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216 BOCCARDQ ET AL.
|. RESULTS AND COMMENTS

L1 Definition and Lxistence of Renormalized Solutions

Let © be a bounded open subset of BY and p and p’ belong to 1, +0[
with 1/p+ t/p’= L. In the following A4 will be 4 nonlinear operator of the
Leray-Lions type from W5 7(Q) into its dual defined by

Au= —divia(x, u, Du)),

where alx, ¢, £) is a Caratheodory vector valued function from Q2 x R x R"
into R" such that

lalx, 1, O <oy |67 e [0 d(x)
cley> 0, dx)e LF(Q), (L.1)
a.e. xin 2, ¥, & e RV

{[a(x, &) —alx, 1, E}][E—E1>0 (1.2)

ae.xinQ, V(4,8 (4 &) E#E '

{fl(«\‘,l,f)fzam’l a>0 (1.3)
a.e xin @, Y(t, Eye RY L '

In this paper we deal with the problem of existence and L'-regularity of
solutions for the following nonlinear elliptic problem

—div(a(x, u, Du))—div(P(u)) + glx, u)=1 in £ (1.4)
u=0 on 422 (1.5)

The right hand side of (1.4) and @ = (9|, .., @) are assumed to satisly

Few Q) (1.6)
@ e (CO(R))Y. (1.7)

Moreover the function g{x, r) is a Caratheodory function satisfying

glx, )t=0 ae xin 2, YieR (1.8)
Sup g(x, 1) = h,(x)e L(Q). (1.9)
jel S n

No growth hypothesis is assumed on the function . This implies that, for
a solution u in W5 ?(£2) (which is the natural space in view of assumptions
(1.1), (1.2), (1.3}, and (1.6)), the term div{®(x)) may be meaningless, even
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as a distribution. The first objective of the present paper is thus to give a
meaning to a possible solution of (1.4), (1.5). This will be done multiplying
(1.4) by A(u) where he C(R) (the class of C'(R) functions with compact
support). This gives rise to a weaker problem, which can actually be
proved to have a solution.

The following Theorem will be proved in Section 2.

THEOREM 1. Assume that (1.1), (1.2), (1.3}, (1.6), (1.7), (1.8), and (1.9}
hold. Then there exists a solution of

ue Wi (8), eglx, u)e L'(82}, ug(x, u) e LY(Q) (1.10)

{[—div(a(x, u, DY) h(u) — div(®(u) h{u)y + D(u) h'(u) Du+ g(x, u) hlu)
= fh(u) in Z'(82), vhe CHR). (1.11)

A solution of (1.10)—(1.11) will be called the “renormalized solution” of the
original problem (1.4)-(1.5).

Remark 1. Let us note that in (1.11) every term is meaningful in the
distributional sense (in contrast with (1.4)). Indeed consider any ¢ in
G(R); then h{u)¢ belongs to Wy 7(Q) and

{h(u), @ >_@’(ra), @Q) = Sy ohlu)) = LB (0), WY

The same type of identity gives a meaning in 2°(2) to the term
[ —div(a(x, u, Du))] h(u) since —div(a(x, u, Du)) belongs to W ~"7(Q).

Moreover since ©h and @h' belong to (C2(R))Y (the class of continuous
functions with compact support) the functions @(u) h{u) and ®(u) A’ (u) lie
in (L*=(R))" for any measurable function » and then

div(®(u) b)) e W= =(Q),
®(u) h'(u) Due LA(Q).

Remark 2. The definition of renormalized solution used here is nothing
but the adaptation to the present elliptic setting of the idea of renormaliza-
tion introduced by R.J. DiPerna and P.-L.Lions in their important
papers [8,9] dealing with the existence of a solution of the Boltzmann
equation. Similar ideas also appear in the papers [1] by P. Benilan,
L. Boccardo, T. Gallouét, R. Gariepy, M. Pierre, and J. L. Vazquez, and
[11] by P.-L. Lions and F. Murat.

Theorem | as well as Theorems 2 and 3 below generalizes to the present
setting of Leray-Lions operators the results we obtained in [5] for
quasilinear operators (p=2) and g=0.
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1.2. Renormalized Solutions and Usual Weak Solutions

A natural question now arises: [s any renormalized solution a usual
weak solution of the original problem (1.4)-(1.5)?

