here ¢ and { (the Biot numbers)
are positive, being in some cases infinity. in which case (0.2} is interpreted as the
Dirichlet boundary conditions

(0.3) u=1, v=1 ondll

The function F{u) is assumed to be nondecrensing and 11 is also assumed to satisly
Fi=0, F(1y=1 and F(s)>0 if >0, The unknowns u and v are noancgative and
represent, respectively, the concentration and the temperature of the reactant.

Very often F takes the simple form Flu)=u?, where p=0 is the order of the
resction {see {3 Vol 1)) In the ease of a reaction of order zero F is given by #(0)=0 and
Fisy=11i s>0{thus Fis a discontinuous function).
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Existence and uniqueness results for the parabolic problem associated with (0.1),
(6.2) (or {0.1),{0.3)) have been given by some authors (cf. e.g. [2],[4},{18]). Existence
and, in some particular situations, uniqueness results for the elliptic problem can be
found in [2], {21], [15] and {19] for p=1. The case 0=<p<1 is considered in (3,p. 311]
(see alsc {20]) but existence theorems are not given, It is shown in [3] and {20} that for
p =0, if uis large enough, no strictly positive solution can exist. It is also shown that, in
some particular examples, the set 2,=(x€Q: u(x)=0} (called the dead core) is not
empty and has positive measure if 0=p<1.

The main idea used in {20] and many other papers (cf. [3]) is to reduce (0.1}, (0.2)
to a nonlinear elliptic boundary value problem for u alone. Here we follow a different
approach which allows us to obtain better results. Moreover, we are able to treat the
case of nonlinear boundary conditions, which cannot be handled by the preceding

device.

We shall consider the case of discontinuous functions £{u) in the framework of
maximal montone graphs in R? {see [8]). For the reader’s convenience, we recall that a
maximal monotone graph « in R? is always specified by a real nondecreasing Function
8 by a(r)=(—00,0(r—)] if #r—)=—co, a(r)=[0(r=),0(r+)] if —oo<b(r—)=
8(r+)<+w and a(r)=[0(r—), o) if H{r+)=+c. We define D{a)={rER:
a(r) # @} and the sections a* and &~ by

a*{r)=max{z: zE€a{r}} f reD(a),

a (r)=min{z: z€a(r)} f reD(a),

et (r}=a"(r)=+ow ifr&€D(a), r=supD(a),
a*(ry=a (r)= = il r&D(a), rsinf D(a).

Finally, we define a®(r) as the element of «f ) with minimal absolute value.
Through the paper we shall study the following general formulation including the.
system (0.1) as a particular case:
{NLS) . —Au+a(u)f(c)30 i,
—Ao—B(u)g(r)20 nf

with the boundary conditions

{DBO) u=g,, =4, ondk,
as well as the nonlinear boundary conditions
‘ _du
(NBC) Buﬁgﬁ-b(u)ZQJ, on 98,
dv
= =14
Cu o +e(v)=¢, ondQ

where € is a bounded open subset of R with smooth boundary 82, We also assume
for the rest of the paper that

{0.4) a and 4 are maximal monotone graphs such that 0 €a(0) N B{0).
(0.5) fand gare C! functions and f(s)=0, g(s)=0if s=0.

(0.6) s P2, ¥, 2nd %ECE(BQ)

(0.7) b and ¢ are C? nondecreasing real functions.
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In particelar, if a and B are single-valued (i.e. they are continuous real [uactions)
then the set inclusion of (NLS) should be replaced by equality.

In the general situation, (u,0) € HY(Q) X H*(Q) is a solution of (NLS) if there
exists a,d € £3{) such that a(x) Ealu(x)), d(x) EB(v(x)) ae. x € and .

—Autaf{u)=0, —Ac—dg{v}=0 inQ.

We shall prove the following existence result, which extends in some sense those in
{2}, {21} and [15}).

THEOREM A. Assume

(A1) D(ay=D{B)=R,

(A2) f(s)zm, =0 VsER and

(A 0=g(s}=m, VsER.

