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Abstract

This paper is devoted to the Backus problem, a boundary value
problem for the Laplace equation on the exterior of a bounded
open sel with a lully nonlinear boundary condition. We get a new
unicueness theoreni for this problem and propose a way of proving

existence of solutions.

1 Introduction

In this paper we deal with the Backus problem:

Au=10 outside 5,
|Vu| =g on S, (1)
w(z) — 0 as @ — 00,

where S is a closed surface in IR?, € denotes its exterior domain and g

is a given positive continuous function on 5.
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The physical motivation for this problem comes from Greodesy (see,
for example, [2],[6],[11],[12],[17], [30]) and Geomagnetism (see, [21,03],[4]
and [19]). Assuming to be known the surface of the Earth S, in Geodesy

it is posed the problem of whether the external gravitational field of
the Earth can be (or not) determined merely from measurements of

its intensity on the Earth surface. If by u we denote the gravitational
or newtonian potential of the Earth, and g denotes the modulus of the
force of gravity on 5 (in Geodesy g is simply called gravity}, then by well
known properties of u (see, for example, [13, Chapter 1]) the problem
posed above leads to a boundary problem like (1). (We observe that this
is only true if we do not take into consideration the Earth rotation as
we shall assume here; for a more complete model see, for example, [6]).
This geodetic problem is quite realistic since the gravity can be casily
measured both in land and sea, and by spatial positioning techniques the
hypothesis concerning the knowledge of S is not far from be realistic too
nowdays. [n Geomagnetism we may formulate a completely analogous
problem for the external magnetic field of the Earth.

In IR?, a problem like (1), where now S is a simple closed curve,
can be essentially reduced to solve a Dirichlet problem (see [9] for a
physical motivation in dimension two where however u is harmonic in the
terior of S). In fact, if without loss of generality by Riemann’s mapping
theorem, S'is the unit circle and we replace the condition at oo in (1) by
u bounded in §2, then by the inversion defined by z = x 44y — 7~} where
F =2~y and (2,y) € IR?, the function #(z) == w(1/%) is harmonic
in the interior D of the unit disk and, in addition, |Vi| = |Vu| on
|2| = 1. Now, the function f(z) = di/dv — ida/dy is analytic in D and,
if f(z) # 0, then log f(=) is harmonic as well. The real part of log flz) is
precisely log |[Vi| and this proves that log [Vi| is harmonic in D). In this
way, if g is strictly positive, all we have to do is to solve the Dirichlet
problem

Av=0 inD, v=logg on|z]=1.

where v = log |Va|. By means of the Cauchy-Riemann equations we then
may determine log f(z) and hence f(z). This is the strategy to solve in
R? the problem we are concerned with. Nevertheless the solution is not
unique, since there are infinitely many harmonic gradient vector fields
(Ou/0w,du/0y) whose modulus take the same value on |z] = 1 (for more
details, see [2, Theorem 1] and [22]; in [22] the case where ¢ may vanish
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is also considered). |

In IR? this approach is not leasible and neither the inversion wap
preserves harmonicity not log |Vul is harmonic if «is harmonic. The '['I.I‘S'l]
drawback could be overcome by considering the Ixelvin transformation
(see [1, Chapter -]); but il we do so the IJ()Lln(la‘,ry condition is not
preserved and it changes slightly. For example, if now v deuotes the
Kelvin transform of v and

9

S={x=(2,vg,23) € R? - zf + a3 + wi =1}, (2)

then it can be proved (see [24]) that {1) is equivalent to

Ap =0 inside .5,

0.0 2 , ‘ (3)
(*u + iti) + |Vl =g? on 9,

dn

where dv/0n is the outer normal derivative of v and Vv denotes the
tangential or surface gradient of v.
At this point it should be noted that the problem

Aun=0 inD, |[Vu=gonls, (4)

where D is the inferior of a closed surface S has no special relevance in
Cieodesy at best of our knowledge, and it is completely different to '(fl_)
(see Remark 2.8 in Section 2). This interior problem has been studied
by some authors (see, for example, [20] and [21]}).