To obtain such a result it seems to be natural to assume @(u) to belong
to (L..(£2))" in order to give a meaning to each term of (1.4), but even so

loc

we do not know the answer to the question, except when stronger assump-
tions are satisfied by u, as it is shown in Theorem 2.

THEOREM 2.  Assume that (1.1), (1.2}, (1.3), (1.6} hold and that &
belongs 10 (CYR))Y, and let w be any (renormalized) solution of
(1.10Y=(1.11) which satisfies

B(u)e (LL (). (1.12)
Define for ie {1, .., N}

wf(t)=J; \1(x)] dr

and assume moreover that

w,(u)el!

foc

(Q). (1.13)

Then u is a usual weak solution of the original problem (1.4)-(1.5).

Remark 3. The result of Theorem 2 stul holds true if (1.13) is replaced
by the assumption
W {u)e L], (2), (1.14)

loc

where ; is defined by
i) =] 1@, de.
0

In this case @ does not need to belong to {CY(R))Y but only to (C°(R))".

Remark 4, If (1.12) helds true, a sufficient condition for (1.13) to hold
is to have

b, (1) S const[|D, (1)) + 117"+ 11,

where p* = Np/(N —p) when p <N and p* is any positive number when
p=N (if p>N, Wi?(£2) is embedded in L*(£2) and anything is
straightforward).
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Ancther sufficient condition for (1.13) to hold true whenever (1.12) is
satisfied is to assume each @,(¢) to be monotone (either nondecreasing or
nonincreasing) when ¢ is sufficiently large.

1.3. Energy Identities for Renormalized Solutions

Let us now multiply formally (1.4) by v and integrate by parts. We get
J al(x, v, Du) Du dx +J @D{u) Du dx +j glx, wyude={Jfu).
Q £ £

Define ¢ e (C'(R))¥ as B(¢) =} &(t) dr. Then, formally, div(P{u))=
®(u) Du and by the Divergence Theorem

J' qs(u)pudxzj div( ())dwj' B(0)n ds =

2 a0

since =0 on 42 and @(0)=0. Thus formally

‘[ a{x, u, Du) Du dx+j glx, Wudx =S, u>. (1.15)

Let us note that most of the operations performed belore are purely
formal. However, (1.15) (and even its extension (1.16)} can be proved to
hold whenever u is a {renormalized) solution of (1.10)-{L.11). Indeed we
have:

(L ) (1.6), and (1.7) hold and let

THEOREM 3. Assume that (1.1), (1.2),
J0)-(1.11). Then

u be any (renormalized) solution of (1

.[ &(u) alx, u, Du) Dudx + J gy, ) s(u) dx = {f, () ) vy, whee
2 o
(1.16)

or any Lipschitz continuous, piecewise C(R) function s such that s(0)=0.
. y Lip P Sfui

Remark 5. Theorem 3 is particularly useful to prove L'-regularity
results for renormalized solutions since it justifies multiplications of the
cquation in renormalized form (1.10)-(1.11) by test functions which are
nonlinear in w, for example, by | T,(u}|" 7,(u), where T, is the truncation to
the level 2. This is the usual way to obtain L*-regularity results in equations
of the form (1.4)~(1.5) when @ is bounded and ;/ has some Wl
regularity (g > p').

Theorem 3 will be used in Section4 in order to prove L°- and
L*-regularity results for the renormalized solutions.
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1.4. Test Functions in Renormalization

In the definition (1.10)—(1.11) of renormalized solutions, we used test
functions of the form A(u)@ where ¢ belongs to 7(£2) and hto CHR),
being the solution. It is actually possible to take ¢ in Wi r(Qy~ L™ (82)
(see (3.5) below) but a larger class of test functions can be used, as proved
by the following result.

THEOREM 4. Assume that (1.1), (1.2), (1.3), (L6}, ane (1.7) hold and let
u be any (renormalized) solution of (1LYO)»-(1.11). Then, for any we W)
such that

Dw=10Q ae. on {x:|ulx)| =k} for some keR™, (1.17)
g(x, u)we LN(Q2), (1.18)

we have
J a(x, u, Du) Dw dx + J @, (1) Dw dx + J g, w)w dx
2 I o

= </! W w-LP(Q), whtR) {(1.19)
where D (1) is defined by
b(r) if <k

D (t)= { ,
cb(k W) it =k

Note that &, belongs to (C°(R) ~ L*(R))", which implies that @, (u)
lies in (L™(2))" for any measurable function u.

