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Synopsis

We study the initial growth of the interfaces of non-negative local solutions of the equation
w, = (™), — Au when nt 21 and 0< g < 1. We show that if u(x, 0) 2 C(~x)¥™ ™" with C > C,, for
some explicit Cy = Cy(A, m, g), then the free boundary £{r) =sup {x: u(x, t) >0} is a “heating front”.
More precisely £(f)Zar™ 7"2'~7) for any ¢ small enough and for some > 0. If on the contrary,
w(x, 0) = C(—x) ¥ with €< C,. then Z(1) is a “cocling front™ and in fact {(f) = —art" P70~ D
for any ¢ small enough and for some « > 0. Applications to solutions of the associated Cauchy and
Dirichlel problems arve also given.

1. Imtroduction

This paper deals with non-negative solutions of the scalar reaction-diffusion
equation
=W —Au? in Q@=(-L,LYX(O,T) (1.1)

under the assumptions m =1, 0<q <1. Here, A represents a positive number
and 0< T =+, 0<L=+w, Equation (1.1} arises in many physical situations
such as thermal diffusion with absorption, chemical reactions, population dynam-
ics etc. (see, for instance [12]). Due to the non-Lipschitz character of the
absorption term AuY, some interfaces may occur separating the definition set of u
(a subset of Rx [0, %)) in two different regions: a region where u vanishes and
another where u is strictly positive. In this paper we are interested in the study of
the initial development of such interfaces as they emerge from the boundary
points of the support of u(x, 0). Due to the invariance of the equation through the
transformation x — —x, it is enough to consider the case in which the support of
u(x, 0) is contained in (—<, 0], i.e. we shall assume

sup {x: u(x, 0) >0} = 0. (1.2)

If, to fix ideas, we assume u(x, 0) to be a bounded function, it is possible to show
(by using comparison techniques: [25,13,14], or by energy methods: [31,8,5])
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the existence of a free boundary
L()y=sup{x e (~L, L) u(x, r}>0}

Le. |£()} < 4o for any ¢ < [0, T*), for some T# e (0, T).

We remark that 1 is merely assumed to be a local non-negative solution of
equation (1.1), L.e. such that u e C((—L, L) * [0, T]) and u satisfies (1.1) in the
sense of distributions. So, in particular, the results of this paper apply for
solutions of the Cauchy problem (L = +=) or any boundary value problem
(L <t +o0) associated with equation (1.1).

In many applications it is important to know whether, for given initial data, the
support of the solution u(., 1), expands or contracts with time (/(r) is a heating or
cooling front). Qur main result shows that the initial behaviour of {(r) depends on
the “‘concentration” of the mass of u(x, 0) near x = 0. We shall compare, locally,
w(x, 0) with the auxiliary function ..(x) given by

1 {x) = Co(—x)7"" ", xe(—ow, +),

where (5), = max (s, 0)
C 3 |: /\("ﬂ — q)l :][/(m—q)

= 1.3
¢ 2mim + q) (1.3)

It is easy lo see that u. is the non-negative stationary solution of (1.1) in
{—ca, +o) vanishing on [0, +0).
The precise statement of our main result is the following:

Tueorem 1.1. Ler u be any local non-negative solution of (1.1) satisfying (1.2).
(i) Assume that there exist xoe{(—L, 0) and C < C, such that

u(x, Y= C(—x)X 9 for xelxg, 0]
Then
L= —at D forany e, b,

for some a >0 and t,e(0, T.
(i1) Assume that there exist xoe(— L, 0) and C > Cq such that

u(x, )= C(—x)Y"" " for xelx,, 0]
Then

Lz a9 for any  1e(0, 1],
for some a>0 and t,&(0, T).

