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Boundary Behaviour of Solutions

of the Signorini Problem.

I: The Elliptic Case.

Jesvs ITpErONsS0 DAz - RaUn FRANCISCO JIMENEZ

Suntoe. — 87 studia 4! comportamento al contorno della soluzione del pro-
blema ellittico ad ostaceli, detio anche problemea di Signorini. Si trove
una condizione sui dati necessaria e « quasi » sufficiente afftnché si abbia
un insieme di cotneidenza non vucto. Si danno inolire deile valutazioni
sulla collocazione di un {ale insieme quando esso esiste. Si fanno anche
ulteriori osservazioni sul comportamenio delle solugioni di aliri problemi
non timeari con valori al contorne. ’ ’

1. — Intreduction.

Let £ be a bounded set in R¥ with a smooth boundary 682 = I
We study the behaviour of the solution of the already classical
Sigmorini problem: '

(IP) «Given ye H¥I), g H-*, fe L¥(£2) and a>0, find 4 € HX (L)
satisfying
(1) wekKy={veH YD) :v>yp on I},

(2) fVuV(v — ) de + ozfu('v — ) clw;sz(v — ) dw —{—fg(fv —w)dl,
2 2 2 I .
for all ve Hy»,
where we have used the notation

(3) fg(” —wdl'=<g,v— U g-HI) < BT »
n

The Signorini Problem arises in several different contexts,
For instance, it models a specific phenomenon related to the linear
elasticity which allows to describe the behaviour of the elasbic
body in contact to a pertectly rigid support. Physically, it is con-
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cerned with the finding of the displacement veetor which satisfies
the law of behaviour of the materials of visco-elastic type (linear
in the sense established by such a law, i.e., defining a linear rela-
tionship between stress and deformation vectors). The first math-
ematical treatment of this problem was carryed out in Fichera [10].
After this work, many authors have used this kind of boundary
coustraints in order to model some other physical problems
(see Duvaut-Lions [9], Baiocchi-Capelo[2], Kinderlehrer-Stampac-
chia [13], Friedman [12] ete.). Our formulation here concerns the
cage of a scalar unknown u(xz).

The existence and unigueness for this problem are well know
(see the above references). In the semi-coercive case (¢ = 0) an
extra condition is needed: that is

(4) ffczm +fgd.r> 0
£ i |

for the special case y = 0 (Lions-Stampacchia [16]). The regularity
of the solution has also called the attention of many authors. In
particular, we know that under additional assumptions

(5) we HY(I), geHX{I) and felXQ)

the solution = Dbelongs to HL) and satisfies the complementary
formulation

— A - au = f in 0
Py
(SEY) _. % +geflu—y) onl

where § is the maximal monotone graph of E* given by

Blr)=0,7r>0; pr)=1[0, +-20), r=10;

(6)
Alr) = empty set, << 0

and # is the unit outward normal to I'; that is, on I" we have the
¢ unilateral type» boundary conditions

&1t U
(7) Uy, =>4 (ﬁ%*g)(u—w):()-

The main goal of this paper is to study the formation and location
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of te coincidence sct.
Iy={Ee I u(&) = p(&)} .

We point out that the topological structure of the coincidence
set was studied (for some special data and & = 2) in Lewy [14]
and Athanasopoulos {1] but the existence and location of I, was
not analyzed in those works.

The first analysis on the cxistence of the coincidence set is
due to Friedman [11] for the case w=g=0 and «==0. He proved
that if @ = 0 a.c. on an open set [y, of I' then necessarily f(£)>0
on [}, where

hles
(8) Jig) = ff £y

one

with G{®, &) the Green funection for the Dirichlet problem. The main
Gontributiou of Friedman to the existence and location of I, (i.e.
Iy with == 0) establishes that if there exists &* and &° in I' such
that f(&%) = 0 and f(&) < 0, then either i) in every neighbour-
hood I'™ of &* exists a subset I™ of positive measure such that
w{€) > 0 for all £e [™ or ii) # vanishes at &°.

A more explicit result was given in Diaz [4] for the case
g=1wp=10:1if f<— gle > 0) in a neihborhood of a region I.c.
then there exist at least a subregion I, c % (which is explicitly
estimated) such that 1} c I,.