Then there exists at least one solution (i, v) of (NLS) (DBC) (resp. (NLS) (NBC)).
Moreover u, 0 € WEA(Q) for any p, 1 <p<+o0.

We also consider the existence and nonexistence of a dead core @, where =0 and
consequently the existence of the free boundary 382,."! Roughly speaking, such a dead
core for (0.1), (0.3) arises when it is impossible for diffusion to supply enough reactant
from outside £ to reach the central part of Q. (cf. [20]). This may happen if the reaction
rate F(u}e? *° remains high as the reactant concentration decreases. Thus (for
(0.1),(0.3)) the existence of 2, depends essentially oa three things; the reaction order,
the Thiele number and the size of Q.

Our main result in this direction can be stated in the following general terms.

THEOREM B. Assume that the hypotheses of Theorem A are satisfied. Then the
following properties are true:

i) If a(sy=pYs\P~'s and (u,0) is any solution of (NLS) (DBCY; then a dead core

may exist only ;f(}<p<1 2
i) Let a(s)=pis? ™ 's with 0<p<1 and let (u,t) be a salutmn of (NLS) (DBC). For
A0 let

Q={xeQ: flo(x))=A}.
Then

M {1=p¥/2
(0.8) 5293{.: &8, d(x,ﬂﬂa—(f}ﬂ—supprp;))z( e ) }
A

A
where M=|lg,lly«qg, and

K = IN{1—p)+ap |PTY
MO ME(l-p) '

(iii) Ler a{s)=p> sign 5. Then the estimare {0.8) holds if we replace M by M*=
Bz ll = qye where = satisfies Az=p m, in & and r =@, on 38, Furthermore. if § is convex,
the above resulis are sull valid for (NLSY (NBQC) in ihe sense that if 0=<p<1, then @, hus
a pesitive measure jor p large and it is possibie ro estimare 8 (sce {2.22)).

"There is a large literature about this subject in the case of a single nontinear cquation. Set, eg. the
systemaiic study of {12].
By convention ™ s =signs (=~ 1 if <0, =[~ L il s=0und =1 i s>0
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The above thecrem is specially meaningful if »1, in (A.2) is strictly positive (this is
true in the case of the combustion system (0.1)), (0.3): indeed, in this case ©=>0 on {2
and then we have 2, =8 for any A €(0, m,]. So the estimate (0.8) reads

- T

M\ TN
(0.9) 2,0 {xEQ: d(x,30)= ( ) : AT,

myp

From the definition of K, , in Theorem B we deduce that K, ,\0 when )\\,O of ;L\.O
and that K, , #+ce il A+ or g7 +co. Therelore for a fixed bounded 1 the

existence of a dead core £ may only be guaranteed (by estimate (0.9)) if x}_\ o i
M \G2 R
8(R)=| = N
h'"l #

where 8(£) is the radius of the largest ball contained in §, assuming 0=p<1. Then a
critical value g, of 1 can be found such that £, has positive measure if p>p . In fact,
direct computations show (when ¥ =1) that function « is strictly positive in £ if p<<gr,
{for p,=0) and u vanishes only at one point if p=4p . (see¢ the proof of Lemma 2.1 and
also {20]). Estimate (0.8) of Theorem B can be also written independently of the
function v for other systems in which it is wot difficult to estimate the set @, (for
instance 2, =1 if in (NLS) we assume f(s)=s and g,>6>0 for § large (or A small)
enough).

Through the paper we also remark on other more general formulations of (NLS).
The parabolic problem associated with (INLS) will be studied in a forthcoming paper by
the authors. The case of & unbounded will be also treated elsewhere.

1. Existence results, Consider {irst the problem

(DP) —Autalu)f(v)D0 ing,
—Av—fB(u)g(ev)=0 In8,
U=Q, =9, on 082,

where £ is a bounded open subset of R with smooth boundary 3Q and a,8.f,2.9,, ¢,
satisly {0.4), (0.5} and (0.6). Set X=(H{(ON%

DeFINITION 1. We shall say that {(u,0)EX is a solution of (DP) il there exist
functions a, A& L2() such that a(x) Ea{u(x)), b(x) € f(v(x)) 2.c. in { and

—Au(x)+a{x)-f(v(x))=0 ae x€8,
—Av(x)—b(x)g(e{x))=0 ae.x€Q,
and the boundary conditions (DBC) are sausfied.