* As far as the authors know there is not yet a global existence theorem
for (1). Some local existence theorems are known (see [()], [11.5]“anci
[20]): roughly speaking, if g is close enough (in a couven}'ent Halder
space of functions) to some gy such that go = |Vuel on 5, w/w'r'e.‘ w0
is a given, regular at infinity, harmonic function in 2, 't/‘z,e"n thc?r(f 18«
function u elose to ug solution of (1). (Hereafter, by a solution of ( l',) we
mean a function « € C2(2)NCYQ), vanishing at infinity, and satisfying
pointwise both the Laplace equation and the boundary condition).

The following uniqueness result for problem (1} is well known (aeg
(2], [17]): there is at mosl one solution of (1) whose 7‘1.0'('77“1(,1.[(/ew:zwuat'z,'ue
Is strictly negative (or strictly positive) at each point of 9. Iu E’)G(T"LIFH]
2 of this paper we generalize this result to functions with nonpostiive
(or nonnegative) normal derivative. Although our approach is the same



182 . Dinz, J. [ Divz and .J. Otero

as that followed by Backus (via the maximum principle), our general-
ization comes from a slightly more careful examination of the houndary
condition,

[n Section 3 we present a possible way of proving existence of so-
lutions of Problem (3). The key idea of the approach we propose is
based in the following simple remark: if (3) has a solution which satis-
fies v+ dv/9n > 0 then necessarily

dv -

"This leads to the consideration of the associated oblique nonlinear bound-
ary problem (see (7)). In Section 3 we state a uniqueness theorerm for
this problem (7) and study the relationship between this problem and
the problem (3).

Throughout this paper we shall denote by H(f) the real space of

harmonic functions in an open subset Q of RN. For unbounded €,
Heo (€2) will denate the subset of #(Q2) consisting of functions vanishing
at infinity. If S is a closed surface in IR?, we shall use the notation

Ci(S)={9€C(S):g(z)>0Va € S}

2 Some results about the unigueness of solu-
tions

In this Section we shall often use the following
Lemma 2.1 Let S be a closed surface in R® and let Q be the unbounded
connected component of R*\ S. Let u € Hoo (QNCHQ), uZ 0, be such
that lim, o w(x) = 0. Then

min(m, 0) < u(z) < max(d,0), Vo e Q

where m = ming w and M = maxs u.

Proof. Without loss of generality we can assume that 0 ¢ Q. Let
B(0, R) denote an open ball centered at the origin of radius B and
containing 5. Since Qp = QN B(0, k) is connected and u is not constant
in £2r by real analyticity of harmonic functions (see, for example, [1,

§ : I S v
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Theorem 1.24], then by the maximum principle for harmonic functions
(see [T, §2.2, Corvollaire 3]) we have

min w < w(x) < max u Yo € Qp,
r"’SZR H\QF{

where Qg = SUJB(0, k). In addition,

min « = min{m,m(R)) and max u= max(M, M({I}},
ETop ' ETsy

where

m{R) = min u and M({E)= max u.
m/({i) (:‘)_l%f[}("]l.lf'i) ( ) o8B (CO._.R)

Letting R — oc and observing that both m(R) and M (R) converge to
zero, we obtained the desired result. o

We also recall the Hopf boundary point lemma (see [10, Lemma 3.4])
Lemma 2.2 Let Q be a domain in RY and v € H(2). Let xo € 052 be
such thal

(a) w is continuous at xg ;
(b) w(wo) > ulx) for allw €2 ;
(c} IQ satisfies an interior sphere condition at Ty .

Then, the outer normal derivative of w at xg, if il ewists, satisfies the

strict inequality

du

dn

We are now in position of proving our first theorem. We shall assume
that S is regular enough as to apply Lemma 2.2, and by d/dn we sha‘rﬂ
mean the derivative along the normal of S pointing to the ezterior of 5.

(:L‘()) > 0.