To prove the above theorem, we shall use the following programme. First we
shall obtain the conclusions for the solution u of the Cauchy problem

{u, = ("), — Au?, in (—oo, +2) X (0, +=), (L.4)
u(x, 0) = ug(x), for xe(—o, +x), ’
when i is given by

o(x) = C(—x)3" 7. (1.5)

To do that, we shall prove that under those conditions the solution has a

self-similar structure
u(x, t) _ I”“"’)f(xtf("’“")’2“_“)) (16)
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for some real function f The first step ends by comparing the solution with a
family of travelling waves in a similar way to the technique introduced in [4]. The
second step makes the above conclusions local by using the comparison principle
again.

The organisation of the paper is as follows: In Section 2 we prove the main
conclusions for the self-similar solution (1.6). Section 3 contains some existence,
uniqueness and regularity results for solutions of the Cauchy problem (1.4)
corresponding to general unbounded initial data u, satistying

0=uy(x)=h,(x}) for xe(—w, +x), (1.7)
where
Ra(x) =(K+x])*, 02a<2/(m~-1), K=>0, (1.8)
if m>1 and, for all & >0,
h(x}= Ke™ for xe(—ow, +=) (1.9)

The complete proof of Theorem 1.1 is then given in Section 4.

A previous version of the results of this paper was presented in the Ph.D
dissertation of the first author at the University Complutense of Madrid in
September 1988. While preparing the present article, the authors became aware
of the paper [18] in which Grundy and Peletier obtain, by asymptotic methods,
some related estimates on the interface £(r) of the solution of the Cauchy
problem associated with (1.1) when m = 1. We point out the difference between
the methods of proof used in both works, and the generality of our assumptions
and conclusions.

2. The interface for self-sitnilar solutions

This section is devoted to the study of qualitative properties of solutions of the
Cauchy problem associated with (1.1) with the special initial data

ty(x) = C(—x)¥""~9  for some C=>0. (2.1)

In the next section we shall show the existence and uniqueness of such a
solution as a consequence of more general resulls related to initial data satisfying
the growth condition (1.7). We remark that such a condition is trivially satisfied
when ug is given by (1.9) (since 0 <g < 1) and that, of course, the proofs of the
basic theory (existence, uniqueness etc.) are completely independent of the
results in this section.

We start by showing that the solutions are self-similar.

ProrosiTion 2.1, Let u be the solution of the Cauchy problem (1.1)
corresponding to t, given by (2.1). Then there exists a function f:R— [0, %) such
that:

IL(X, [) —_ [l/([—q)f(xt—(m—([)/2(I71/)). (22)
Moreover supp (f) = (—%, a] with a < +=, ie.
f(n)=0 forany 7n=a. (2.3)

Proof. Given k >0, we define the function

v(x, £, k) = ku(k—na2x, jaly)
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where i is the solution of the Cauchy problem (1.4). Since
v, — (0", + A = k(i — (1) F Aud)

and v(x, 0; k) = uy(x) (due to (2.1)), we conclude (by the uniqueness of the
solution of the Cauchy problem) that v(x, £ k) =u(x, ¢), for any k>0. Now,
given fy € (0, T, we choose k = /""" and so we deduce that

w(x, to) = /O Py ety 0D 1) for any e (0, T] and x eR.

Finally, given n € R, we define f(n) = u(n, 1). Making ¢ = #,, we obtain (2.2) (¢,
is arbitrary). In order to prove (2.3) we first consider the case m > 1. Letl & be the
solution of the equation without absorption:

Er - (Em).v.r =0

and with the same initial data w,. Then, since AuY=0, we conclude that
O0=ulx, )=a(x, ¢) for any (x, 1) e R X [0, T]. By the result of [33] we know that
for any ¢ =0 we have that sup {x: i(x, 1) >0} < + and hence sup {x: u(x, 1) >0}
is also finite. Choosing ¢ =1, we obtain (2.3). If m =1, the existence of the free
boundary

() =sup {x:ulx, ) >0} (2.4)
has already been shown in [23] for initial data satisfying (1.7). I

Now we shall prove the conclusions of Theorem 1.1 when L= +w and
u(x, 0) = up{x), with u, given by (2.1}. We remark that from Proposition 2.1 we
deduce that if £(¢) is given by (2.4) then £(¢) = at'* "2 ~9 and so the behaviour
of £(¢) is determined by the sign of a.