DerNiTioN 2. The pair [{ug, t), (4%, e EXX X is a sub-supersolurion of (DP) il
up=u® vy=<v®ae onQand

(1.n —~Augtea (uy)f{v)=0=s—Au®+at (u®)f( ‘)VUE[U“,UO}
(12)  —A0,—Bu)g(ry) S0= —Av®—B%u)g(e®) Vue [ug,u],
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{1.3) ug=qg,=u® ondfl,
{1.4) vyse,=t® ondf,

where [ K, (1= (A€ LA(K(x)=h(x)</x)ae on } if K,/ LYR).
Qur main existence result for (DP) is the following
THEOREM 1.1, Suppose that [(tg,04), (4, 0®)] is a sub-supersolution satisfying

{H,) up, 05, u°, oP€L=(0)
and that

(H;) Dla)=D(B)=R.

Then there exists at least one solution (u,v) of (DP) such that uGSuSuﬂ, [t e]. of, In
addition u,0 € W3r{Q) for any p, 1 <p<-tea.

Remark 1.1. This theorem generalizes results of [2], [15], {16] and [20].

To prove Theorem 1.1 we define E=[LX2)}* and K=[ug,u°]X [0y, 6%} It is clear
that X is a coavex, closed and bounded subset of E. Now we define a nonlinear
operator T K- E in the following way: for (#,0)EK, T(&,0)={w, z) is the unique
solution of the uncoupled system

(1.5) —dAwta{w)f(?)tw3@F in@,
(1.6) w=g, on 982,
(1.7)  —Az+M-z=8%ig(0)+M-T ind,

(1.8} w=gq, on 8.

Here A{>0 is such that the right-hand side of {1.7)is increasing in § (we can choose
such a A because g is C' and (H,) bas been assumed). Indeed by (H,) we can apply
the results of [10] to obtain the existence of a unique solution w of (1.5), (1.6}
Moreover, by (H,), (H,) and the LP-regularity results (see e.g. [14]) we W32(R) for
any p.t Sp<+ oo, A similar argument works for z.

The proof of Theorem 1.1 will follow from Schauder’s fixed point theorem applied
to the operator T. It is sufficient to check that Tis compuct, and that it seads K iato
tsell.

Lesma L T is compact.

Proof. As K is bounded it is easy to show that

wllrm=C

with C independent of (7, C)E K. Thus it is sufficient to recall the compactness of the
imbedding H'{82)=> L} {R) 1o see that T sends bounded subsets inta relatively compact
ones (the same for 1) To prove that T is continuous, suppose that (i, ¢, ) —~(w. 0} In £.
Then

—A{w=1, ) +a(w) (o) —alw,)f{v,) Fw—w,Su—u, inf,
w—w, =0 on 31
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Multiplying by w—w, and integrating by parts we obtain (for the case a single-vatued
for simplicity)

[17 Ol [ ()=o) (o)]Cw = ) o=l
=[] ¥ {w=w)[ + [ [e(w)f(o) =a(m (o) (w =)
+ [aln)(0) =7 (e )w=m) + [ o=’

=jﬂ<u—~u,.>(w~wn)

=[ 19 0v=) + [ alm)U(0)= (o)} =m),

and by the Cauchy-Schwarz inequality it follows that
I = wallra =lalm Mm@l (o) = (0 sl =il
+le,~ @, lerar

Now it is easy to conclude that w,—»w in H'(R). A similar argument can be used
for z. g

LEMMA 1.2. T(K)CK.

Proof. We [irst prove ug<w, ie. (ug—w)* =0, with &* =max(h,0). For v=1,
(1.1) yields

02 —Aug—w)+a{ug ) (T} —al{w)/(T)Fu,—w.

(We again suppose a single-valued for simplicity in the notation.) Multiply this inequal-
ity by (ug—w)™, integrate over £ and use Green's formula to obtain

0= [~ 2y~ )y =w) "+ [ (a(ue) ~alu)A(B) =)
+ [ (o= w)ug=)"
zfnl‘?(ur*vflz

by the monotonicity of a. This gives (1y—w)* =0. A similar argument shows that
0
w=u-.