Theorem 2.3 Let u, v € Hoo(Q) O CHQ) be such that
(a) du/dn, dv/dn < 0ons;
(b) |Vu| = |Ve|ons.

Then v = v.
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Proof. Since |Vu| = Vo] on 5, then on S we have

du\ > 5 dv\ 2 )
e ’/9 A I— - - Ts “
(é‘)n) + Vsl (c‘)n) F Vsl

where Vyu and Vv are the surface gradients of u and v respectively. Let
w =14 — v, and define m = ming w and M = m axg w. Let ag, Tp € S
be such that M = w(zg) and m = w(¥p). Since w € CHQ) then Vyw
must vanish at @y and &g. Then at these points we have

(()(L) ( 00) 2
dn dn/)
and since du/dn,dv/dn < 0, then at both g and #; we have

Hw
om0 (5)

Now we can prove that w = 0. If w does not vanish identically, then
by Lemma 2.1 we have

min(m, 0) < w(z) < max(M, 0) Ve e Q.

[ M > 0 then w(a) < w(wg) for all 2 € £, and by Hopf's Lemma
we have dw/0n(we) < 0, contradicting the hypothesis (5). If on the
contrary A < 0 then m < 0 and w(Zy) < w(2), so by Hopl’s Lemma
we infer that dw/dn(Zg) > 0, contradicting again (5). g

Remark 2.1 Alternatively, we can prove that there is at most one so-
lution of (1) whose normal derivative is nonnegative. q

Remark 2.2 Compare this Theorem 2.3 with [25, Theorem L{er)] and
[26, Corollary 1], where uniqueness results have been obtained for the
problems

Auw=-2 mDCRY, |Vul=g>0o0ndD,

and
Au= f(u) inDCRY, |Vul=g>0o0ndD,

where [ is a bounded domain in RY and f satisfies

F) 20 (M) £0), J(0)=0. o
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Remark 2.3 Observe thal for the interior problem {4} the assumplion
dufOn <0 on S for the solution has no sense, since it w € H(Q)NCH Q)
then

and so du/dn necessarily changes sign on S unless » is constant. o

Example 2.1 Let S be the unit sphere in IR?. Let ¢ he an arbitrary
mositive constant. In this case, the functions £¢fr, where r = 2], are
the radial solutions of (1). Let v = ¢/r. Since 52!/(‘}3' = —c < { on
S, then by Theorem 2.3 this u is ihc nnique solution of (1) with g = ¢
Wht(h satisfies du/on < 0. g

Without any restriction on the sign of the normal derivative of the
solution, it is clear that if u is a solution of (1) then —u is a solution
as well. We then could wonder if these functions w and —u are the
only solutions of the problem. In general the answer is negative as it
was proved by Backus (see [3]). In fact, let Hoo(Q) be the subset of
H oo (§2) N CHQ) consisting of functions = not vanishing identically and
stuch that the oblique boundary value problem

Aw=10 outside S,
(Vw V=0 on S, (6)
wix) — 0 as ¥ =k 0o,

aas a nontrivial C*(0) N CHQ) solution. Since [Vu| = [Vu| if and only
if
{(V{w—-v),V(u+tv))=0,

we then have the following

Proposition 2.4 H&(Q) £ B if and only if there exist two functions
v € Heo () VO (uZ Lo ) such that [Vu| = |Vu| on 9.

Proof Lot = € H.. o ( 2) ﬂlld let w be a nontrivial solution of (6). Define

w=(w- z)/2and v={w—2z1/2. Then uv,v € Hoe () N CHQ) and

IVul? =

5 (1 (a‘\'gM- W:H | Tof?



186 G Diaz, J. [ Divz and J. Olero

on 5.
On the other hand, it w and v (v # o) are such that |Vu| = [V
on &, then w4 v € Hoo(§2). This completes the prool. g

_In the case of a sphere, Backus proved (see [3]) that H oo (IR
B(0,R)) # . In fact he found non trivial solutions of (6) by choos-
ing z = w3/r? € Hoo (IR?\ {0}). See [16] for a related topic.