TreorReM 2.2. Let uy and f be given by (2.1) and (2.2), respectively. Let a € R
defined by a = sup{n: f(n)>0}. Then we have:
(i} C=Cy implies a =10,
(iiy C<C, implies a <0
(ili) C > Cy implies a > 0.
Proof. If C=C,, we deduce from the uniqueness of solutions of the Cauchy
problem (1.4) that u(x, £} = u..{x) and so (i) follows. To complete the proof, we
shall adapt the arguments of [4] which consist in comparing u(x, t) with different

families of travelling wave solutions. The structure of such special solutions is
different according to the values of g and m:

Region 1. (m + ¢ =2). In that special case it is not difficult to see that the
function f can be made explicit and so

M L/{m—1)
u{x, t)=C[((—~1—C’”“‘—A(m~1)C1“’")r—x) ] )
m-—1 "

The assertions (ii) and (iii) follow easily in this way.

Region 2: (m +q>2). Given k = R and 5 € R, the existence of travelling wave
solutions to equation (1.1) of the form

W, £k, 1) = del(kt —x + 1)) (2.5)
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was obtained by Herrero and Vazquez in [22], where they also showed that for
any k € R, ¢ is a suitable continuous non-negative function such that ¢,(0) =0
and

lim ¢, (§)E7" 0 =C, (C, given by (1.3)). (2.6)
gont

Now let C < C,. By (2.6) there exists M > 0 such that
(&) > C'fz’(”’*”) for &> M. (2.7)

Let =M. Then w{x, f;k, M) is a solution of (1.4) with initial datum
¢ ((—x + M)). Besides, from (2.7), we deduce that

d((—x + MY )EC(-x)J" " forany xeR
Then by the comparison result of Section 3 we have that
wix, rk, MY=u(x,t) forany xeR, =0

Finally, choosing k <0, we see that w(x, t;k, M) is a cooling wave and so we
deduce (ii). If € > C,, we choose &k > 0. By (2.6) we have that

$i(£) <CECD for E>M,

for some M>0 Let N=max{¢ (&r0=¢=M and 7= —max{M,
(N]CYm=92), Hence w(x,t;k, ) is a solution to (1.4) with initial datum
¢ ((—x + m)). Moreover

G ((—x + )= C(=x)F 9 forany x el

Then by the comparison result w(x, t; k, 1) = u(x, t) for any x e R, +=0. Since
k >0, we have that w(x, r; k, n)} is a heating wave and (iii) follows.

Region 3: (m + ¢ <2). Again by the result of [22] there exists a family of
travelling wave solutions to equation (1.1) of the form

w(x, £ k) = di((kt — x)), (2.8)

for arbitrary k € R. Moreover, ¢, is a continuous non-negative function satisfying
¢ (0)=0 and

lim ¢ (£)E720"0) = C, (C, given by (1.3)). (2.9)
L}

Now let C < C, and take k <{. From (2.9) there ecxists M >0 such that
du(£) > CEXm=0 for 0 < £< M.
On the other hand, by the continuity of ¢, and u, there exists 7> 0 such that
w(—M, i ky=u(—M,t) forany ¢el0, 1)
Then we can compare w(x, 3 k) and u(x, ¢) in the region [-M, M] X [0, 7] and so
wix, k)=u(x,t) in [-M, M] X0, 7].

Thus, since k < 0, conclusion (ii) follows. Finally, if C > C,, we choose k>0 and
by a similar argument we obtain (iii). L[l
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Remark 2.3. Regularity of the interface of self-similar solutions. The initial
growth of the interface ((f)=ar"* 972U ~% associated with the self-similar
solutions is quite different according to the values of m and g. Thus in Region 1
(m+g=2), we have (m—¢q}/2{1~¢g)=1 and then {(t)=at. In Region 2
m+qg=>2), (In—g)/2(1—¢)>1 and thus {(¢t) is a Lipschitz function for
t € [0, M). Finally, in Region 3 (m +g <2), (m — q)/2(1 — q) <1 and thus £(¢) is
not Lipschitz at t =0.

