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We study regularity and propagation properties of interfaces separating regions where
nonnegative weak solutions of the Cauchy problem for the equation

o 0 O
U, (/ 'u.(y,t,)dyf‘/ wly, L)zly)] ,omo>

are strictly positive or equal to zero. It is shown that under suitable conditions on the
initial data the interfaces are (not necessarily monotone) C™-curves and they do not lose
this regularity at their turning peints. The stucdy of the interface regularity is performed
via Lagrangian coordinates. We show that the initial behavior of interfaces is determined
by the character of growth of the initial datum near the endpoints of the initial support.
Estimates (from below and [rom above) on the width of the positivity set of solutions are
also ubtained.

e = ('lﬁlrl):!::t: +

Key words: interface, nonlocal equation, degenerate parabolic equation, Lagrangian coor-
dinate

i. Introduction

In this paper, we study some properties of solutions of the Cauchy problem for
the quasilinear nonlocal degenerate parabolic equation

thy = (0" ) + {u ( / uly, tdy — / | 'Hr(:u,t‘)fl:u” ins=Rx(0T] (1)

assuming s > 1.

This equation presents a simplified model of the process of diffusion of a biolog-
ical population when the nonlocal interaction of individuals is taken into account.
The reader is referred to the papers [21, 22, 23] for fother information on the

genesis of this problent and the biological background of the formulation. Tu this
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model ufa, ) represents the density of the hiological population and is assmmned to

be nonmegative in 5. The initial distribution of the population density

wle, ) = uglx) i R {

[Rv]
—

is subject to the following conditions:
Ay wela) >0 iu (0,a), (o< ool wolz) =0 for € R\ (0,a);
(")

In what follows, we use the notion of weak solutions to (1), (2) proposed in

[21].

<M.

w oy
“) Les(Dia)

DerINITION 1. A function w(x, ) is said to be o weak solufion to (1), (2) of
it 1s nonnegative and bounded in S and satisfies the following conditions:
(i) wed(S)nLe(0,T;LHR)),
(i) (W), e L®R x(r,T)) forall 0<T<T,
(iii)
[ wtw.ay € oo, 7)),
J 00
r 1
]'ml/ u(y, t)dy = / ug(i)dy  for any = € (—o0,00);

£} g =0

(iv) for each f € CHS), compactly supported in S, there holds the identity

| /5 {'u, 1= {(u) + ( /_Dc uly, tydy / Do uly, z)dyﬂ j} dadt = 0.

Let us begin with a brief overview of the results already lnown. Consider the
Cauchy problem associated to the equation

s o ([ )] v

generalizing (1), and assune
Ny) & e
N2) g is nonnegative, bounded and integrable on R.

Under these assumptions it is shown {21] that there exists a unique weak solution
(in what follows simply termed “a solution™) wu(z, ) of (17}, (2) which possesses
the same regularity properties which are known to be the best possible for the
“unperturbed” equation (1) with @ = 0, usually called the porous mediwm equation

we = {u™) . omo> 1 (PME)
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In particular, this solution satisfies the following conservation property

/ w(ir, £)da = / wo()de  for any +¢ (0,7 (3)
JR JR

which is of a specific importance for our further purposes.
The paper [22] deals with asymptotic properties of solutions of (17), (2). As-
suing

N;j) & > 0,
it, is shown that solutions of (1), (2) couverge as t — oo to the travelling wave
golution of this problem U(s), s = x — kit (k = const), defined by the conditions

o

/
kU + {(U”’)’ +UD (/ U(n)cﬂ'r])} =0 in R,

Vo

Ul—oo) = U(ex) =0, [RU(:L‘)d:L' = /R ug(x)dz = b,

/R (/;[“0(5) — U(&)]dédx = 0.

Here

This allows one to prove that the solutions of (17), (2) are localized in space: there
exist two constants e, as such that for any ¢ € [0, 7],

w(z,t) =0 for z€ (—oo,ay + kt) U (ag + kt, co).

In the particular case of equation (1) we have, using (3), that
n > ) P

/ u{y, t)dy ~ / u(y, t)dy = 2/ uly,t)dy — b

J o Jox J—00
and, consequently,

D(g) =28 —b; p(s)=s"
In this case the travelling wave solution changes into a stationary one.
The localization result shows that there exist two interfaces
n(t) = sup{z € R 1 u(x,t) > 0}, ((t) =inf{ez € R wu(z,t) > 0},

L.e., the curves separating regions where the solution u(x, ¢} of (1’), (2) is strictly

positive or equals zero. The investigation of the interface behavior was undertaken
in [23], where problem (1), {2) was considered under assumptions Ay), Az}, ancl

Ny} wg is plecewise wonotone in R,

It is shown, in particular, that
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(i) the functions n{}, C(f) are globally Lipschite-continuons on {0, 77;
(il)  the positivity set P of the solution w(a, ¢) is given by

P={{ef)e S (1) <a<n(t)}
and the magnitude

m—1 — : 1]
” (). 1) = ] u iyt
(), 0.0 = (), ()
exists for all ¢ € (0,7 and belongs to L®(0,T) (the corresponding results
hold for ¢());

(iii) the interfaces follow the equations

m.
mo— 1

(1) = S (71."'”"1);1: (n(t), 1y —b, '{(1) = —

im — 1

(™! )m (C(1). 1)+ b,

which are understood in the sense of distributions and hold a.e. in (0,7);
(Iv) liMyemoo n{E) = &,  limigenoo ((¢) = ~y, where the constants 6, correspond to
the boundary points of the support of the stationary solution.

In the present paper, we study further regularity properties of solutions to
problem {1}, (2). Due to the symmetry of equation (1) we concentrate our study
on the right interface n(t). The change of variables 2’ == o —  allows us to apply
this study to the case of the left interface ((t).

Let us &Séume, additionally to Aq), As), the following condition:

Az) (ul"Y € Cl0,a] and limg ., o (’u,g"*])f () < —q, q=const >0
THEOREM 1. Let conditions Aq)-As) hold and let w(x, t) be the weak solution
of (1), (2). Then

ne Gl’(m'-”/(am-]‘)[T, T forany 7> 0.

loc

THEOREM 2.  Under the above assumptions

ne O n T forany 7> (0.

REMARK 1. We consciously separate these two assertions hecause of the dif-
ference in the technical tools nsed for their proofs.