Remark 2.4 If S is smooth enough, it should be observed that if =

Heoo(9) then Vz is tangential to .5 in some set T C S, In fact, if

T = 0 then it follows that the only solution of (6) is w = 0 (see, for
example, [23]). In the above example of Backus the tangential set T is
the equator of the sphere. 5

Remark 2.5 The following question, posed by Backus ([3]), seems to
remain open up to date: let v € #oo (2) NCL{Q); how many functions v
are there in M, (2) N CY(Q) that have [Vu| = |Vulon §7 ¢

3 A possible way of proving existence

As we said in the Introduction, in this Section we propose an approach
to prove an existence result for (1). We shall restrict ourselves to the
simplest case of a sphere (2) and we consider the equivalent problem (3).

The basic idea we propose is to consider the boundary value problem

Av =10 in £2= B(0,1),

O 5 " o (7)
v+ T Vig? — Vo), on JQ,

(9" = IVsul)s = max{(g* - |V,0]%), 0}

where

(Hereafter we shall exclude the case ¢ = 0, since if ¢ = 0, by Theorem
3.1, the only solution of Problem (7)is v = 0). Qur first result in this
direction is the following uniqueness result for the problem (7):

Theorem 3.1 The problem (7) has at most one solution v & CHE N

).
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Proof. Let v and w be two golutions of (7) and let = = v — w. Since
e H(Q) M), it takes its maximum value at some point 2y € 9
and its minimun value al some point 2y € J2. Moreover, V2 = 0 at

ag atd Fg, so it follows that at @y and g we have
s dzfdn=10.

Now we infer that z(2¢) < 0 and z{2q) > 0, and this of course implies
z=0. In fact, if z(wg) > 0 then dz/dn{zg) < 0 but this is not possible at
4 maximum point; on the other hand, if z(d@y) < 0 then dz/Un{ag) > 0
which is not possible at a minimum point. This completes the proof of
this Lemma. g

The relationship between the problems (7) and (3) is made clear in
the following

187

Lemma 3.2 Let v be the solution (asswmed to exist) of (7). If
Vv <y ondQ, (8)

then v 1s the unique solulion of (3) such that v+ dv/0n >0 on 0.

In addition, if v does nol satisfy (8) then the boundary velue problem
(3) has no solutions satisfying v+ d¢/0n > 0 on 9. o
Remark 3.17In the first part of this Lemma, the uniquenecss of v is
clear from Theorem 2.3. In fact, the function v in (3) is the Kelvin
transform of w, that is to say

vlx) = ﬁu (IJIQ:T) :

v dv/dn = —du/in,

s0 we have on €

and then v+ v/dn > 0l and only if Jdu/dn < 0. g

Remark 3.2 For an arbitrary positive constant ¢, if g(z) = ¢ then

c.
v = ¢ is the unique solution of (7). Since Vo = 0, by Lemma 3.2

we then conclude that v = ¢ is the unique solution of (3) satislviug
v+ du/dn > 0 on 90, Compare this result with Example 2.1, g
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Therefore, what we want to prove is that indeed the problem (7)
has a solution and we have (8) for the solution of (7}. Then we could
conclude an existence theorem for (3). We have still not proved these
things but we state the following
Conjeture. The problem (7) has a unique solution v € C? ()N CHQ).
In addition, v satisfies (8).

This conjecture js based on the remainder results of this Section and on
some additional work of the authors (see [§]).

With respect to the condition (8) we have the following result:

Proposition 3.3 Let g € C(IQ) and let v be a classical solution (as-
sumed Lo exist) of (7). Then
‘ (2609 |Vyo| < g} £0.
Proof. Assumed on the contrary that [Veu| > ¢ on dQ. Then we have
v+dv/dn=10 on d0.