For the second component v we have, with u=& in (1.2),

0= —A(ry—2) +B%(7)g(5) = B(7)g(0°) + M{vy—2).
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Multiplying by {vp—2z}” and integrating yiclds
02 = [A(vg=2)(vg=2)"+ [ [8°(@)g(w0) + Moy = B(7)g(2) = Me](05=2)"

2j;}]v(uomz)+]2

{by the choice of f the second integral is positive).

Then T has at least one fixed point (u,0) in X which is a solution of (DP). -

Moreover 1, 0 € L2(1) and this implies that u,0 € W2#(Q) for any p, 1 <p< 0.

Remark 12. It follows easily from Morrey’s theorem (W2P(Q)= C(Q) if p>N
with r=1~N/p) that u,0 € C**({Q) for any 0-<8< L. On the other hand, if we suppose
for instance that a and 8 are C' then u, v € C*%Q) for every 0 <6<1. Indeed, in this
case a{u}f(v), Blu)g(v)E C*R) and we can apply Schauder theory (f14]).

The main conclusion of Theorem A (for the Dirichlet problem) follows from the
next lemma.

Lemma L3, Suppese (H,), (H;) and

(H;) 0=m=f(s)VsER,
Then if ug, vg, u°, 0°€ HY(Q) satisfy
(1.9) ~Augt+mue (4)s0<s—Au+me*(u®) in G,
(1.10)  u'=q,=<u®ondq,
(1.11) "590“]36("’ﬁ‘P[”L‘"(au)}S(Uu) SIEE _Bo(ii%"::w(am)g(“o) in{},
(1.12)  vy<g,=o% ondf
the couple [{ 1y, vy}, {u®,0%)] is a sub-supersalution for {DP).
Proof. Let ug=u®<u®, vy<0*=<1° By the maximum principle we have
— o =pay=up=0=u’={lp ] 1=(0a)-
Then, by (1.9)
—Aug+a~ (1) f(v*) = —Augt+ma” (uy) <0,
A +at (u®)f(0*)= = Au+ mat (1) =20,
and also by (1.11)
—Avy—B(u*)g{vy)= ”‘A”u'ﬁo( - H‘P;”L(am)é’{ 03} =0,
—ay° *ﬁo(”*)g( %)= "‘100”30(“%[!1.“(33))8( v®) 20,
Moreover, o simple argument gives 0, <0=<¢°%, O
Now the problem is to find iy, 4%, vy, v° EL=(Q) satislying (1.9)-(1.12). The fact

that such uy,, u® exist follows from the results of {10] applied 10 a. It is easy to check
that vy and ¢ ran be taken as the (unique) solutions of the problems

~Aw=agm, infl,
W=y on 38
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and

—Aw=a*m, inf},
W=, on 88

respectively, being a= %lp,/l.) and a* =B —|lg,|l. ). This proves Theorem A.
Remark 1.3. It is clear that assumption (A.3} of Theorem A is ogly used to {ind g,
and v If for example, g is such that the nonlinear problem

"AW:.BU(H‘PlﬂL‘(am)S(W) infl,
W='Pz . : ) on 39

has a solution, then we can remove (A.3). There is a very extensive literature for this
kind of problem with different assumptions on g, but we do not want to consider this
point here (cf. e.g. [1] and the survey {17]).

Remark 1.4, 1f a is assumed 1o be single-valued and C' the hypothesis f(s)=n1,=0
is not necessary (cf. [15]). On the other hand, if « and B are single-valued and a, 8, f and
¢ are C' with sufficicntly “small” Lipschitz constants, then it can be shown (cf. [2],[15})
that the solution is unique.

It is very easy now to apply the preceding results to the particular example (0.1),
(0.3) considered at the beginning of this paper. It is sufficient to take f{p)=g(v)=
¥V a(u)=puf, Blu)=rp*u?, p>0 and @, =gp,=1. A sub-supersolution is given
by uy=0, u=1, v,=0 and o° the unique solution of

P

—AvY=pp?e’ inQ, o'=1 ondQ.