RenmarK 2. As a matter-of-fact, assumption As) is not a serious limitation.
Indeed, as we mentioned earlier, for all £ > 0 the weak solution w(a, t) is compactly
supported in P and the function ('u.’”'""i )o 18 smooth inside P and has finite limits
at the lateral boundaries of 2. Moveover, as follows from Theorem 4 helow, one
way merely skip Ay) since the function (u1), necessarily becoes separate from

zero in a finite time at the fateral boundaries of P.
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REMARK 3. The assertions of Theorems 1, 2 hold without any changes for
the interfaces occurring in solutions of (1), (2). In Sections 25 we concenbrate on
the case of cquation (1) just to avoid some technical complications. In Section 6 we
show how all these arguments may be carried out in the case of equation (17},

Our next concern is the study of the initial behavior of the interfaces. The
interfaces give boundaries between the populated region and the unpopulated one.
It is of interest to know whether, for given initial data, the populated region spreads
out or shrinks for a short time. In [1, 2, 10] the initial behavior of interfaces for the
Cauchy problem to the difusion-convection equation

tp = (U )y c(u’\)ﬂ;7 c>0, A>0 (4)

was studied. In [2], it was discussed whether the right interface is, initially, a pro-
gressing front or a reversing one according to some mass growth conditions on ug.
(We postpone the explanation of the relevance of the term “mass” until Section 2.)
Returning to problem (1), (2), we have the following theorem for n{t).

THEOREM 3. Let us denote £ = m/(m — 1) and £(b) = £~/ (™1 where
b= [ uo(x)de.
1) Assume thot

limsup (a — )" / ug(y)dy < £(b).

et —()
Then there exist ¢ > 0 and ty > O such that
n(t) Sa—ct for 0t < 4.

2)  Assume that

lim inf (¢ — z) / up{y)dy > 4(b).

w—a—f
Then there exist ¢ > 0 and tg > 0 such that

g(t) Za+ct for 0=t <4y

Notice that if the function (¢™1),.(-, ) is continuous at the interface 5(£) for
t e (04), (e, (W ")aln(t),t) = 0), then the interface equation leads to the
relation
ity =a—bt for 0 <t <ty

In consequence, the support of the solution shriuks initially. For the interfaces

of (PME), a phenomenon of a similar nature corresponds to the existence ol a
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positive time t,, called the wasting time, such that the interface remains stationary
for ¢ < {0,10] ([3, 17, 28]). For equation (4) we refer to |1, 2]. Let ns put

£ =sup{ty i n(t) =a—0b for 0<i <y}

The following theorem gives necessary and suflicient conditions on wg, implying the
positivity of ¢* and presents some estimates of the maximal and minimal distance
between the endpoints of the sets P M {f = const} on the time interval {0, #*].

THEOREM 4. Let

9 1/m
[AH
a=Iinf ((f) (> —x), K= {;1— + maX'u.'('{"} .

120 [0,a]

1y If t* > 0, then

2) " is positive if and only if

o
e

o0
limsup (a — :‘1;)*(’”'*'”/("”’"]) [ uply)dy < +-o0. (

z—a—)

3) Forall t €[0,1%]

b
— <) — () < a—bt — .
7 <pt)—CH) <a—-bt—a

Let us give a short comment on the results just formulated. First, the interfaces
occurring in solutions of equation (1) need not be monotone (Theorem 3). Though
the reversing fronts are admitted here, Theorem 4 asserts that these fronts never
meet. Moreover, the distance between these fronts is measured in terms of initial
data. On the other hand, due to the resulls on the asymptotic convergence of
solutions of (1), (2) to the stationary solution, it is clear that each reversing front

necessarily has a turning point. Moreover, these results hold simultaneously with

the assertions of Theorems 1, 2. In particular, the interfaces pass their eventual

turning points without losing their smoothness. In Section 8 we show numerical

experiments on the initial behavior of the interfaces to supplement owr conclusions
- a

of Theorems 3, 4.

2. Lagrangian Coordinates: Statement of Problem (L)

Regardless of the context in which problem (1), (2) arises, let us view it as
the mathematical model of some fluid Aow. Assuming that a fluid has the density
p = w{x, 1) and the velocity

Vife, ) = ;”“”_% (“mm])_,, - {/ ] wly, tydy — / w(y, I;)d,y} ,
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1 ;

one may review equation (1) in the form of the mass balance law of the fluid motion,

e,
p+(pV), =0 (6)

The initial density and velocity of the fow are derived from condition (2). Equal-
ity (6) is the mathematical expression of the wmass conservation law in the Euler
coordinates system, which is fixed in space. There exists, however, an alternative
approach to the mathematical modeling of fAuid motions. It is based on introducing
Lagrangian {or material) coordinates defined by the initial state ol the substance.
Following the generally accepted scheme of Lagrangiau coordinates [9, 24}, let us
define the quantity

e
5:/ up(s)ds : [0,a] = [0,0]
— 0

to be a new independent variable. The value of & equals the total mass of the
substance contained in the interval [0,z] at the instant ¢ = 0. Due to (3), for
each instant of time the Auid volume contains the same number of particles. Thus,
the total mass of the fluid volume is constant and the variable  (usually called
the mass Lagrangian coordinate) at each ¢ € [0,T] runs the interval [0,b]. This
is very convenient for our further purposes since the problem reformulated in the
variables of Lagrange will be posed automatically in a fixed domain and, therefore,
the interfaces will give the lateral boundaries of the new problem domain. Remark
also that under the above assumptions & is always finite.

As the new unknowns we choose & = X (£, ) — the trajectory of the fluid particle
labelled by its position & at the instant ¢ = 0, and the density v{{,1) = u(X(&,1),1).
The flow is governed by the following relations: the trajectory equation

Xi(6,1) = V(X(E, 1), 8), >0, (7)
X(£,0)€ [U,a,]

and the mass balance law which now takes the form

(&, )Xe(E8) =1 in Q:={({t):{€ (0,6), t € (0,T}}. (8)

Having assumed all the functions we are dealing with to be smooth enough,
lot us perform several transformations. First, relying on (8) and assuming that the
trajectories of the fluid particles do not intersect, we have

N

G WXLt S
[ty = [ gty = [ a0 (.6 =6
- )]

oo JX(0,8)

whence, with the use of (3),
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Next, diferentiating (7) in € and (8) in #, we get the equation for v(€, 1)

1 )
(“) +- (’Um')gg +2=0 in (. (10}
Lt

As already mentioned, the lateral boundaries of @ correspond to the unknown
{free) boundaries of the fluid volume, where the density (€, t) vanishes. The con-
straint therefore is to pose the houndary conditions

o(0t) =v(bt) =0 as < [0,7T] (11}
"T'he initial conditions for v(€,t) are provided hy (2):

(£, 0) = w(€) = uwe(X(£,0)) in £€€[0,b]. (12)

Here the function X (£,1) is to be defined from the relation mtroducing &

X (£,0)
= / o (s)ds (13)
(

S0

which is always invertible due to A;).