The results of this paper, extend the approach in both works
to the general formulation (SP) and improve {in some sense whieh
is precised later) the mentioned necessary and sufficient conditions
for the exigtence of I,.

In the last section of this paper we also study the boundary
behaviour of solutions of other nonlinear boundary value problems
such as

— Ay -z = 0 in 02

9 0 :
(%) _— % g = b(n) on I’

where b(w) is a continuons nondecreasing fnnction such that
b(0) = 0. Problem (9) has many points in commun with the Si-
gnorini problem (for instance the existence of solutions for (SP)
is obtained via the approximation of (SP) by a family of problems
of the type (9)). Nevertheless, in constrast with other free found-

9
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aries problems (see c.g. Diaz [6]) the vanishing of the solution
(at the boundary) is only specific of multivalued maximal mono-
tone graphs f and not of other cages: even if & is not Lipsehitz
continuous at the origin the trace of the solution on I” may be a
strictly positive funchion.

Finally, we mention that a preliminar announcement of our
results was presented in Diaz-Jiménez [7]. The study of the pa-
rabolic problem will be the subject of a forthcoming paper (see
also Diaz-Jiménez [8]).

2. — The mecessary condition.

In that secetion we shall find a necessary condition on the daba
, g and f in order to have a positively measured coincidence set [y

For the sake of simplicity, we will use the complementary for-
mulation (§P)*. Due to that, we shall always assume the regularity
assumption (5). Nevertheless, we point out that no important
difference occurs in the treatment of the general formulation (SP).

The following resulb gives a necessary condition in order to have
|y} = 0. It is remarkable that this condition is formulated in
terms of a function collecting the different influence of the data
p, ¢ and f on the behaviour of the solution on the boundary I

THROREM 1. — Let us assume the coincidence st Iy to be smooth
and such that |Ty| > 0. consider the function § defined on I’ by

o,

(10) j=g9—%"

where u, is defined as the wnique solution of

— Aty oty =1 in £

Uy == P on 1.

(11)

Then, necessary §< 0 on ILy.
The definition of § is motivated by the following trivial lemma.

LuMMa 1. — Let w be the solution of (SP:wy,f, g) i.c. with dala
wp, { and g respectively. Let uy be the solution of (11). Then the fune-
tHon 1 = u— wu, satisfies (SP:0,0,7) with § given by (10). =
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Remar®k 1. — The function § ecan be made explicit by using
the Green function associated to {11). Indeed, if we assume
pe HHQ) (which is no restriction by assumption (5) and trace
theorems) then

“’O( ) ez 1/) r} ~Lff ) (‘,5 well )

where f* =f - Ay — ap, and G(z, ¥) is the Green funetion for the
Dirichlet problem associated to the operator — Au - au on £2
(see e.g. Stakgold [18]). In particular, if eI’ we have

, . oy o
(12) 70) = gl — 22 () ff (6) 3, )

Note that in Friedman’s notation, §=f in the special case yp =0
and g= 0. We also recall that, by the weak and sfrong maximum
principles, the functions G(w, &) and 2G/[onelw, £) are respectively
positive and negative functions.

Proor of TumorREM 1. — Hrom (2) we deduce that for every
ve Ky = {veH*2):v>0 on [} the function w == v —u 4 we
e H*L) and sabisfies

{13) —f (it — iy} Ao do 4 U,f('u, — U)W div -
i

-+ f(w — uﬂ) dl = fg”w dal'.

r i

Now, suppose I, ig positively measured and smooth. Then there
cxists 0 C2(I") be such that §=0 on Iy and 6 ==0 on I'— Ty:
Define w, € HA(L) such that — Awy 4 cwe = 0 in 2 and w, = 8
on I Talking w == w, in (13) (this is possible beeanse w, -+ u € K7F),
we deduce that
0= f gu,al’=[godr.
I

r

Binece # is taken arbitrarly out of Iy, it follows that F< 0 on I,.