The case of nonlinear boundary conditions can be handled in a very similar way.
We only point out some differences. First, the deﬁmhon of sub-supersolution is the
same except that the boundary conditions

Buy<y,=Bu’, Cuysy¢,=Co®

should be satisfied instead of (1.10), (1.12).

The main existence result is

THEOREM 1.2. Suppose that {(1g, vy), (u°,v®)] is @ sub-supersolution satisfving (H,),
(H,). Then there exists at least one solution (u,v) of

—Auta(u)f(v}30 nQ,
—Av—p{u)g(e)30 9,
Bu=y,, Co=y{, on 982,
such that uy=<u=u®, vy=<v=0". Moreover, u,0 € W*?(2) for any p, 1=<p<-+co.
Proof (sketch). We just give the definition of the nonlinear operator T; the other

details are very similar to those for the Dirichlet problem. For {iZ,5) EK, define
T(u,5)=(w,z) to be the unique solution of the system

—Aw+a{w)f(£)+w2da  in .

Bw={, on 9§2,
—Az+z=Rg(F)+5  in g,
Cz=y, on 98,

The existence and uniqueness of w and z follows from [6, Thm. I1.1} (for z we can also
use the results of {10]). 0
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A result very close to Lemuma 1.3 can also be proved for the boundary counditions
(MNBC).

Remark 1.6. The operator — 4 in (NLS) can be replaced by two (possible different)
elliptic second order dilferential operators or even by nonlinear operators of the form

" au,
dx,;
with 1<g< o0, Indeed, in this case one can define a nonlinear operator T by using

again [6] (cl. also [13]). The more involved situation of b and ¢ maximal monotone
graphs can also be studied by similar methods.

2. Existence of a “dead core”. In this section we shall consider the existence of a
“dead core” for solutions u of (NLS), i.e,, we shail prove that the set 8, ={x €
u{x}y=0} has a strictly positive measure under adequate hypotleses on « and eventu-
ally on J|@,{] .=ag; ©r |8} In fact much more precise information is obtained about Q;.

Our study will be carried out by using results concerning a single nonlinear
equation but arguing in a different way than usual for the combustion example. Indeed,
if (32, v) is any solution of (NLS) (DBC) [resp. (NLS) (NBC)] then # satisfies ‘

du

ax;

N9
__A T e ——
‘?u El 3x,(

2.1) ~du+f(x)a(u)2 F(x) ing>
2.2) u=yp, ~ ond@,
{respectively,

(2.3) i bbu)y=y, onagl],

where F=0 and f{x)=f(v(x)} a.c.on Q.

The study of the subset &, corresponding to solutions of (2.1, (2.2) (or (2.1),(2.3))
has occupied the attention of many authors, but, as far as we know, all these results are
given for the simplest case f(x)= constant. We recall the two different approaches in
the literature:

a) @=R"[7] or R being an unbounded set [11];

b} « being multivalued at the origin {9}, {5}, [13], [22].

More recently, a systematic study has been made in [12] giving a unified view of both
situations, but alwavs for f{xx) constant. Qur results, in this section, follow the ideas of
[12L.

2.1. Dircllet problem. We now prove parts 1), i) and i) of Theorem B, For this
we begin with some useful lemmas.
LEMmA 2.1, Ler FEL=(R), p € CHIQ) and suppose that u € HY Q) satisfies

(z4) —Au{ )+ () signu(x) 2 F(x)  inQ,
(2.5} u=g on 9%
where JE L=, f20 on @ and p=0.* [f 0=p =<1 and §Q, denotes the set
,={rveQ: f{x)z=A}. A>0,
}Equation (2.;) also appears in-the stady of 4 stationary isothermical single reaction (see {3, Chap. 3.