This analogy with fluid mechanics justifies the use of the notation “mass”.
From now on we term the problem (10)-(12) “The problem {L)".

The conditions on the initial function vy are generated by Aq)-Ag):

Bi) wp > 0in (0,b); wy(0) =w(b) =0
Bs) H('”;J”),HLD“(O,I)) < My

Bs) there exists £9 > 0 such that for each & € (0,£q) the set {£ € (0,b) : vg{€) > €}
is an interval;

Ba) there exists a constant C' > 0 such that vf* > C(b — £) in some neighborhood
of the point £ = b.

Problem (L) is the object of the further discussion in the part connected
with the interface regularity. Having problem (1) formulated, we eliminate the
free boundary from expliclt consideration. As we show later on, the function (1)

gets the representation

¥
Nty = a-bt = lim / (0", 0)d0. > 0. {14)
0

c_)‘

[+

This representation shows that the questions concerning the interface hehavior and
its regularity properties are no longer independent. They are veduced to the study
of the boundary smoothness of solutions to problem (L).

To legithnize this change of variables we treat (L) as a separate mathematica)

ohject (independently of its interpretation as a description of a fluid motion) and
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show that under assuinptions By) and Ba) it has a unique classical solution. Condi-
tion By) is a byproduct of Ay) and Ay) and is outlined into a separate line only for
convenience of further reference; By) is a byproduct of Ag). Thereafter we present
explicit fornudas restoring a weak solution of (1), (2) by the constructed solution
of (L.). Due to the uniqueness of weak solutions to (1), (2), this solution necessarily
coincides with the one obtained in [21, 22, 23].

The idea of passing to Lagrangian ecoordinates in order to study properties
of interfaces occurring in an evolution ecuation of divergence form comes from
the papers [5, 16, 20]. Later on this method was used in a number of works: see
[8, 11, 15, 25, 26] and references therein. In particular, in [15] it was used for
the stidy of smoothness properties of interfaces arising in solutions of the Cauchy
problem for the diffusion-convection equation. Here we will follow the techuiques of

the papers [11, 25] in the part concerning the proof of correctness of problem (L)

and restoring a solution to the original Cauchy problem (1), (2). The proof of Che
regularity of interfaces will follow the scheme of arguments proposed in the paper
[26], dealing with the same questions for a related degenerate parabolic equation.
The proof of C®-regularity of interfaces will be reduced to the same problem but
for interfaces occurring in solutions of the Caucly problem for the porous medium
equation (PME), which is already solved in [4].

3. Solvability of Problem (L)

3.1. Regularization: statement of problems (L)

A solution of (L) will be obtained as the pointwise limit of a sequence of
solutions of some regularized non-degenerate problems. Let {w,} be asequence of
solutions of the problems

L0, = Wy = WL/LUS’”U o nEE ™ 2'rr’1,/tu,£,f"‘+1>/ e in Q, (15)
o I

wy, (0,8) = w, (b, t) = =, tel01], (16)
1,

1wy (6,0) = wea (&) i (0,0), (n=1,2,3,...), (17)

which we term “Problems (L,)”. Equation (15) follows from (10) by the formal
replacement of 7 (£,4) by w,(£,1). The approximating sequence {wq,} will be

chosen so as fo satisfy the following conditions:

C1) won € O[O0}, awpy N g = vyt as no-- 2

L ) )
Cy) - <o = My + 1w e ey € M+ 2

Cy) there exists =) > 0 such that for each & € (0,20) the sets Po(s) = {£ € (0,0)
won (&) > et

1
Cy) w0 = wy, by = — Lywy =0 as £=0, =1

1

are intervals;
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(l5) there exists a constant €7 > 0 such that

b.

I/\

=4

[ B R

1
won (£) 2 - +C'(b-¢) for

Here My = maxp fwpl€)], and the constant M is taken [rom Ba). Such a
sequence {wy, } may be constructed by the given function wy(€) via a standard

regularizing procedure as follows. For £ > 0 let us put

well) = éw (g—) on R,

where w(£) is an even smooth function such that
w(&) >0 for ] <1, w(@ =0 for |§[>1 and / w()dE = 1.
R
For each integer n large enough we consider the function W, (£) satisfying
WHEY+2=0 on R, W,(0)=17,, W.(0)=DM +1,

where
Tn T / w]/na(f)ggdf.
R

The function W, is given by W, (£} = —£2 + (M7 +1)§ ++,,. Along with W,,, define
the function V,,(€) by V(&) = W, (b~ £), which satisfies

VIEY+2=0 on R, V,(b) =1, V.(b)=—(M +1).

Let g, and i, be such points that

1
[ = Min {f € [0,0] s wo(€) =W, (n Y ) } ,

1, = max {E € [0,0] cwp(€) =V, (b - 7};4,1 ) } .

We note that 1/(ndy) < g, < 1, < b — 1/ (), since W, (1/(nd1)) > we(g) for
0 <& <1/f(nddy) and V, (b= 1/(nMy)) = wp(E) for b—1/(nM;) < € < b Now set

f

W, (& it £< ﬁ,
(::M]) if ﬁé&é;m
Z,(6) = ¢ wo (&) it g, < &<y,
i (b ‘n,j.;[] ) i s b 71,‘112;[1 '
Vil€) ir b- 7;"7\]7]" <&
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The desired function wa, () is then defined by
. L . Tt
'l“(}rz(kc.) = Zn(& - (,.)wl/n:‘(g)d(,. + -
JR T
3.2. Solvability of problems (L)

Given an integer n fixed, consider the corresponding problem (L,,). If (L) has

a classical solution z,(£,¢4) then

1 —
Zn 2 ; QL Q> (lb')
since £, (1/n) = — Mt/ g and 2, > 1 /non the parabolic boundary of

Q [12, Ch.2, Th.16]. Instead of dealing with z,, let us consider the function
Sn = zp + 52 - bEv

which satisfies the conditions

Spt —mzmT/MG e =0 in Q, (19)
1

5,(0,8) = S,(bt) = — as t€[0,T17, (20)
n

S, (8,0) = wpa (&) +&* —b& on [0, ). (21)

By the maximum principle, S, < maxp ) S,.(£,0) on Q providing the upper esti-

mate for z, on Q:

2
Zny S — 4 TNAaX Wop- 22
n 4 [[),Cb] On ( )

It follows from (18) and (22) that equation (19) is uniformly parabolic and in

S, € C*(Q). The function S,, generates a solution w, to (L, ) which must coincide
with z,,.