1.5. L*-Regularity of Renormalized Solutions

[5 and L= -regularity results for solutions of (1.10)-(1.11) can be
proved when some W= ¢ regularity (¢ > p’) is assumed on the right hand
side f Let us recall that the first Ls-regularity results were proved by
G. Stampacchia in [12] when the principal part 4 of the operator is linear
and g and @ are identically zero. These results were extended to the non-
linear case when @ is zero in [3] and next when @ has polynomial growth
in [4]

Denote

f= —dive, with ¢ in (L9Q2)Y, p'<g< +w0 (1.20)
and define the number #* by

r¥ = Nr/f(N—r) for 1<r<h.
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THEOREM 5.  Assume that (1.1), (L.2), (1.3), (1.7}, (1.8), and (1.20) hold
true and let w be any (renormalized) solution of (1.10)=(L.11}.
If p'<g<N/{p—1), ithen u belongs to LY'"~ D7(Q) and

iip—1)
H””[F/lﬂ 1 (p;\/t( H(”(;u[[)))'\! /\'|>O- (121)

If g N/{(p—1), then u belongs to L™(82) and

. g e 1) .
Dl oo S K2 el 050 ko >0, (1.22)

If g= N/{p—1), then u belongs to L*(Q2) for any s < +w and
el oy S hss) ek (igys  Kal9)>0. (1.23)

More regularity can be obtained on the solutions of (1.10)-(1.11) when
a further coerciveness condition is assumed on the term g(x, 1), that is

glx, ezvit, a.e. x in £2, YreR, (1.24)

for some r= 1 and v > 0. Then the following result can be proved.

THEOREM 6. Assume that (1.1), (1.2), (1.3), (1.7), (1.8), (1.20), and
(1.24) hold and let u be any (renormalized) solution of (1.10)}-(1.11). Ir
g = p', then u belongs to L' (Q) and

] L"m’({g)\/\at ”‘H(Lflg))va k4> 0. (1.25)

Remark 6. When g¢> N/(p— 1} the result of Theorem 5 is stronger
than (1.25) since u then belongs to L™(2). In this case no advantage is
taken of hypothesis (1.24). The same holds true when ¢ = N/(p—1).

In contrast with this observation, note that for g<N/(p—1}, we
have rq/p' = [q(p—1)]* whenever rz Np/(N—gp+g). In other words
hypothesis (1.24) implies some gain of regularity when r is sufficiently large.

1.6. Exampies of Applications of the L*-Regularity Results (o the Existence
of Usual Weak Solutions

The regularity results obtained in Theorems 5 and 6 for renormalized

solutions can be used, jointly with Theorems ! and 2, to prove the

existence of a (usual) weak solution for the initial problem (1.4)-(1.5),
when f satisfies (1.20) while @ satisfies

1&(1)] < const(l + [¢]7) for some 7=0. (1.26)
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We give here two examples of possible applications.

PrROPOSITION 1,  Assume thar {1.1), (L2), (1.3), (L.7), (1.8), (1.9), (1.20),
and (1.26) hold true with p' <g < Nf(p—1).

Then there exists a (usual) weak solution of {1.4)—(1.5) whenever one af
the following two conditions is satisfied:

O<y<[glp—1D]"—1 (1.27)

O<y<glp—-11*

~t
w(u)e (LL ()Y with w40=J\®Hﬂ|mjmﬁE{Ln”Nk
4]

if (1.28) is assumed to hold one has to replace {1.7) by the assumption that
@ belongs to (C'(R)Y.

Remark 7. Let us compare the result of this proposition with the
results obtained in [4]. Hypothesis (1.27) is less restrictive that the
hypothesis y < [g(p -~ 1}]*/p’ made in [4, Sect. [ ].

Concerning (1.28) let us observe that the present result allows one to
have y < [q(p— 1)}]* if each ®,(¢) is monotone at infinity (see Remark 4);
moreover the existence result is here proved for any Leray-Lions operator
while in [4, Sect. 4] a growth v strictly less than [gq(p—1)]* was allowed
only in the case where 4 was a quasilinear operator —div(b(x, u) Du) with
p=2

Remark Added in Proof. The recent paper [[13] improves the result of
Proposition | when g=0. Indeed in this paper it is proved that there exists
a (usual) weak solution of (1.4), (1.5) when g=0 and (1.1}, (1.2), (1.3),
{L.7), (1.20), and (1.26) hold with p'<¢<N/(p—1} and

0<y<[g(p—1)]*

{compare with (1.27) and (1.28)).