#1f p=0, {2.4) should be interpreted in the sensc that there exists w& LY Q) such thal w{x) Esipn(u(x}))
ae xE0 and —Autpife=Fia Q.
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we have the estimate
(26)
2y=(x0: u{x)=0}

: = y\{i-py2
D{xeﬂk—suppf’: d(x,a(ﬂa-—supp[’)—(aﬂ—suppq:))z(K ) }
A

>

Here

- 1Al | 7
M=max{(—A;;‘f—’) Joll=co,

for p=>0 and H=|[z|le(m (withAz=p A inQ, z=¢ on 082) for p=0. K\ . i5 given by

AIN(1—p)+ap [P0

A (1—p)?

Proof. If we denote by u, (resp. u_) the solutions of (2.4), (2.5) corresponding to
the data F', ¢ (resp. F,¢7) then by well-known comparison theorems we have
u, =0 (resp. u_=<0) and also u_(x)=u(x)=<u,(x) ae. x€§. Hence it is clear that
2,2{x€Q: u_(x)=0 and u,(x)=0}. For the sake of simplicity we shall only con-
sider the case F=F*, p=g™, the other case being analogous. Let u, € H*(2) such that

@7 Ky =

(2.8) —Au, +Aptu[=F in®,,
u, =9 on 32, N4,
=l = on %2, —agl.

We claim that 0su(x)=u,{x) a.c. on &,. indeed,’ taking Fx)=—Au+Apu®, it is
clear that F(x)=F(x)+Ap u?—f(x)p"u’ and heace F<F on ,. Moreover, —Au+
Apuf=F on 9, and thus by the comparison results (cf. e.g. [12]) one has 0=u=u,.
Therefore the conclusion of the lemma will follow by constructing one of such functions
u, and the set {x€Q,: u,{x)=0) will give the estimate (2.6) for ;. We will choose
1w, x)=h{lx— x|} for some x €Q,. First, note that for A€ C}(R) and any 1 {0, 1) we
have

~8h(|x—xg)) +Aph{|x —xo])”

=—h"(Jx—xgl) — ( I.fcv:xlof )h'(lx—xof) +Ap2h(|x—x0§)p

= — K xl) ahh (=)

p_(N=1)

Ny lt‘([): - -‘ul) .

(=) Ak {|x—x4l)

*We shall only prove this inequality for p=>0. If =0, a natural adaptation of the argument lvads to the
claim.
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Now, for a fixed 7, let &, be a solution of the Cauchy problem

(2.9) (Y emngh,(r) sigali ()
k,(0)=k;(0)=0.

it is easy to check (recall that 0=<p<1) that

(2.10) ‘ hy{r)=L 20D
where
=1
(2.11) L= (_._z_gi_i'}_’_}_,;)
Ap*(1-p)
is a solution of (2.9). We have
(1 mn)?tpzhﬁ(r}‘"-— (Nr— 1)‘,‘;(r}qur2p/(l*p)[(l “Yi}?&}izi,f"l _ 2(;\"_;1) .

choosing y-such that ™ « -
F A
L+p+H{N¥—1){1—p)

{2.12} n=

leads to
—“zkh,,(ix“xui)+?\;L3hn(}x*-xg{)F?_0

for any x€8,.
Finally, consider the set =, —supp F. The considerations made above show

that the function
2/(1—p)
u(x) =Ky x—xl "
with K, , given by (2.7) satisfies
—Au, FAptel=0=F(x) infl,
=0=eq on 82N {30 —suppe).

Hence it is sufficient to have
(2.13) uyzmax{g. Julli=m} ondl—{3QN (30—suppp))
to obtain

O=u(x)<u{x) onf.

But, by the maximum principle we know that u(x)< 3 on @ and this implies that
{2.13) ts satisfied if we choose x, suci that

A

=y Umpil
{2.14) {x—xu{z(K—-—}
Ao
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for every x€aft— (02N (@32—suppe)). The conclusion now follows trivially from
(2.13) and (2.14) (we recall that u,(x;)=0). O

Statements i) and iii) of Theorem B follow immediately from the above lemma.
We remark that the constant K, , given in (2.7) is such that K, , N0 when ANO or g0
and that K, , #+e0 il A 7 +oc or p 2 -+oc. Then, if £, is bounded and not empty,
estimate (2.6) shows that the measure of £ is positive at least if

~ \{l-2)2
S{Q,~suppF)> 1}
( A PP ) (Ki\.,u) .

where 8(f, —supp F) is the radius of the largest ball contained in 2, —supp £ (assum-
ing 0<p<1). Therefore, if &, is given, {2, “exists” if g is large enough or M is
sufficiently small. In the simple case of problem (0.1), (0.3) with f(s)=s%, 0=p<l,it is
easy to [ind a critical value p, of p (now depending on p,y and {) such that {; is not
empty if p>p . When ¥ =1 direct computations show that, for p,y and { fixed, the
function u is strictly positive if u<p_ (see e.g. [3] and [20]).