Moreover, the choice of the approximating sequence {w,, } provides the mono-
tonicity of the sequence {w,} at each point of Q: wn 2 Wpe, no=1,2,3,....

Thus, there exists a function

w(€,t) = lim w,(§.t), ({t)el)
: — 00
which, as we shall see, is the searched solution to the degenerate problem (1.) and
satisfies the upper estimate
b

w < — A maxe] on Q. {23
4 [0.b] '
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3.3. A priom estimates

Levnva 10 There exists a positive constant My notl depending on n such thal

fipe| < My on Q. (24)

Proof. 1t will be convenient to deal with the functions §,, = w, -+ £* — b

instead of w,. By (19)

J d 3]
I~ L DN ¢ T D VL T R ] _
a_{;(.S.,,&) N, 7 1w, ag(5,15) =0.
Hence, 5, assumes both the positive maximas and negative minimas at the para-
bolic boundary of €. Due to Cy), Sy¢ is bounded as ¢ = 0. Let us control it at the
lateral houndaries of €. As a classical solution of (19)-(21), 5,, admits the upper
and lower barriers
1 " 1 , 1 1 R
o Ci(b=§) <8, < - + Ci(b—£), i Cnf <5, < - +Ché in Q
provided Cy, Oy are chosen sufficiently large. Dividing these inequalities by b— & or
£ respectively and letting then £ — b, £ — 0, we get

—Co < 8pe(0,8) < Ch,  —C < Spe(byt) <Oy as £€{0,T).
REMARK 4. The uniform Lipschitz-continuity of the sequence {w,} in £ im-

plies its uniform Holder-continuity in ¢ [13, 18]. Therefore, the limit function w
belongs to C{Q), at least.

LEMMA 2. There exists o positive constant C not depending on n such that
Wt c
> T in Q. (25)
Wy A

Proof.  Dropping subindex, we derive from (15) the following equation for the
hanetion o(€,4) = w (&, 1) /w(E, 1)

m-+1 o
e —

Bo =g — 'Jn/u,:("”“)/"”'055 — 277’2,’11)1/””*11)505 + 2w M =0 in Q.
m
Consider the function w(t) = =CT/t, € = const > 0. By (16), ¢ > w at the

parabolic hboundary of . Next,

cr mA+1 :

Bw = T (l — 2™ ”+(7’["> <0 in @,
& T

providecd

c s m
ST b+ DI
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and we have ¢ > w in @ by [12, Ch.2, Th.10].
REMARK 5. Letting n — oo in (25) we get

1

C
wny = e in DNQ). (26)

LEMMA 3. w(&,t) is strictly positive on (0,0) x [0,71].

Proof.  Fix an arbitrary & € (0,0). By continuity of w in Q) there always
exists to > 0 such that w(&e,t) > 0 on [0, to]. Let us rewrite estimate {25) in the
form (tcfw-,,,) L 0 and then integrate over the interval (tn,t). Then

I
t
lUn(‘EU) [) 2 (W{Q) ’L(?,,(g.c(],t())

and making n — oo, we complete the proof.
3.4. Solvability of (L) and the inverse coordinate transformation

LEMMA 4. The function v(€,t) = w*/™(&,t) is the unique classical solution
of problem (L). Moreover, w € C(Q) N C™(Q).

Proof.  Eaistence. The proof repeats the arguments used for the proof of
the same propositions in {11, 25]. Multiplying (15) by an arbitrary smooth f(&, 1),
compactly supported in @, and integrating by parts in (J, we obtain the integral
identity for w,. Estimates (22), (26), strict positivity of w in @, and pointwise
convergence of w,, to w allow one to pass to the limit as n — oo which leads to
the integral identity for w. Thus, w is a weak solution to {15) in Q. Due to strict
positivity of w in @, in each subdomain Q' of @ separated from the parabolic
boundary of (7, w may be treated as a solution of a uniformly parabolic equation
and its smoothness may be improved then by the “bootstrap” argument [14].

Uniqueness. Uniqueness of a strictly positive solution of problem (L)) follows
from [6], where it was stated for strictly positive solutions of problem (L) but with
equation (10) replaced by

Hence, the proof is complete.

To cowplete the justification of the passage to Lagrangian coordinates, we mist
still check that the solution obtained for (L) gencrates a solution of the original
problem (1), (2).

Let X (£,t) be defined by {13). Introduce the function

o
X(g,t)ﬂ_,-’(g,op/ (w + % — bE)edf on Q (27)
L0
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and set

Q20 ={reR:a=X(1), £&(0,b)}.

. {S(&.ﬁ) if e 02, (2)

otherwise,

Deline

It is easy to verify that n{x. t) satisfles all properties listed in items 1)-3) of
Definition 1. As for item 4), it may be checked as follows. Let f(x, t) be an admissible
test function from Definition 1. Let F(£, %) = F{X (&, 1), 1), Using (8), (9}, (27) and
Lemma 4, we have

0

[ Gtendsa= [ i+ nxoden= [ Gor fwyigr
Jog di

Q I

/ l:fi‘i 1 ( m”il(”’m“])"’ /: w(y, t)dy + /Oo u(y,t)dy)} udzdt.

We also see that by (23), (28) and Lemma 4, u is estimated as

9 ]/m
f A
ulz,t) < { )i + 1[11(1}? u(’}’} =K for 2€R, 1>0. (29)
4 0,0
3.5. A representation formula for the interface
To prove (14) it suffices to show that X (&,t), given by (27), is monotone in £
for each t € [0, 7] fixed. Differentiating (27) in £ and using (10), (12), (13), we have
at once
Ne=— - d(eﬂ”v+v52 b )exdh = —
Telen S TR T g0
Global Lipschitz-continuity of the interface. First, we show that the function
W(E, ) for each t € (0,T] has a finite limit as € — b. By virtue of (26) this may be
done by the standard arguments [11, 17]. By (24) we also have that [W (b, )| < M.
Hence, for all t,1 4 At € (0,7]

> 0.

1AL
In(t + At) — (1) = }/ W (b, 63d0| < M| At
Ji

The winterface equation. 1t follows from (27) that

Np=—(o" + 8 = bE)e v Q.