ProPOSITION 2. Assume thae {1.1), (1.2), {1.3), (1.7), (1.8), (1.9), (1.20),
(1.24), and (1.26) hold with p' <g<N/(p—1} and r=Np/(N—qp-+q).
Then there exists a (usual) weak solution of (1.4)-(1.5), whenever one of the
Sfollowing conditions is satisfied

0<y<(rg/p)—1 (1.29)
0<y<rg/p and w(u) e (L ()Y (1.30)

loc
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if (1.30) is assumed fo hold one has to replace (1.7) by the assumption that
& belongs to (C'(R)™.

Remark 8. In both Propositions 1 and 2 we limited ourselves to the
case g< N/(p—1), since any renormalized solution belongs to L*(£2)
when ¢ > N/(p— 1) and is thus a (usual) weak solution. (The same is true
when g= N/(p—1) and & has a polynomial growth.)

Similarly in Proposition 2 we limited ourselves to the case rz
Np/(N —gp + q) since otherwise no advantage is taken of hypothesis (1.24)
(see Remark 6).

2. PROOF OF THEOREM |

Step 1. Approximate Solutions and Weak Convergence
Let us define for sach k>0, the truncation

t if t<k

T(6)= t
P

|1]
and, for each &> 0, the approximations
le([) = (p(Tl/t:([))r g(s(xa I) = Tl/n(g(xa t))

From well known results due to J. Leray and J.-L.Lions [10], the
following nonlinear elliptic problem

{—div(a(x, u,, Du))—div{®@,(u )+ g.x, u,)=,f in D'(£2) 2.1)

u. e Wyr(Q)

has at least one solution u,.
Define @,(t)={}, ®,(t) dr. By the Divergence Theorem (the use of which
is licit here since @ (u,) belongs to () 7(2))") we get

¢ —div D, (u,). 1> = j ®,(1t,) Du, dx :j div & (u,) dx
0 2

- f @ (0)n ds =0,

o2
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Il we multiply (2.1) by «, and integrate by parts, using the previous identity
and the sign condition (1.8) we get

J~ a(x, u,, Du,) Du, dx < {fiu, >
0

Now the coerciveness assumption (1.3} implies that

—
2
3]

—

1
..... 1 .
““rH ,;);.11)-?‘53; S; Hf ” el
f glx, u,) u, dx <e;. (2.3)
2

So there exists a subsequence (again denoted by u,) and some ue W [ 7(£2)
such that

t,— U weakly in W 7(€2) and ae. in 2 as e~ 0. (2.4)
By the sign condition (1.8) and Fatou’s Theorem we obtain from (2.3)
g(x, uyue LYQ). (2.5)
On the other hand
g.(x, u,) = glx, u) ae. in 2 ase—=0
while for any n>0 and any measurable set £ we have in view of (1.8},

(1.9), (2.3)

N 1 "
[ et dx<| g, )l dx += | g.(x, u,) u, dx

E Erv gl =} S E e ] z=a}

1
gj B (x) dx +— cs.
E i1

Then, by Vitali’s Theorem
g.(x, 1) — g(x, u) strongly in L'(Q). (2.6)

Step 2. Strong Convergence of u,

Our aim is now to prove that u, strongly converges to u in W [ 7(Q).
This will allow us to pass to the limit in (2.1) after multiplication by /Ai{u,)
and to complete the prool in Step 6 below. To prove the strong con-
vergence result, let us recall the following lemma which is a variation of a
result of J. Leray and J.-L. Lions (see [7, 6] for the proof).
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LEMMA,  Assume that (1.1), (1.2}, (1.3} hold true as well as
i, — U weakly in W, 7(Q) and ae. in Q, (2.7)

and that
J Lalx, u,, Du)—alx, u,, Du)] D{u,—u)dx —0 as e—0. (2.8)
Q

Then
U, —u strongly in W5HP(&). (2.9}

In view of the lemma, we just need to prove (2.8) in order to obtain the
desired result (2.9). This will be done in the following three steps of the
prool.