We shall prove part i) of Theorem B. Indeed, we shall prove that if p=1 then for
any value of A, s and 8() there exist functions (u, v) satisfying (DP) (with a(s)=!s" ~'5)
such that u(x)>0 on Q. To do this we shall consider the worst case, ie., when
8(2)=+ oo (for instance N =1 and £2=(0, «0)) and even for a larger class of nonlinear-
ities a.

Lemna 2.2, Let u€ H*(0, co) satisfying
(2.15) - —w(x)+f(x)ef{u(x)}30, x€(0,),

u(0)=1,

where a is @ maximal monotone graph such that 0 € a(0) and the function j(5)= [jo®(r) dr
satisfies .

iods
(2.16) fo m:

(These hypotheses are satisfied when a(s)=§? “I5, p=1.) Assume that fEL=0, =) and
OSf(;c)sz a.e. x €{0, o), for some m,>0. Then u(x)>0 for any x €[ 0, o).

Proof. We shall use some ideas of [7] and [13]. By reasoning as in the proof of
Lemma 2.1 we can always suppose without loss of generality that «™'(0)=0 and that
is single-valued. By a comparison argument completely analogous to the ones in the
proof of Lemma 2.1 we show that if u € H (0, 20) satisfies

—u"(x)+mue{u(x))=0 on{0,e0), u(0)=1

then u(x)=<u{x) for any x €{0, + 00). Thus it suffices to prove that u(x)>0 for any
x &(0, oc). Suppose that 4 has compact support and we shall obtain a contradiction.
The maximum prmuplc implies 0<u(x)=<1 and hence y”"€L%(0, o). Thus ue&
CN[0, o)) with " =0. Let R=sup{x: u(x)=0) (R>0 and Tinite by assumption). “As
' (R)=0 i1 is not difficult to see that ¢'(x)<0 and u(x)>0 on (0,R) (it is a consc-
quence of u” =0). But (2.16) yields

j‘y(R) ds __fR :_( )
o i(s) o yi{u(r))

dr=+eo
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and we will get a contradiction by estimaling g’(r)/vﬂg\rﬁ on (0, R). Defining
w(x)=(u'(x))* we have

(j(u)) =olu)u'=

But w{R)=0and j(u( R))=0. By imcgmting we get j(W)=w/2m,, and, finally,

f {_uu(TrLdr \/ZTZLRds<+oo,

a contradiction. 8
Remark 2.1. By arguing in a similar way as in [11} we can prove that if € is an
unbounded subset. of R”, the maximal monotore graph « satisfies

(2.17) fol j‘:‘;) <+eo (j(s)=£a0(r)dr),

and u satisfies

—Adu+f(x)e(u)3F in® (f=A),
u=q on aﬂ,

where F and @ are assumed with compact support, then u has compact support. We
point out that the improper integral (2.17) converges when a(s)=|sf signs if and only if
0=p<1 and hence the compactness of the support of u is an obvious consequence of
Lemma 2.1.