Remark 2.4. The technique of comparing the solution with a family of
travelling waves was introduced in [4] (see also [3]) for the study of the equation
u, = (™), + (u*),. When the exponent A is in (0, 1), there is a stationary solution
u(x) of this equation and the initial behaviour of the front depends on how
concentrated is the mass of the initial datum uy(x) with respect to that of u..(x).

3. Existence, uniqueness and regularity of the solutions of the Cauchy problem

In this section, we are going to show some existence, uniqueness and regularity
results of non-negative solutions of the Cauchy problem (1.4) corresponding to
unbounded initial data u, satisfying the growth assumption (1.7).

3.1. Existence

We define a generalised solution of (1.4) as a continuous non-negative function
u(x, t) in R x [0, ) such that w(x, 0) = uy(x) and, for all 0=+, <, and x, < xy,
we have:

I{u, p, P)= J J (WP +ud, — Au'd) dx dt — J' ud dx}

X0 {
1) Xz
VJ ", dr} =0,
I{

[ B0

where o (x,t) e C%} is any arbitrary function satisfying ¢(x,t)=0 in
Vo, B X kot U ey, 1] % {x 1} and P = [ty, t1] % [xg, x\]. Given m >1, we introduce
the functional space E,, defined by:

2
E, = {u e C(Rx[0,o)):¥T>03K>0and a e (0, —1): O0=ufx, 1)
m —

S(K+)*VreR 0<t< T}.

Ifm =1, we define
E ={ue CIRX[0, ) VT, JK >0 and
a>00=u(x, t)éKe‘”:Vx e R 0<tr<T}
We have

Prorosimion 3.1, Let m= 1. If uy(x) satisfies (1.7), then there exists a generalised
solution u(x, t) of 1.1y and u e E,,,.

In order to prove the above result, we start by showing some preliminary
results, using some techniques introduced in [27] and [28].
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Lemma 3.2. Let m=1 and T >0. If ug(x) satisfies (1.7), then there exists a
function @t € E,, such that it(x, 0) > ue(x) + 1 and
7= ("), — AT+ A in RX(0, T)
Proof. (i) Case m>1. Let T>0, a <2/(m —1) and u(x, t) = e'(K + [x])*. We
have:
i, = (") + AT Z e [(K + x|} — e Dam(em — 1)K + x]|)*" 7).

Since a > am — 2, the right-hand side of the above inequality tends to infinity as
K->+, and the lemma follows by choosing K large enough.

(ii) Case m=1. Let a(x, )= "2 (uo(s) + DG(x —s,6)ds + A[( [12 G(x —s,
t — 1) ds dt, where G{x, r) is the heat kernel defined by

—xNdt
Vdmt

It is well known that ii(x, ¢) is the solution of the linear equation &, = i, + A in @
for the initial datum it(x, 0) = u,(x) + 1. Moreover, since uq(x) verifies (1.7), we
deduce that i e E,. O

Glx, 1) =

in 0=RXR"

Levima 3.3 [28]. Let m=1 and ug(x) satisfying (1.7). Let T>0 and
Q,=(—n,n)x(0,T). Then the Cauchy problem v, g)=v,— V"), +Av? —
Ae? =0 in Q, with the auxiliury conditions

vi{x, Y =vy(xi g, 1), for xe(—n, n),}
v(itn, =ua(xn,t), for te(0, T),
has a unique classical solution such that
O<e=v(x,Hy=ulx,t) inQ,, (3.1)

where vy(x; €, n) is a sequence of regular functions satisfying
() e<uolx;e,n)y=ilx,t) forallx el
(i) vo(*n; e, 1) = it(Ln, 0);
(iil) volx; g, n) decreases as n— + and converges to Ug(x) -+ & as n— +o,

Proof. This is analogous to the one given in [28]. Inequality (3.1) helds by
comparing v(x, £) with the subsolution v = ¢ and the supersolution it(x, t) defined
in Lemma 3.2. [

Let £ =1/n and u,,(x, ) be the function obtained in L.emma 3.3. The next result
shows that i, decreases with respect to n.