Step 3. First Estimate
Define, for each k>0 the set
Efy={xeQ:|ux)|zk}

Using in {2.1) the test function v, = u, — T;(«,) and the sign condition (1.8)
on g we obtain in a way similar to that of Step | (see [ 5] if necessary) that
for any fixed k>0

1
lim supj Du | dx <= (fyu—Tefu), (2.10)

&—+ 0

Step 4. Second Estimate

Define for i, j>0
Fo={xeQ:|ux)— T (u(x)) <i}.
We will prove that

[ fim j Ca(x, u,, Du,) — a(x, u,, Du)] D(u, — Ty(u)) dx
F ‘ ’

c—0

{ = Ty = T(u)> = | g6 ) (= T () s (2.11)

02

—J a(x, u, Duy D(T; (1 — T)(u))) dx.
2
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In order to obtain (2.11), let us use w, =T (u,— T,(u)) as test function in
(2.1) (see [2, 57, for the use of such nonlinear test functions):

J alx, u,, Du,) Dw, dx— {div @ (u,), w, >

2
(2.12)
+ ] gl ) wodv=Cf .
)
Let us first prove that for i, f fixed
lim {div @ (u,), w, > =0. (2.13)
£ 0
Indeed
D{u, — T:{u)) on £
Dw. = & J o
W {0 on Q- F,
Since
g ()] < uy(x) = Tp(u(x) + [ Tu(x))| <i+j on F,
we have

1
B, () = BT (0 ) = BT (w(x))  on Fly  for —>i+).
Thus if 1/ezi+ ]

(—div @ lu,), w,>= l D (u,) Dw,dx=| &(T,, (1)) Dw, dx.
o J

As & — 0, this term tends to
| (T () DT = Tu)) d
Q
which vanishes using the Divergence Theorem as in the identity established

after (2.1). This proves (2.13).
Let us now study the term jg g.lx, u)w,dy of (2.12). We have

w, X To(u— Ti(u) weakly * in L¥(Q)

(2.14)

By (2.14), {2.6), we get

lim L g% u,) w, dx = L glx. 1) T(u = Tju)) dx.

& (]
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Since w, tends to T;(u— T;(u}) weakly in W} 7(Q), we have proved that

lim j a(x, u,, Du,) Dw, dx
e—0 Y0

(2.15)
= Tilu= Ty — | glx, u) Ty(u—T,(w)) dx.

By the strong convergence of u, to u in L(2) and (L.1), it is easy to
obtain (2.11) from (2.15).

Step 5. Proof of (2.8)
In (2.8) let us split the integral over Q as

J Lalx, ug, Duy) —a(x, u,, Du)] D(u, —u) dx =15+ I (2.16)
o i

where
5= Ta(x, u,, Du,)~a(x, u,, Du)] D(, ~u) dx
£y
= J La(x, u,, Du,)—a(x, u,, Du)] D(u,—u) dx.
Q-1
Note that

I?jmj Lalx, u,, Du,)—a(x, u,, Du)] D(u,— T,(u)) dx
F |

-+ LE” Lalx, u,, Du,)—alx, u,, Du)] D(T,(4) —u) dx.

Now observe that the right hand side of (2.11) is bounded by a function
of j which goes to zero as j tends to oo: indeed

J, atx, 1, Du) DT, = Ty () dix| < e,y D)l e Ft = T 00 e
2

| Ti(u— 7}(“))>| < |/ whi'(0) flu— T)(“)” W)

[ gtew) Tw—Tw)dx| <[ gl wud
2 {lel = j}

and we know from (2.5) that g(x, 1)u belongs to LY(Q). This allows us to
estimate the first term of 77,



228 BOCCARDO ET AL,

Using the boundedness of w, in W 7(€) and (1.1} we can estimate the
second term of /% in the same way. We thus deduce that

lim sup 15, < F( /), where F(j) =0 as j— +w. (2.17)
& ()

Let us now come to /7. Since for each i> j>0

iy At
£y 28T

we have

f[['l_f,é J  Laly,u,, Du) —alx, u,, Du) ] Dlu, —u) dx

l:,,’

< LeatDul? = en 1DulP T+ 2e g 2d(0)]
< £ (2.18)}

[1Du,| + |Du|] dx

\ <ey UE;-L,- | Du,|? dx + JH;___/ [1Dul” 4 [u,)? + )P dx}.