Due to global Lipschitz-continuity, the right-hand side of this equation has a fnite
limit as & — b for each t € (0,7 fixed and so is X (£,1). It follows that

00+ ling (0" 4+ €2 = bE)e =0 in D07,
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4. Estimating the Time Derivative u;
4.1, A lower estimate for the spatial derivative
LEMMA 5. Assume Ay)-Ay). Then there exists o constant L >0 suech that

(e"™)e(b,t) < L for any t < (0.T] (30)

Proof.  Let

b
v= Il w| —,f] >0.
! (0.1 ( 27 )

Take a constant L > 0 so small that 1/n + Lb/2 < pi (for n large enough) and

T

l -+ [J(b e E) < 'U’On.(g) for any 6 € (‘g’ b) ’

The function w,(£) = 1/n + L{b — £} is a lower barrier for w,, in the closure of the
rectangle D = QN {¢ > b/2}. Hence, wy, > wy in D. Letting n — co we get the
inequality

w(é,t) > Lb—¢€) on D,
whence (30) by using (11).

4.2. Preliminary estimate of the time derivative
The same arguments for the proof of Lemma § show that for all integer n large
enough

wyelb,t) < =L for 1€ (0,T]

with the same constant . These inequalities coupled with (24) show that in a
neighborhood of the right-side lateral boundary of @ w, and w may be chosen as
the new independent space variables.

Fix an integer n large enough. Following [7], let us introduce the new indepen-
dent space variables n and the new searched function y, (n, ) by the relations

1
n+ — =w,{b—y.(n1),t),
== (b— gl 0.0 "
Yot =b—&.

By the same formulas, letting n — oo, we introduce the space variable 5 related to
w. By (31)
1

Wyt = Wrelnt Wpg = - I
Yy
Substituting these expressions into (15), we deduce the equation for the function

Yo

w
]

{ore-+1)/m

7 + ;) ) 1 Gk L) .

Yot = 1M - ) Yoy — l””y’l 0\ + . ) (
(.Uli'i'])u T
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The same equation holds as 1 — oo Tor y(n, £). We will consider equation {32) in
the domain H = (U, 10} % (fg. T+ 1] with an arbitrary #5 € (0,7 — 1) and 9y chosen
by the unique condition:

~J

-1 = ps—
i Sl s g I (33)

—
U

The first estimate on the functions w,,; or, equivalently, 4,,; follows by a simple
adaptation of the estimation procedure proposed in [4] in the treatiment of the
porous medium equation. As follows from (33), the rate of decreasing (or vanishing
in the limit case} of the cocficient of the major derivative is already estimated
from below and from above. Having derived the equation for y.,, from (32), it
1s possible to perform a local rescaling transformation in 7 and ¢ to render this
equation nondegenerate paraholic and refer to the results of the standard parabolic
theory [19, Ch. 5, Th. 3.1], which gives yyu., ~ 7! and

iynf,‘ S C"Ul/,” in H

with a constant ¢’ depending only on m, M., L.
This estimate may be improved by means of the following result;

LEMMA 6. For each t & (to, 1o+ 1]
Yy ) — 0 as g - 0.

Proof.  Fix some n and put 8 = y,,;. Differentiating (32) in ¢, we deduce the
following equation for S:

(m~+1)/m ; ;
1 0 1 88
— = L2205l =0 in H. :
Sy = m (7) + 'n,) a7 [(y””)g B S} in H (34)

Since y,(0,1) = 0, it follows from (34) that

13, 1 a8
e —=— — 25| =0 as n=0. 35
an [(y,,-,,V an } I (45
Consider the function
S,
P o= Lt
(Y )2

With the use of the identity

( ig,’ ) ‘S"”. ) ( ‘Sr” )'_
2 = 5 T Al b oy
(y‘u‘J})— " (‘y””)— (y'!l‘r;)_

we obtain the following equation for p(y,£): in H

- G- 13 /1y
mo 1 tp
'/‘\/tn/7 =P T [(” + ) !

. 1y et/ dp
+2m (n+ — o
7.

{(3ran)? B n an iy

478?/”!;/)‘9 =+ 23/11?)/’)2 = ‘8‘.’/:1«,;52 < 0.
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Now take the function

K
wl(t) = ——, N =const > (.
I wmay be always chosen so large that w(t) > p(y,t) at the down-lTace and the
right-side lateral boundary of H. For the left-sice one, it follows from (35) that
(¢ — p)y = 0 as n=0. Using (33), we calculate

Sy S I KE I N
T + 2'.{/m] oy 2 B — =1 > 0
t— 'll,[) t — o (f - lfn)“ (ii — ’ﬁ(',)‘ A [3

Mo =

in H, provided K > M,. By [12, Ch.2, Th.16] we conclude that o(i) > pln, t) in
H. Thus,

7] K’

(gardnt) < ;o o A

an t—t
for sufficiently large K7 independent of n, and as n — o0,

. 1

b
[ <
an(ya)(v,t) <

P in H. (36)

One may always assume that the constant K' in (36) is not less than the
constant C' in (26). Observe that in our choice of I’ the function
K'n
t— 1o

Y —

is nonpositive and non-increasing in 7 for each ¢ € (to, to + 1] fixed. We then have
the following upper estimate

o f

‘ FiY Ly
n My, t) < =0TV in H (37)
LT LD

Let us derive a lower estimate for v, in H. First, let us remember that by the
Cauchy criterion
1 1
Yy (28, ¢) - Yy(s,t)
Take an arbitrary s € (0,170/2). By virtue of (32} the following chain of relations

—0 as s-— 0

holds:
{ 1 1 ] 259 { 1 }
- : - = = | —— ] d
v (2s,t)  wu(s.0)] Js O L wm(nt)

W2y
dyy -+ 2 / Ynclny
/5 I’TI)' TIL- i l)/m . nl
9

[ 1'&'177 N 1 N [&] 2y 1 l . ) /-».k /
Yo @ it 1y T 0T
. mpt ’”‘H’/”' - to / m(t —ty) S, !]l/m , s Yuttll

= Iy + Lo+ Iy
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The function i the curved braces in the integrand of 17 is nonpositive and non-
inereasing on s, 2s]. Therefore we may esthimate Iy as follows:

e gy B 2 1 P G (5 2/
L1 f/i-('bv ) '''' - o/ . ”-”](m+l)/m(” - 'Uf'(b' J - t— f() (2,‘;)]/”’

«2'1/!1).*1 e
< BT Vg (s, 1),

Also for Iy and Iy, they may be evaluated directly. Henece, we get

21/1‘!1 _
QT/m

1 1 i
— :|—1Tg~]3——*>0 as s — 0

1 —1/m |i
5 (s, 1) > —
) Yn(25,1)  yyls,t)

for each ¢ € {1y, 10 + 1].

4.3. An improved estimate for the time derivative
The estimate of Lemma 6 allows us to adopt (in the new variables) the barrier
construction proposed in a similar situation in [4].