Lemma 3.4, Let p, neN with p > n; then
uw{x, y=u,{x, t) in Q,=(—nn)X{0T)

Proof. By Lemma 3.3(iii) we obtain u,(x,0)=u,(x,0). Moreover,
w,(£n, ty=it(+n, t) =u,(+n, t) and in Q, we have:

Ly, n =1 =L, p N+ A" = Ap~7>0.

Then the conclusion feliows by comparison. O
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Proof of Proposition 3.1. Since u,(x, t) is a decreasing sequence and u, 20, we
deduce that, for any (x, #) (-, +) X [0, T], u,(x, t} converges to a function
u(x, t) as n— 4w, Moreover, by Lemma 3.3, u(x, ¢} satisfies u(x, ) = ii(x, ¢) and
we have

Xy
Ku,, ¢, P)= —/\if"f j d(x, 1) dx dt.
Xo Yy
Therefore the conclusion follows by application of the Lebesgue convergence
theorem to the sequence u,(x, £}, O
We postpone for a while the proof of the continuity of the function u obtained

above.

3.2. Comparison and uniqueness
We begin by proving a comparison principle.

Prorosimion 3.5, Let  uy, vye C(R)  satisfying  (L7) and such  that
02wy =Svy(x)VxeR Let u,vekE, be solutions of the Cauchy problem (1.4)
with initial data 1wy and vy, respectively. Then we have

ulx, N=v(x, 1) in Q=RxR*"

Proof. We can suppose that one of the functions u(x, t), v(x, t) is the solution
obtained in the proof of Proposition 2.1. We shall prove the following inequality

fw [u(x, r,) —vix, t)wlx) dx =0 (3.2)

for all >0 and for any weC™, w(x)>0, w with compact support in R.
Proposition 3.5 follows in an obvious way from (3.2). Assume that u{x, ¢) is the
solution obtained in Proposition 3.1 (the same argument remains true if v(x, ¢} is
such a function). Let +, (0, 7] and w(x) such that w(x)=0 if x ¢ (—r, r). Let
n>rand P=(—r,r) X (0, T). Assume that 1 > 1 and define the functions

1
An(X, t) :J‘ ‘m(g”" + (1 _ Q)U)m-l 46
4]

and
!

Cux, )= J‘ Ag(Bu, + (1 — 0))~' db.
0
Let A, (x, 1) and C,(x, ¢) be two sequences of regular positive functions such
that:
{A,;r} 18 decreasing and converges uniformly to 4,, as k — +c and
A, )= (K + |27 in Q,, = (—n, n) x (0, T) for any n, k and r.
{C,.1-} 18 decreasing and converges uniformly to C,, as k— +<.

Moreover, we can also assume that A, (x, ¢) and C,(x, 1) satisfy

A, HZALx, 2™ in (=1, r) %[0, T]
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and
Cotrx, N =EC,(x, D= An'""7 in (—r,r) %[0, T].

Then we can write I(u — v, ¢, P) as

f ' (1, (x, 1) = v(x, e )b (x, t) dx = jw [ttn(x, 0) —u(x, 0)]p(x, 0) dx
-] [ = A= b

+r +r
J- (Cu Cnl r)(“u d) d-x dr + J J. rlkrd)xx + (br - anr(b}(un - U) dx d[

+ An “"j & (x, 1)y dx dt. (3.3)
—r Y0
It is well-known (see e.g. ilSD that the uniformly parabolic linear problem