In contrast with the result above, the nonnegativity of § on
a part [ of I"is not enough to ensure that 7, U I is not the empty
set. In fact, let consider the following
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COUNTERBXAMPLE. — Given R > 0, define
Q= {(m, )Ry >0, 294 < R, y— /32 <0} .
Inspired in Shamir [17], define ufz,y) = e (1), 2 =@ L4y, lLo.

2
(14) wlw, 4) = ot cos -St(j , we=pcosh; oy =gsend.

It is not difficult to check that we HX (L) and du =0 on (2
Lot '=Iul,ulrly (see figure 1).

g
Figure 1
Then

- A . s
on 1y: — = 0, ey =u0)=7t>0

., du 3
on [,: —— =i w(x, y) = 0

2 oy = 1wy

u 3.,  sgpm
on ly: —5 =3 Rteos—| <0, ulwy)>0.

iy

We conclude that, for all R > 0, the function uw = p? cos 30/2
is the solution of — Au = 0 in £, — du/on + ge f(u) on I' with
g=0 on I, thus § = 0 on I, however 4 > 0 on I;. This shows
that the condition § = 0 leads to an indetermination on the van-
ishing of % on I’ because in our example w = 0 on [}, but % > 0
on I, being =10 on I U I%.
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3. — The existence and location of the coincidence set.

The following result shows that the necessary condition is
¢ almost » gufficient for the formation of the coincidence set. In
this case we shall use an additional geometric property on £2.

THEOREM 2. — Let 2 be a conver open bounded sel of BY and et
we HHL2) U L=(Q2) be a solution of (SP). Assume fe L) and
ge HYI) and pe HYI) satisfying that there exist ¢ >0 and T.c I
such that

(15) . FE<—e on I
with § defined by (10). Then we have the estimate

(16) I,o {Ee I d(E, I'— ) > R}

with R given by

17y R="=
and M > 0 such that

(18) | pooqoy < M

Proor. — Again, by Lemma 1, is suffices to show the estimate (16)
for u solution of (SP: 0,0, ) i.e. such that

—Au Ao =10 in Q
SP:0,0,d o1 ) .
¢ 0, 9) l & 4 Fefitu)  on I,

on

where § is defined in (10). Notice that in that case I, reduces to
the set I,. Without loose of generality, we can suppose that
g=—conl:and j<— ¢ on I'— ;. Tt is enough to see that if
e 18 the solution of

— A+ e =0 in 2
(Pe) LT
ot

A gee il on 17

with ge = § on I'— I, and g. = ¢ on [, then hy the comparison
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theorems (see eg. Brozis [3]) we deduce that w<wu. on £ and in
particular 0 < u(£) < we(£) a.e. & € " and thus if u. = 0 on /% we have
the same for w.

Now, let @, € I be such that d(z,, I'— I%) = K. Tet D = 0 n
N Bla,, B) and define oD =0D NI and 0,0 =20D~ 1. TFor
(> 0, to be chosen later, we shall construct U € H3(D) such that
=0 and :

— AU+ al=0C in D

U=10 on ¢,
aly

— e on o,0r.
on o

To do that, let ¥5 be a tubular semineighbourhood of I defined
by the usual parametric representation

we=w(f, s)=E-+sn(f), &el, s£]—4,0[, 0>k,

where n(£) is the outward normal nif vector to 1" at £ and 6> 0
such that V; oD (see Figure 2)

IMigure 2
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Taking U(z) = U{ns) == p(s) and reecalling the expression of the
Laplacian operator on ¥y (see Sperb [18]), the construction of such
a U is reduced to find ¢(s) such that

@' (s) + (N — L) Hp'(s)<— ¢
P(0) =0
‘p,(O) =8y

where H is the mean curvature of I Notice that I =0 due to
the assumption of convexity on £2. We shall determine ¢ in such
o way that ¢(s)>0 for any — R<s<0.

Among the multiple choices, we shall take p(s) = — es(s/212 4+ 1)
and then ¢ = ¢/I¥, which is possible beecause H 0.

Now we introduce into D the auxiliary funection

aw(w) = U(@) + 5% ‘,‘N I‘ [t
where € is taken as mentioned ahove. We have

e A A ol == — AT 4 @l — O [f=0 in D.