LevMa 7. Giventy € (0,T), there exist positive constants C' and ' € (0, 1g)
such that

i (mt) <7

on [0,1] % (tg, 1y + 1]. (38)
t— t‘()

Proof.  As above, we denote S = y; on H. Let us transform equation (34) for
5 to the following form:

1

NS = S; — 7'”7)(771‘{“1)/771
()2

\ 2
Sy + Gvn,'r]“”‘“)/r”’S,, + ;S’S.,, == (),
Hn

Following [4], let us construct for S a local lower barrier of the form

1/m __ e n —— ;
(S([ — t()) + .’.](mw )/m

z(n,1) = —n
where positive constants v, e and & arc to be defined. Calculating Az, we obtain

N <ogiim [ moL 1
m (yv;)— m Yy

N n o6 4 £ 2 m—1 1
__ — £ — — g ——— = -
{{5(/ _ /j[)) + T,(m»].)/m,}z Un T (y”)z

The first guess 1 the cholce of the parameters v, e, 6 is to take them so small that
Nz < 0in H. Next, for { = 15, n small enough, and with £ already fixed

2. to) = ~(y + et S et <y ()
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due to Lemta 6. We must still control the differcuce z —y; at the lateral boundaries
of (0,7") % (tg, tn + l} By Lemma 6 we conclude that for each v > 0 fixed 2 =9y < 0
ag 7 — 0. For 1 = 7' we need the ineguality

el

£ ” .
wlrot) = =0 = e € o L

Set & = (1)1 Now we make the second step of choosing ' taking it so that
S L - g 4 AN ¥4
== < ) (= o))

Applying [12, Ch.2, Th.16] we conclude that = <y, on [0,77] x [ty, to + 1} for all
v > 0 small encugh. Letting v — 0, we have

0
t—tg

ylnt) = —

Onlﬁ

Hence, we have the lower estimate. The upper estimate for y; is already stated by
(37).

Since ty was taken arbitrarily, we will use estimate (38) in the following for-
mulation.

CoROLLARY 1. Given an arbitrary t' € (0,7, there exist constants C(¥') > 0
and " € (0,b) such that

hwy(€, ) < C(E)w(€, ) (39)

in the closure of the rectangle E(t') = (£, b) x (2¢/, 7).

5. Regularity of the Interface

5.1. C'“-regularity: proof of Theorem 1

Set S(£,#) = w(E,t) + &2 ~ b€, Due to (14), it will be enough to prove that
Se(b, ) € (7, 7+ 1) for each 7 € (0,7 1]. Denote o = 5;. For o and § we have,
respectively,

, , d ‘ e
Sp = muw ™t MG =0, Po =0y~ Mo (’Lu('“"'"”/’” 5%) =0 in Q.

Given some 7 > (0, let us consider the domain E(r/2). The results of the previous

)
sections imply the following properties of o in E(r/2):

{ <
J ‘b?l é‘_ < N{f L—)(mvl)/'m
maptmFl /m = & !

a(&t) — a(b )] < /

JE
N =const > 0,  use (39);

o(&,¢) is uniformly bounded by a constant Ly and og(€.1) = O((bh— &)~ 1/™)
as & — b,
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All the constants appearing in these relations are finite and depend only on 7.

In the domain G(p} = (b — p.0) x (7, 7+ 1], let us consider the functions

(1) = {6 0) — albdo)} + Ly {407 = b - gm0

b

+ % {Lalt — i) + (b~ £)7)

depending on positive constants Ly, La, Ls, p. Choosing Lj. Lo, Ly large enough
and taking into account the ahove-listed properties of @, one may easily check the
following inequalities:

o . ) t—t
Uj:(b — p,t) > —2]4() + 3L] [)(”)'W])/m' -+ L2L3 B 0 -+ L.-Z > (),
p?

e 1) Fom b—£)?
Ui(ﬁ,i) > __N(b - 5)(7)1.»1)/1”, _}_3]41(1) m é-)(mml)/m, + L?«(y OE) > O,

p?
A= oom =1 ) b—¢
—— 2| -N+ —Ly | (h—&)" Y™ —2L >0 (- as £ — b
Be m( N4 - ]])( £) o e (=00 as £ —b),
: Loy L, m - . b—
PUE = # — (m + D/ ™, { itk lL; (h—g)y t/m _2p, ’ UE}
z m p?

m—1
—w! /'”‘wg -

I (b — g)_(m,-{-l)/m . 277?,’11)(”1‘"'~"])/'”’_3 S0,
I

These relations hold for an arbitrary p small enough. Referring to [12, Ch.2, Th.16]
we conclude now that U=(£,4) > 0 in G(p). Letting £ — b, we then have

t — 1o

2

lo(b,t1) — (b, to)| € 4Ly ptm V™ 4 Lo Ly

for ¢ > to. (40)

Notice that: ineguality (40} holds regurdless the concrete choice of p. Making use
of this, we will choose p in a special way. Namely, assuming At = ¢, — ¢y be small
enough, we sot

p = (Ai)m/(ﬂm ,])-

Then {40) takes the formn
la(bt1) — a(b o) < R(Af,)(”'_])/(3”"‘1), R = const > 0.

Now recall that all constants in the previous proceeding did not depend on the
conerete values of ), 7y and, correspondingly, p but are the same for all G{h — £,
That is why the previous argunients may be repeated in the case when the value
of t1, defining the top-face of the rectangle where (40) holds, is fixed and #; is free.
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5.2, (C“-regularity: proof of Theorem 2

Having proved CH-regularity of the interface, we may improve this result
reducing the problem to those already solved for the porous medium cquation.

Let us consider the Cauchy problem for (PME) with the initial function wq,
subject to conditions A|)-Ay). Tt is easy to sce that the same arguments, ie., the
passage to Lagrangian coordinates, the proof of the unique solvability of the cor-
responding stable-boundary problem, the proof of equivalence between the original
and Lagrangian statements, and the study of the interface regularity, arce true.
(See also [27] for the direct prool of this equivalence.) The interface in the Cauchy
problem for (PME) has the representation formula

"
n(t) = a ~] (0" )¢ (b, 6)d8,
0

where v is a solution of the equation

(E) (0™ =0 i Q
I3

v

satisfying the boundary and initial conditions (11), (12).

It is shown in [4] that in the case of (PME) n € C%(7,T),7 > 0. This result
holds for the monotone moving part of the interface, i.e., under Ay), for the whole
interface. The result of [4], being written down in the variables (£,t), is the following:
let
(i) HO0—=¢& <v™(Et) £ Cb—§), C = const > 0, in some rectangle E(7),7 > 0;
(i) [(v™)e(&, )] < Cro™(€,t) in E(7).