’Q‘(d)) EAnkrd)xx + d)r - anqub = 0, in P= (’“‘f’, f") X (0, tl))
d(xr 1)=0, for te(0,t),
dlx, t)=wx), for xe(-—rr),

has a unique linear classical solution ¢ (x, ¢) which satisfies:
(i) 0=o(x, H=max{w(x), xe(~r r
(ii) for any -y > 1, there exist M (), Mx(7y) such that

lp(x, Dl = M(1+1x)77 in P,
o (&r, O < Myr™7;

(iil) there exists Ms(n, #) such that

“+r Il
f (o)’ dx dt = M.
—r Y0

Substituting ¢ in [3.3], we deduce that
“+r b
[t ) - v ey dr = [l 0) - vx 019, 0)
+ 2M,t rnax l(£r, ) — v (£, Olr?
=10

+max |A,(x, £} — A (x, )] max ju,{x, £) — v{x, {)| M\%(er,)5
P P

g
+max|C, (e, 1) = Co x, 0 max o (5, ) = v, 0 My ) m y
+ M /\n“’jﬂ . Y

1 o do (L+x]) .

Then inequality (3.2) follows by choosing v = (2m/(m — 1)) + 1, and by passing to
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the limit when k — +o, n— +w and r-» +% (notice that v e E,,, and u,, satisfies
3.1).

Consider now the case m = 1. We can write /(it — v, ¢, P) as

+r

fjr [t (x, 1)) — v(x, £)](x, 1) dx = L [¢,(x, 0) — v(x, 0)]¢(x, ) dx

- J (u,, — v)(,bx] + J (C, — Cor)ut,, —v)p dx dt
[¢] —r

—r ()

roorly

4 J:'-r J;ll [(bxx - Qb: - anrqb](un - U) dx dt + /\flit’J‘ (rb(x’ [) et (34)

i —r J0

Let ¢ be the. classical solution of the parabolic linear problem:

8(¢) = (bxx + d)l‘ - anr(b = 0: iH P = (MFJ r) X (01 []))

¢ (xr,1)=0, for te(01),

élx, t)=wx), for xe(—rr)
Since C,y, is uniformly bounded and w(x) is a non-negative bounded function
with compact support, we easily deduce the following estimates: there exist
K] = K](W), Xy = CE()([[) > () such that

0= d(x, H=Ke™™ in P=(-rr)x(0,1t)
and
|p(£r, DS Kie ™ for tel0, 1]

Substituting ¢ in (3.4), we obtain that
+r +r
[t 20 = 00w 6= [ G, 0) = s, 016, 0

+ 2t max |, {£r, 1) —v(£r, 1) Ke o

=1

+r

+ max ]Cn(x.' t) - C!lk"(x) [)l maXx |l’lfl(x’ t) - U(‘xJ t)l t] Kle“d[}tz dx
P P —r

+roprty R
+ /\n""J Kie = dx.
—r 40

Finally, the inequality (3.2) follows when k— -+, n— 4+ and r — +=. [

Remark 3.6. Notice that the uniqueness of solutions in the class of functions E,,
is now a-trivial consequence of the above comparison principle.

Remark 3.7. The choice of the class of functions E,, in order to obtain global
existence and uniqueness of the solutions of (1.4) is optimal in the sense that if u,
satisfies (1.7) in the limit case (i.e. if uo(x) = (K + [x)¥" Y for some K >0, when
m>1 or if ug(x) = Ke*™" for some K and a>0 when m = 1), we can easily get
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subsolutions of the Cauchy problem (1.4) with initial data u,(x) such that they
blow up in a finite time.

3.3. Regularity

The regularity in the x-variable of solutions of equation (l1.1) is a direct
consequence of the following result:

Prorosition 3.8 [28]. Let u(x, 1) be a generalised solution of (1.1) in E,. Let
>0, neN, Q,=(—nnr) X0, TYand Q= (—n,n)x(z, T).

() If m+q=2, then (u™"), is bounded in Q). Moreover, if
sup {J(ult el x & (—n, n)} <o, then (W™ "), is bounded in Q,,.

(b) If m-+qg<2, then W D), is bounded in Q. Moreover, if
sup {[(ud" "), x € (—n, M} < = then (U™, is bounded in Q,.