By the estimate (2.10) the first term of the right hand side of (2.18) is small
provided i—; is sufficiently large. Moreover using Lebesgue’s dominated
convergence Theorem and Vitali’s Theorem, we have

lim sup J [1Du|? + u,|” + |d|” ] dx
£ -0 £

J

g[ [1Dul? + [ul? + |d|” ] dx

{lul = i—j}

which is small again if i — j is sufficiently large. Thus /I, is small if /—jis
large. .

This last result, (2.17), and (2.16) prove that (2.8) holds true. By the
lemma this implies (2.9).
Step 6. End of the Proof

Let us now multiply (2.1) by h(u, )@, where he C!(R) and ¢ € 2(Q) and
integrate by parts: we obtain

[ Tatx, 0., Du)+ @(u,) 1K ()0 Dut,+ hw,) Do dix
0
(2.19)
[ g ) i) g dx =S b)),
fe]
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Since /r and /" have compact support on R, we have for £ sufficiently
small

D,(1) h(1) = (T, (£)) h(t) = D(¢) h(1)
P () I()=D(T (DY (1)=D(1) K (1),
and the functions @k and @4’ belong to (C(R) L*(R))". Now, using

(2.6) and (2.9} it is easy to pass to the limit in each term of (2.19) and to
obtain

f n
J a(x, u, Dw)[h'(u)p Du-+hiu) De] dx
Q

< -I-J‘ @(u)lz’(u)(pDuclx+J D(u) h{u) Do dx (2.20)
Q o

+J glx, ) i) dx={f, h(u)p > VYhe CLR), Yo e 2(R2)
\, @
which is equivalent to (1.11). Theorem 1 is proved.

3. PrRoOOF oF THECREMS 2, 3, AND 4

3.1. Proof of Theorem 2 and Remark 3
Let u be a solution of (1.10)—(1.11). Consider H e 2(R) such that

H()=1if|7|<l,  H)=0if lf| =2,

|H() <1,  (H'(1)| <2 VteR

and define for >0, i, by
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The function 4, belongs to C(R) and can be used in (1.11}. Then lor
any ¢ in 2(£2) we have

J al(x, u, Du)TH.G) e Du+h(u) Dol dx
@

—l—j @(u) hifu)p Du dx -+~J D(u) h(u) Do dx (3.2)
7

Q

+ J glx, ) hw)p dy={f b (w)e .

Since
[l <1, h(ty—1ase—=0

(<2, hi()—0ase—0,
and since Lebesgue’s dominated convergence Theorem implies that
h(u)—1 strongly in Wh7(Q),

we can pass to the limit in the first and the last term of (3.2).
In the third and in the fourth integrals we can use Lebesgue’s dominated
convergence theorem since by (1.12)

| D, (1) h ()] 1@, (u) e LL(2) for ie{l,., N}

loc

| g(x, u) h(u) < | glx, w)l € LH(Q).

We have now to pass to the Hmit in the second integral of (3.2}, We can
write it as

j @(u) llg(tz)rpDu([x:J div(J,(u)) @ dx = ~j‘ ¥ (u)De dx, (3.3)
@ 2

Q

where

=
=
=
=
il
—
=
P
=
=
=
z
P
=
=
=
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Now since
P )>0 as -0 VieR
Dot = =| D) h(2) det D (1) A1)~ B,(0) h,(0)
0

we have
T < [ 18] e 41,01 +1,(0)] = 0,05) + 10, (0) + [ 0,0).

1
loc

Since by the hypotheses w,;(«) and &, (u) belong to L] {2}, we have, by

Lebesgue’s Theorem

T 1

(1) -0 strongly in L, _(£)

Joc

and the last expression of (3.3) tends to zero.
We proved that for any ¢ € 2(R2)

j a(x, u, Du) Do dx+J D(u) Dy dx+j glx, u)ypdx={f, ¢
e a @

which is equivalent to (1.4). Theorem 2 is proved
In the setting of Remark 3, the term (see (3.3))

f O(u) hi(u)p Dudxy = —J t,T/E(u) Do dx
2 Q

{(where i, is defined by (3.4)) tends again to zero as ¢ tends to zero. Indeed
since

!l-[lft:(t)‘ s 2’#[('{)7
WL (1)—0 as &§—0 VieR,

we have, by Lebesgue’s Theorem,

W () — 0 strongly in L (2)
whenever (1.14) holds true.