Then the functions D] ((v™)¢), s = 1,2,..., have finite limits as £ — b. This con-
clusion is made by the consideration of parabolic equations obtained for Dy ((v™)¢)
from (PME). The structure of their coefficients and the estimates of (i) allow one
to pick up a special rescaling transformation rendering (locally) these equations
into uniform parabolic ones; therealter one has to have recourse to the results of
the classical parabolic theory [19, Ch. 5, Th. 3.1}, which provide the requested
estimates.

Let us now write down another Lagrangian analog of the Cauchy problem (1),
(2). Eliminating v(&,t) from (7) and (8), we obtain the following conditions for
X(&t):

. 1 . . .
X} o= /,-,-LWAEE —2+b in Q.
A solution to this problern is given by the constructed solution to (L). Formally,
the function o = X satishies the equation
1 Nee

[l
T = 'r'r'Lm»«'j"m-j""(Tx:E e ‘)"H,(’HI‘ ‘\L ;)ﬁ*z()’g
,{\E
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The same conation with the coefficients possessing the same properties holds for
the function X, if we denote by X the function standing for the trajectory of
the particle in the Lagrangian “twin” of the Cauchy problem for (PME) . This
coineidence proves that the differential properties of the functions X and X must
be the same.

6. Generalization to Equation (1')

Here we point out how all the preceding analysis may be carried out in the
case of general equation (1'). Following the above-described scheme of Lagrangian
coordinate introduction we arrive at the equation

(E) (e +FE =0 Q. (4)

7

So, the only difference hetween the above-considered case of linear function @
and the general case is that now one has to deal with equation (41), having the
coefficient of the minor term not constant but bounded and positive (see N3)). This
provides the validity of all the steps of the former arguments, which rely only on the
maximum principle. Passing to a sequence of solutions v,, of regularized problems,
corresponding to (41), and denoting w,, = v/ (cf. (15)~(17)), we then introduce
the functions

£
Sy = Wy + / b(s)ds,
Jo
which satisfy equations (19), the boundary conditions (20), and the initial condi-
tions related to (21). It is easy to see that if ¢ is assumed to be smooth enough,
then one may literally repeat the proofs of all propositions of Sections 1-5. As a
conclusion we obtain

THEOREM 5. Let conditions Ay)~As) hold. Assume that ® € C™ and satisfies
N;;). Then

ne C2(0,T).

7. On the Initial Behavior of the Interface

Let w{x, 1) be the solution of problem (1), (2}. Define

e
(b)) = / w(y, t)dy.
It is easy to see that z is a solution of the problem
2 = (|z_,,,|"””‘z,,,.,)w +{(b—z)z}, in 8,
z(—oo,t) =b, z(+oo,t) =0 as t e [0,7T),
el t) €0 in S,
Ha,0) = =pln) on R,
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where
L

:(;(:r:):/ uy(y, tdy  and b:/ wo (1) dy.

=D

The function z(x, 1) also satisfies

2at) =0 (< 1), 0<a(z, t) <b(Ct) <a<yll)), =(x, ) =0(z 2 n{t))

for t & [0,7T].
Define the function £ {w; b} by
Flw;b) = / o HMmh—6) Yo for 0 < w <,
Jo

and put
ol ) )
L(b) — / O_—.L/'m(b _ O‘)_l/mdo"
()

Using the inverse funiction F~*(z;b) of F'(w;b), we define the function w(z;b) on R

by

b if o <a— L{b),
wla;by={ F Y a—zb) if a—L{b) <z <a,
0 it > a.

The function w(w;b) is a solution of the problem

0= (ju]" W) + {(b-ww) i R,
w(—00) = b, w(+oo) =0,

() <0 on R

and is normalized by the condition w(a; b) = 0. It follows from the construction of

w(a; b) that if by < by, then

w(z;by) <wle;be) for z<a

LEMMA 8. limy—,_o{a — 2) " ‘w(z; b) = £(b).

Proof.  Note that
¢

. wlasb) . w!/f
:1-.}-%}}1—() .((7, - (r;)(‘ - ulﬁ}ﬁﬂ { Flw: b) ’

We then have
wl/i‘ i wL S 1

ulilil—n Flw; b) T~ ut—%{n wem (b —ALJ)TI/F T

whicli completes the proof.



408 J1L Diaz, T Nagar and 5.1. SHMAREV

7.1, Proof of Theorem 3
Assume that limsup, (e — ) """:n(.z:) < £(b). By Lemma &,

lim sup <1,

gm0 W b)
whicly implies that
wlr) < Kw(x;b) (oo <z <a)
for some < A < 1 and gy < a. Choosing ; such that

O0<by <b, KILIB) < D),

we have
i Kuw(z;b)  KL(b)
a0 wlziby) — L)

From this relation,
Kol b) < w(m b)) (e Lo <a)
for some ag < a7 < a. Hence,
zolz) <w(z b)) (o <@ < a).
Having defined ¢ = b — by > 0, let us consider the function
gle,t) = wlx + et ),
which satisfies

gy = (qur“,T’M]q‘v:):n + {(b - Q)(I}ﬂi il] (a‘l ) OQ) X (0>11]>
z(o0,t) = q(oo,t) = 0 for ¢t € 1[0,7],
(2,0) = z(z) < g{z,0) on [ag,o0).

vy

By z{ay,0) < g(ay,0), there exists ¢y € (0,7 such that
sy, 1) < gla, ) (0<1 < ig).
Hence, by the comparisen theorem we obtain
a, ) < gle, ) (x2a, 051 <),
which implies
y(t) <a—ct (0<t<ty).

Under the condition liminf, ., (o — 715)7{3(](.’1.’) > £(b), by using similar arguients
by is taken as &y > b and it is shown that n(t) > o+t (0 < ¢ < 1), where
¢c=0p —b>0,
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7.2. Straight interface

We first compare the interface n(4) to the vight interface &(#) of the solution
pla, £) to the Cauchy problem for (PME) with p(-,0) = ug. There holds that £(¢) > a
for + > 0.

LEMMA G () 2 (1) — bt for 0 <8< T

Proof.  The function g(x,t) = [ Wy, t)dy satisfies
a — (|4 |t )(r =0 in S,
gl—oo,t) =0, qloo,t) =0  lor t[0,7],
g(x,0) = zy() on R.