E)N {'{ - (“
Moreover, on ¢, D it ig clear that %>0 and that

o

%(5

&+ 5

iwy] 008 (&), &£ —ivg) m—e

'))1 N [

because of the convexity of . On the other hand, in 2,.D

B M = u(e)

£

it B=(2MN/C). In coneclusion, by the comparison theorems, we
deduce that u<@ on D and in particunlar

il

¢
O wlw) < —

s IS —wl,  EE 0 B, B)
)

which proves the resull.
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REMARK 2. — The condition » e L=(£2), as well as, some explicit
ostimates of the constant M can be found in Brezis [3]. These
results hold from maximum prineiple (for f, ¢ and » bounded) or
by elliptic regularization properties (f e I2(Q), p > N, yp=g=0).

REMARK 3. — Theorem 2 can be generalized or improved in
soveral different ways. Tor instance, sharper estimates on the
location of I, indieating the dependence on o (x> 0) can be found
by using more «ad hoec» supersolutions (see Diaz [5]). On the
other hand, Theorem 2 remains true when the differential operator
— Aw -~ au is replaced by a general linear second order elliptic
operator

y¥oB e
L = — S e A b ey b - ela)
; iél 5 (((,,(:) S / 1)1(:)u) Foe(a)u

or some quasilinear second order elliptic operator, as, for instance
Ay = div (|Vau|r—2Vu) 1<p< oo.

The modifications in the definition of the supersolution 7, needed
to consider both generalizations follow some related results in
Diaz [6] (Theorems 1.13 and 1.9 respectively). Finally, we point
out that the proof of Theorem 2 has a local character and so it
can also be applied to the case of mixed boundary conditions of
the type

du

— 5 +gefiltu—p)  on Iy, = h on [, Fr=nnilt,.
o

4. — Boundary behaviour for other nonlinear houndary value problems.

To the light of the above vesults, a natural question arises:
for which maximal monotone graphs f the coincidence set Iy
(defined through the solution w of (SP)*) is not empty for suitable
data f, g and 9?2 It tourns out that among the different peculiarities
of the gpecial graph f associated to the Signorini problem (see (6)),
the tact that D(B) = [0, oo) is the crucial one in order to allow the
apparition of the coincidence set. To explain that we shall congider
the ease in whieh D(8) = R. More precisely, consider the problem

’ —Au o =0 in 2,

on

19 0"
(14) \ L ¢ = blu) on I
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where a0 and b is a nondecreasing continuous tfunction with
b(0) = 0. Assume that g(x)<0 on I By the comparison vesults
u<0 in £ and from the strong maximun principle » < 0 in £,
8o if u(a,) = 0 for some », € 1" then (du/on)lx) > 0 whieh contra-
dicts the assumption g« 0. Then if ¢ does not changes of sign the
trace wlp cannot vanish.

When ¢ is changing of sign Theorem 2 can be useful in order
to estimate the parts of I" where ¢ is positive or negative. Indeed,
by the comparison vesults (Brezis [3]) we know that if « is the
solution of (19) then #<v on {2, where » satisfies

— Ao o =0 in 02

(20) v 4 .
—x5 + g e filv) on [/

with f given by

plr) = {b(r)}if > 0 and B{r) = the empty set if r << 0.

In partienlar we have that
O<{ulp)T<v on I

Now, Theorem 2 can be easily generalized to the solution of (20)
and, in conclusion, the estimates on the location of the coincidence
set {we [ o(w) = 0} gives automatically estimates on the region
of I" where u<0.

ReEMArK 4. — Introducing the pseundo-differential operator
A HYIM) — H-3TI") given by Aw == dvf/on, where v is the solution
of —Av+av =0 in Q and v = w on 20 problem {(19) way be
equivalently formulated in terms of

Aw + bw) = ¢,

where now w represents the trace on I' of the solufion of (19)
(Lions [15]). The above considerations show that & free boundary
(the houndary of the coincidence set) iz formed when b = § is the
multivalued graph given by (6) (the Signorini problem). Never-
theless, in contrast with many cases in which 4 is a local operator
(e.g. 4 =— A plus boundary conditions) the free boundary is
not formed for others choices of b, even if b is not Lipschitz con-
tinuous at the origin.
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