It is not difficult to show that this result implies the continuity of the solution of
(1.1) in R % (0, =) (see [28]). As a final step, we shall prove the continuity of u
near ¢ = 0.

ProposiTioN 3.9. Let u(x, i} be a generalised solution of (1.4) in E,,, where the
initial datum w, is assumed to be a non-negative continuous function. Then u(xg, t)
converges 1o ug(x,) when t— 0" for any x, e R.

Proof. Let x,eR, and Q,=(xo—rx,+7r)x (0, T). Let M >0 such that
0=u(xgxr )=M for all 1 e [0, T]. Two different cases arise.

(1) Assume u,(x,)=0. Let ©(x,r) be the solution of the porous medium
equation ¥(v) = v, — v?=0in Q,, such that T{x, = r, £) = M and v(x, 0) = up(x).
Then it is well known [rom the theory for the porous medium equation that
v(x, t) is a non-negative function in Q,, continuous in ¢ = 0, and that:

L) =L() inQ,;
n(xgkr, )= v{e,xrt), for rel0 T];
u(x, 0)=19(x, 0), for xelxg—r xytrl
Therefore by the comparison principle we have that
' 0=u(x, )=0(x, 1) in O,

Then the continuity in ¢ =0 follows from the continuity of ¥(x, ) in £ =0.

(ii) Assume 1,(x,) > 0. Then by the continuity of ug(x) there exist r, £ >0 such
that u(x, t)>¢ for any (x, 1) e(x,—r, xo +r)x [0, T] (notice that wu(x,t) is the
limit of a decreasing sequence of classical solutions u,(x, f) defined in Lemma
3.2). Let w(x, ) be as in (i) and v(x, ) be the classical solution of the equation:
Lw)y=v,—vh=—bM" in Q,, with v(xotr #)=¢, and v(x,0)=uy(x). Then
v(x, t) is continuous in ¢ =0 and we have

Lu)=L) =) nQy;
vixgxr, O=ulxg£rt)So(x,xrt) for ref0, T);
v(x, ) =ulx,0)=10(x,0) for xelx,—rx,+rl

Then by the comparison principle we have that v(x, ) S u(x, t) = v(x, 7) in Q, and
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thus the continuity in =0 follows from the same property for v(x, f) and ¥(x, t)
me=0. 0O

Remark 3.10. The study of solutions of equation (1.1) with unbounded initial
data started with the pioneering work of Kalashnikov [24] where the exponent ¢
is assumed to be g >1. More recent results (showing the nonuniqueness of
solutions when 1< g <tm) can be found in [26]. We also remark that if g (0, 1)
the growth condition (1.7) coincides with that of solutions of the unperturbed
equation: i.e, the porous media equation if s >1 and the linear heal equation if
m=1. As it was shown in [7] (for the porous media equation) it seems possible to
generalise assumption (1.7) by expressing it in terms of a weighted average.

4. Proof of Theorem 1.1

Let u be any continuous selution of the equation (1.1). Assume that there exist
xpe(—L,0) and C (0, Cy) such that

u(x, )= C(—x)y7" 0 if xelxqy, 0] 4.1)

Let €, such that C<C, <y, and let #(x, t) be the solution of the Cauchy
problem (1.4) with initial datum

o(x,0) = C)(—x)¥"" " for xe(—ow, +x),

From the continuity of « and ¥ on the set (=L, L) X [0, T] and (4.1), we deduce
the existence of a time £, e (0, T] such that

ulxg, )= 9(xg, 1) forany rel0, f).

Then we are allowed to apply the comparison principle for (bounded) solutions of
the equation (1.1) on the set Q = (x,, +%) X (0, £,) and thus we deduce that;

u(x, ) =0(x,t) forany (x,1)eQ. (4.2)

Conclusion (i) of Theorem 1.1 is now a direct consequence of Theorem 2.2 and
inequality (4.2). The assertion (ii) follows a similar argument. [J

We shall end this article by giving two direct applications of Theorem 1.1.