Let us define the function ¢(z,t) by
wla, t) = z(x - b, 1),
which satisfies
— (lezl™ " e2), = —2pp. 20 in 5,

(p(——oo, t)=1b, (oo, t)=0 for teld,T],
w(x,0) = z(z) on R.
The comparison theorem concludes that
gz, t) < @z, t) on 8.
Noting that
glw,t) >0 (z <&(t),  alz,t) =0 (x = (1)),
we have
(1) <m(t) + bt (t>0),
which completes the proof.
The next lemma shows that n(t) < ¢ — bt for swmall time under condition (5).
LeMma 10, Assume condition (5). Then there exists to > 0 such that

n{t) <a—bt for 0=t<t

Proof.  The function ¢(x, ) = z(x — bt, t} satisfies

s

Lo=pr— (loe" e, + (¥7)w =0 in 8,
wl—o0,t) =b, oo t) =10 for ¢ € [0,77,
wlx, 0) = zy(e) on R.
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Let us choose M > 0 satisfying

liny sup(a — :1;)7(""'7‘"I)/(”"”l)zn(a:) < M < +oo.

e (= ()

Then there exists oy < a such that
@z, 0) < M{a— )"0/ 0=0 gy gy < o < a.

We define the function g{x,f) on |ag, o0) x [0,7) hy

- 1/(m-—-1}
M(a — H;)('J'r:,+1)/('171~1) (______}_) if ag < x < a,
T 1

0 if 2> a,

gle. 1) =

where a positive number 7 will be suitably chosen below. Let ay < @ < a. A direct
computation gives

S/ {m—1)
L(] — —*ﬂ{“(@* 1_)(*rn,-+—l)/(m7]) (__z__‘)

mo—1 T—1

m (2—m)/(m—1)
1 m o+ 1 .
% { — —2m (m + 1) M™ 1 —2(m + 1) M? (0 — 2)?/ 001 (L> }
.

i T—1

Note that

- (2~m)/(m—1) )
(____) <22y <t <
T —1 - - -

b3 3

Taking 7 and a — ag small enough, we have

Lg>0 in (ap,a)x (U, %]

Hence,
Lg>0 i (ag,00) x (O, g}
By @(ag, 0) < glug, 0), there exists 1 € (0,7/2] such that
wlag, t) < glag,t)  for 0 < ¢ < 4.
Therefore, g, t) satislies
Lgz0 in{ag,o0) x (0,16],
elan. t) < glap,t), @(oo, 1} =g(oo, t) =0 for t & [0, 1],

wla,0) < gz, 0) on [ay, o).
The comparison theorem concludes that

e, t) < qla, ) oun lag,00) % [0, o,
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which implies
n(8) + bt <a for [ €0t

Thus the proof is complete.
We are now in a position to prove Theoreny 4.

Proof of Theorem 4. We begin with proving the agsertions 1) and 3). By the
definition of «,

a <ty < nlt) for =0,
At the interval [0,#*] this estimate may be specified: by the definition of ¢*

a <) <n(t) =a—bt

Also, from (3) and (29) we derive

()
b= /C(t) w(e, do < K(n(t) — (1)) < K(n(t) — o) < K{a — bt — «) {42)

for t € [0,¢*]. It follows from (42) that the assertions 1) and 3) hold.

Let us prove the second assertion. For the first thing, we recall a result on
the existence of the walting-time effect for interfaces occurring in solutions of the
porous medium equation ([28]). Let p(w, t) be a solution of the Cauchy problem for
(PME) with p(-, 0} = uy and £(¢) be the right interface. The [ollowing assertion is
true: condition (5) is necessary and sufficient for the existence of £; > 0 such that

Et) =a for te|0,t]. (43)
Assume condition {5). Then it follows from Lemmas 9 and 10 and (43) that

a—-bt <n(t)<a—>b for 0 <t <min{ty t},

which implies t* > 0. We next assume

limsup(a — o)~ k1 1) / woly)dy = +o0.

a— . —f)
Then, &(t) > o for + > 0. Hence, by Lemma 9 we have
ity > a—bt for ¢ >0,

which iniplies t* = 0.
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8., Numerical Experiments
We uge a linearly implicit finite difference scheme to diseretize the problem
wy =o' T e +2), 0 £ D >0,
w0,y =w(b,t) =0, t >0,
wle.0) = up(X(E.0),  D<E<h,

where X(£,0) is given by the relation (13). This problem follows from the prob-
lern (10)~(12) by putting w(, t) = v"{£, t). The numerical right interface is then
obtained by discretizing the relation about the right interface 5(i)

n(t) = X(b,0) — /O.V{UJE(J)., 5) + b}ds.

This approach was adopted by [6] to construct the numerical interfaces for the
porous media equation, and the interfaces are tracked quite accurately.

Ta discuss the initial behavior of n(1) numerically, we take m = 2 and the
injtial function ug as

p+1 2 N\ i
e [ ] = — 2 — — if 0<a<m,

wo(z) = T ( 7 2 - {44)
0 otherwise,

where p > 0. In this case,

b= / up(z)de =1, X(B,0)==n, (=2, ((b)= %

It is easy to see that

lim (m—a)™" / ug(y)dy > £(b)

w—ra—{)

p=1.91208602

s

Fig. 1. The numerical right interfaces for p = 0.2,0.6, 1.2, 1.9.
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if and only if 0 < p < 1, and that the reverse inequality holds il and only it p = 1.
Figure 1 shows that the vight interfaces n(#) for p = 0.2,0.6 (resp. p = 1.2, 1.9) move
to the right (resp. to the left) initially, and that the interfaces are not straight. This
result is consistent with the conclusions of Theorem 3.

Concerning the positivity of ¢, it holds that ¢* > 0 if and only if p = 2 (see Theorem
4). Tn Fig. 2(a) it is observed that the right interfaces n(t) for p = 3,4, 5 are straight
initially with same slope b = 1 from the definition of £,

Figure 2(b) shows the waiting time ¢, for the right interface £(f) of the porous
media equation. For t, it holds that () — 7 (0 < ¢ < 4.) and £(¢) > 7 (t > t.).
In Fig. 2 we observe a similar property between ¢* and f. such that both £* and #,
decrease with increasing p. In the case of p > 2, we are unaware of any results for
evaluating t., but it is shown in [28] that ¢, is estimated as follows:

1

<t < 9B’

1 e
6B B = ?Lgv)r('/r — )3 /1 10 (y)dy. (45)
Denote B by B, for p in (44). It is seen numerically that the relation

By < By < By (46)

holds. By taking into account (45), the relation (46) suggests that both ¢* and ¢,
decrease with increasing p.

p=23,45 p=23,4,5
t 4
T N T .
T z
(a) The interfaces n(t). (b) The interfaces £(¢}.

Fig. 2. The numerical right interfaces for p = 3,4, 5.
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