Remark 22. Lemma 2.1 {and then Theorem B) can also be obtained when the
operator —A in (NLS) is replaced by other elliptic second order differential operators
as in Remark 1.6. The new definition of the functions u,(x)=h(}x—x,|) in the proof of
Lemma 2.1 can be found by the methods of [12]

2.2. Nonlinear boundary conditions. Statement iv) of Theorem B will follow as in
the preceding section by considering the nonlinear equation
(2.18) —L\u+,u.2f(x)lulpsignu9F inf,
d
Bu:—a—z+b(u)=\p on 9%,

where fEL’“(SZ). F=0. 0sp<l, & is C' nondecreasing with b(0)=0, F&L=(R) and
v ECHIR)

First. we remark that “interior estimates” for {; can be obtained as in Lernma 2.1.
More precisely, we have

- )72
(2.19) QUD{.\:EQ‘\—suppF: d(.t,a(ﬂ,‘—suppl-"))z{:, ) }
Ap

where now M"—{]u”,x(m To show this it is sufficient to choose x, in such a way that
=M on an being =2, —supp F in the proof of Lemma 2.1, It is clear that (2.19)

50ne obtains estimates for M® by means of comparison theorems (sce ¢.g. Lemma 3 in [12)).
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does not give any informalion about the behavier of £, near the boundary of 2, —
supp F.

To improve the estimate (2.19), we introduce the following notation: given a
smooth curve T in R” and x, ER ™, we define

(2.20) 0(xg,T) =inf{cos(n(x),x—x): x€l},
where A(x}Y=(n(x), - -,ny(x)) is the unitary outward normal vector to I at x and

(m x—x,) denotes the angle between the vectors i1{x) and x—xg xg. It is clear that the
value of O(xy, ") depends essentially on the “geometry” of I'. If for instance I' =34
and @ is a convex bounded set of R¥ it is easy to sce that O(xg, 1) >0 when x, €Q.

LEMMA 2.3. Assume that u € HHQ)N L=(Q) satisfies (2.18). For x>0, let Uy ={x €
Q: flx)=A). Moreover, suppese 0=p<1 and

(2.21) O(x4,3(Q, ~supp F)NAQ) =0 ¥x, EQy —supp F.
Define ’

[=28(R,—supp F)NaQNsuppy.
Then

and

0. 0{xefl,— F:d(x,T)=
(222) 0 {x A—supp F: d(x,T) 2Ky ,0(x0.T)

(1-p )“‘-HEL‘(am ]“-—PV(HM

Are (1-p¥/2
d(x,3(Q2y~supp F)—982) = ,

)\..U

where M* =|ju]| = q,.

Proof. Arguing as in Lemma 2.1 we only consider the case F=0 and =0. Let
$2=8, —supp F. By again using comparison results (c[. e.g. [12]) it is not difficult 1o see
that if «, satisfies

(2.23) —Au, FAptuf=0 inQ,

(2.24) u = M* on 39— 0%,

(2.25) %‘;—* =gl on T=39N 02N supp,
(2.26) aa‘:j =0 ond& N (3 —supp ),

then 0=u(x)=u(x) for x€§. From the proof of Lemma 2.1 we know that the

{function
1

. 20—
u( 1) =K, x| o
satisfies

—Auy+Ap2uf=0 on{
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for any x, €$% Condition (2.24) is satisfied if

o ()2
M } vx e —30.

2.27) Ex-—xO}Z( X,

Ca

On the other hand,

duy _ i duy = 2 th+g i EE—p) NN
"aT(x}—-Igl E;:{x)"ai(x)“}(h,»( T‘_fp‘)ixm'xo% CDS(T!(}C),X""‘IO)

E:K;W,( T "2—p ) lx-—xg{u +PV“-“O(IG,BS~2 nag).
Thus (2.26) is a consequence of (2.21), and (2.25) holds if we choose xq &4} satisfying

i-‘"’xoiz( 2K, ,0(xg,T) vxel.

This completes the proof. 0O

Remark 2.3. Part iv) of Theorem B follows from Lemma 2.3 if we set F=0; {2.21)
holds easily if, for instance, f{s)}=m;>0VsER (as in the combustion system) and £ is
a convex sel.

Addendum. After the completion of this work, the authors fearned that C. Bandle,
R.P. Sperb and I. Stakgold have recently obtained, in the paper Diffusion-redaction with
mionotone kinetics, results similar to our Lemma 2.1, by using different methods. Some
results related to Remark 2.1 can be found in a paper (to appear} by M. Schatzman,
Stationary solutions and asymptatic behaviour of u quasilinear degenerate parabolic equa-
tion.
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