CoroLLary 4.1. Let tge CVP(—w, w) N L*(—%, @) with B = 1/m and such that
Uy =0 on (=, ®). Assume that uy(x)=C(—x)Y"""? for any x e[xy, +%), for
some xo <0 and C<C,. Let u be the solution of the Cauchy problem (1.4) with
initial datem wy, and let {(t) be defined by

£y =sup{x e(~o», ) ulx, ) >0}
Then there exists a t, >0 and a >0 such thar
O —atm MUY forany  te0, t)
If on the contrary, uy(x) satisfies

u(x) 2 C(=x)¥"" =9 for any x €[x,, +%), for some x, <0 and C > Cy,
then

LOZai D forany  te]0, t)

for some t,>0 and a > (.
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Remark 4.2, The existence and uniqueness of a continuous generalised solution
of the Cauchy problem (1.4) was obtained in [25] and [28] (see also [29] and [21]).
The study of the initial behaviour of the interfaces was started in [27], where
Kersner also gave an explicit self-similar solution for the case m +q =2. He
obtained sufficient conditions for the exisience of heating and cooling fronts
which are special cases of the assumptions of Corollary 4.1, bul no growth
estimates on () are given in that work. Our estimates also improve the ones
given in [29]. The study of the initial growth of the interfaces via asymptotic
methods started with the work of Rosenau and Kamin [32] and was continued by
Grundy and Peletier [18,19] for (m =1) and Grundy [17]. Finally, we mention
the work of G. Diaz [11], where the study of the initial growth of the interface
was carried out for the N-dimensional semilinear equation by using stochastic
methods.

Remark 4.3, The comparison of the initial datum ue(x) and the statiomary
solution u..(x) is useful for many other purposes (see e.g. [23] where the authors
study the finite extinction time phenomena for solutions of the semilinear heat
equation with initial data in the class £,).

Concerning the case of bounded domains we have the following corollary:

COROLLARY 4.4. Let uge CV®([~L, L)) and b, h_ e C**([0, T]) with B=1/m
and such that uy(—LY=h_(0), u{L)=".(0), w,=0 and h, h_ =0 Let
we C{[—L, L] X[0, T)) be the (unigue) generalised solution of the problem:

= W) — A, in Q=(—L,L)x(0,T),
w(—L,Oy=h_(t), u(l,0)=h.(), for te{0,T), (4.3)
w(x, 0)=uy(x), for xe(-L, L)

Asswme that
uo(x) = C(—x)¥" " forany x e (—x,, xp)

for some xy = (0, L), and C e {0, Cy). Then, if {(t) denotes the interface
Hy=sup{x e (—L, LY u(x, r)y>=>0},

there exists ty e (0, T and a >0 such that

= —at PR forany e [0, )]
If on the contrary uy(x) satisfies

uy(x) = C(=x)¥"" " forany x e (—x,, Xo),
for some xq € (0, L) and C > C,, then
L)z a0 forany e [0, 1),

for some ty e (0, T] and a > 0.

Remark 4.5. The existence and uniqueness of a generalised solution of the
Dirichlet problem (4.3) has been obtained by different authors (see e.g. [30, 9]
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and their references). It seems that the study of the formation of the free
boundary by means of local methods and its application to the Dirichlet problem
(4.3) was started in {13] (see also [14,6,16]). Our results also apply to

formulations with an explicit (moving) free boundary (see [10,20] and their
references).

Remark 4.6, The initial growth of the interface £(¢) is very close to the
behaviour of the interface for the elliptic problem

—(u™) e F AU — pu =f(x), xe(~L,L).

The nondiffusion of the support property (see [12]) leads to results on the
existence of a waiting time, and the dilation of the support property ([2,1]) leads
to the existence of heating fronts as in part (ii) of Theorem 1.1. The connection
between the parabolic and elliptic problems is established by means of implicit
time discretisation schemes.
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