3.2. Proof of Theorem 3

Let u be a solution of (1.10)-(1.11) and s be a Lipschitz continuous
piecewise C' function from R to R such that £(0)=0.
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Step 1. Equation (1.11) is understood in the distributional sense and is
thus equivalent to {(2.20). We approximate any v of WhaQ2)ym L (2) by
a sequence ¢, of 2(2) such that (p,) is bounded in L™(2), and o,
strongly converges to v in W ”(Q2). Then (2.20) implies that

J al(x, u, D) ' (1)v Du+ h{u) Dvl dx
I

-I—J‘ () b (u)v Du dx + J @(u) h(u) Do dx +J gy, w) hu)yv dx (3.5}
o o @

={f by  Yhe CHR), Yee Who(Q)n L*(Q)

Step 2. We assume in this step that s is bounded.
Then s(u)e Wi7(82)n L™(22) and can be used as test function in (3.5)
yielding

J a(x, u, D) () s(u) + hu) 5"(w) ] Duedx
+J- (D(u)h’(u)s(u)Du(lx-}-J @(u) hlu) s'(u) Dudx
2

n j g(, u) h(u) s(u) dx = (f, h(w) s(u)y  VYhe CLUR).

£

Define now v,(1)= {5 @(t) h'(t) s(t) ¢r. This function is CYR) with
bounded derwatlve in R. Then we can apply the Divergence Theorem
and get

J CD(u)h’(u)s(u)Dudx:] div(v (u)) dx=0.

o

Similarly
| ) h(w) s'() Durdx = | div(vs(u)) dx=0,
2 Q

where

vz(t)=f B(e) hiz) 5'(x) dr.

Q
We thus have

J alx, w, Du) [ (u) s(u)+ hu) s'(u)] Du d*c+J g, u) hlu) s(u) dx (36)

={f h(w) su)y,  Yhe CUR).
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Use now in (3.6) the function k, defined in (3.1). It is casy to prove that,
as £ — 0
h(u) s(u) — s(u) strongly in W #{2)
g, u) h(u) stu) — g(x, w) s(u) strongly in L'(2)

for any bounded, Lipschitz continuous, piecewise C' function s such that
5{0) = 0. Passing to the limit in (3.6) proves {1.16) when s is bounded.

Step 3. The general case, where the function s 18 no more assumed to
be bounded, is achieved using in (1.16) the test function s,(¢) = 7T,{s(1)).
This gives

Lz sy () alx, u, Du) Du dx + L glx,u) s, (wydx={f,s,(u)>. {3.7)

Since as n — o0
s,(u) — s(u) strongly in W} #(£2)
glx, u) s, (u) — g(x, u) s(u) strongly in L'(Q)
(recall that g(x, u)u belongs to L'(Q) and that |s(z)] < C ||, for some
constant C, because s is a Lipschitz continuous function), we easily pass to

the limit in (3.7) obtaining (1.16).
Theorem 3 is proved.

3.3. Proof of Theorem 4

Step 1. Consider first the case where, further to (1.17), the function w
belongs to L*(Q) and note that (1.18) holds true in this case.

By Step | of the proof of Theorem 3, we can use w as test function in
(3.5). With /4, e CL(R) given by (3.1) this yields

g
J a{x, u, Du)[Al(w)w Du+ h(u) Dw] dx
o

N

+J D(u) hi(u)w Dudx +j @(u) h(u) Dw dx (3.8)
o

2

—I—J glx, u) h(u)w dx={f, b (u)w.
\. Yo

Because of (1.17) and of the definition of ¢, given after (1.19) we have on
the first hand

J D(u) h(u) Dw dx = J @ (u) Dw dx if 12 k,
2 &

£2
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and, on the other hand,

I D(u) h(1)w Du=J div( (u))w dx
o @

~ 1
:#J (1) Dwdx =0 if -=k

2 &

(where 7,(¢) is defined by (3.4) and thus satisfies ¥ (1)=0 when [fj < 1)
Passing to the limit in (3.8), for ¢ tending to zero, implies that

J a(x, u, Duy Dw dx +J P, (1) Dw dx
e

Q

(3.9)
+ J glx, uywdx={f,w>
e

for any w in WLP(Q)n L*(£) which satisfies (1.17).

Step 2. To obtain (1.19) for any w in Wwle(Q) satisfying (1.17) and
(1.18), it is now sufficient to take w,=T,(w) in (3.9) and to pass to
the limit with # tending to infinity: note that w, still satisfies (1.17) and
that

|glx, u) T,(w)| < | gl(x, u)wl a.e. in £

4. ProOF OF THEOREMS 5 AND 6 AND OF PROPOSITIONS 1 AND 2

4.1. Proof of Theorem 3

Let us first consider the case g¢=p' Then g(p—1)=p and (1.21)
immediately follows from (1.16) with s(u} =1

Consider now the case p' <g<N/(p—1). Using in (1.16) the Lipschitz
continudus, piccewise €' function s(z)= [T ()" T,(¢) where T, 18 the
truncation at level 22 and ni= N(gp — g — p)/(N —qp +q) yields

J s(u) al(x, u, Du) Dudx + J glx, u) slu) dx = J c(x) &' (u) Du dx. (4.1)
Q Q

2
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From this relation, (1.3), (1.8), and Young’s inequality we have

o [ DT, ()| 1T )] dx
2

<[ 1t 1T 10T, ()] d (4.2)
2
o ,
< [ 1Tl T dx e el 1T 01" d.
2y o
Then
[ 4DT 0 1T,y d
02
) ) . ) (g~ p')yq (4‘3)
<= cs lelfuayy (JQ |77 (ae)| e/t =P dx) .
Now

(mfp + 1) D(T, (1)) | T,(u)| ™" = DU T, (u)| ™ T, (1)),

By the Sobolev inequality, we obtain from (4.3) (since p < N here)

L pip* ) , {g—p)a
([, amrmosy Y <eutetuan ([ inores-ra) "

By the choice of m we get (1.21) for T,(u) since {(m/p+1)p*=
mgi{q—p")=Lq(p—-1)]*%

Passing to the limit on n implies (1.21) for u itself.

If g=N/(p—1), then c(x)e (L¥R))" for any ¢, p'<§G<N/(p—1), and
the result (1.23) follows from {1.21).

Finally if ¢> N/(p—1), the proof of the L*-estimate (1.22) is quite
similar to the one given in [12, 3]. Indeed we use in (1.16) the function
s(t)y=t—Tr), k>0, and then we proceed as in [37 since now the term
involving @(u) has disappeared.

4.2. Proof of Theorem 6

The proof is similar to the proof of Theorem S. Consider the case p’ <g
(the case p’ = ¢ corresponds to o =0 in what follows) and use in (1.16) the
function s(¢) = |7,(£)|” T,,(t) with a=1r(g— p')/p’.

In view of (1.24) the term involving g(x, u) gives a positive contribution
to the estimate since r = 1 implies

f glx, ) s(u)dxzv J [T (u)]"F° dx.
o £
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We then have in place of (4.2)

'

« | DTt T ()l dv+—— | | T, (0" v
) g+ 1Jn

< | 1et) 1T (0)]” DT, ()} d
< [ IDT @M 1Tl dv+e | el 1,017 do.

Then, since p' < g we have

1
| TG de ey [ e dxbs |7 )

Q o] Q

aqfiqg —p') dx

Since 1+ o =aq/(q— p') = rq/p’, the estimate (1.24) is obtained for 7,(u).
Passing to the limit on # implies (1.25) for u itself.

4.3, Proof of Propositions | and 2

Proof of Proposition 1. Under the hypotheses of Proposition I,
Theorem 1 applies and provides the existence of a renormalized solution.
Actually this renormalized solution turns out to be a usual weak solution:
indeed if (1.27) holds true, the estimate (1.21) of Theorem 5 ensures that
both conditions (1.12} and (1.14) of Remark 3 are satisfied; if (1.28) holds
true, the same estimate {1.21) and Theorem 2 imply the result since
conditions (1.12) and (1.13) are satisfied.

Proof of Proposition 2. The proof is similar to the proof of Proposi-
tion 1. In this case one uses Theorem 6 to obtain L’-regularity results
sufficient to imply (1.12) and (1.14) (or {1.13)).
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