With the same argument used in the proof of Theorem 3.1 we now
conclude that v = 0 in Q, and this would imply that g = 0. The proof
is complete, g

Remark 3.3 If g > 0 the conclusion of this proposition directly follows
[rom the fact that if v € C'1(€), as we are assuming, then the tangential
gradient of v vanish at the points of the boundary where the harmonic
function v reaches its maximum and minimum values. g

We now introduce the following sets

Ao={a € dQ: V| < g}

and

\

Ay ={2€0Q: |V >g}.

In order to obtain some tnore information about these sels, we shall use
the following identity which can be infered from an integral identity due

to F.Rellich ([28]); see also [27, (2.14)]:

Proposition 8.4 Let v € H(Q) N CYQ), where =
(N >2). Then,
) s, o

(N —2) / [Vz:fzdzlf: / (iv (’
Jo i

B{0,1) in IRN

du

In
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Since by Green's first identity we have

o o
/ vAvdr -h/ [V?.?i‘(f:e::/ ziw’—ri»,
0 Jon On

it e e H{82), then

7

/ﬂ nwm.ﬁ/ Vol de > 0.
Jag dn

By Proposition 3.4 we then have (N > 2},

' ()u!m 1 ' (
/)g dn N—Q‘EJQ‘

Since on the other hand we can write

' : v | ' du\? 5 Jvl
/ ’U?—U + &E ds = / (U - gﬁ) ds —v° — ’0; ds
Jog \ On ({;?nk Jan I\ dn dn

N ({‘ 1 '81))2(;?
/JQ ")

combining (9} and (10}, we have proved the following inequality:

Corollary 3.5 Let v € H(Q) N CYQ), where @ = B(0,1) in RY (N >
du

2). Then,
Loy 2 aran | AUT / ( c‘?v)"‘f ]
e Vg’?!d N -3 — de < U4 — da. (]
N"*Q,/HQ(I s+ )fdn ) ~ Jaa \ dn

If N =3 and v is a solution of (7), then {rom (11) we get

(Voo ds < / (g° -
Jog

A

IV o)) ds.
v af)

Then

/h IV, g;g_r/' stg"*’(_zxg/ (0" = Vol ds,  (12)
A /-.4_ J AL
and hence

2 / WSgP ds + / i‘\“d;—’ ds < / ,‘72 ds
g4 Ja N 1.

184



190 . Daz, J. I Diaz and J. Otero

/ |V w[ 1s>/ 572([.9,
t:LlJr. ll

then we can state the following

Since

Proposition 3.6 Let g € C(IQ) and lel ¢ be a classical solution (as-
sumed to exist) of (7). Then

/ g2 ds > / g ds, (13)
JA o ;’L}

and, tn particular meas(A_) > 0. Moreover

meas ({:L‘ €0Q: |V < %}) >0, (14)

and

[ 1Vl ds < NgllEagony (15)
o AL
(Here meas(C') denotes the surface-area measure of o set C C 090.)

Proof. That meas(A_) > 0 comes from (13). To prove (14) we use the
descomposition A_ = B, U By where

s =L con. L
Bi=(reon: Ly, b|}

and

BzZ{LE()ﬂ \ﬁglv UF}

From inequality (12) we deduce that

0 < / |V o0l* ds </ (g% = 2|V ,0|*) ds

e A- (16)

= / (6 — 2|V,u|*) ds + / (9% = 2|V,v[?) ds .
B, J B,

Calling f(z) = ¢*(2)=2|Vsv(z)]? for & € 99, it is obvious that Jlz) <0
on By, whereas f(:z:) > 0 on Bg. Theun, if meas(By) = 0 we arrive to
a contradiction since meas(B; U By) = meas(4A_) > 0. Inequality (15)
immediately follows from (12). The proof is complete. g
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Remark 3.4 I 4y > 0, (14) also follows lrom Remark 3.3. g

Although we have not proved that Ay = @, the Proposition 3.6 can
be considered as a partial result in this direction,

About the existence of solutions of {7), it should be noted that in
contrast (‘u the problem {3}, the problem (7) automatically is oblique
using the terminology followed in [18]. In fact, for a general formulation

Auw=0 in £, 7
Cla,u,Vu) =0 on J1, N

the problem (17) is obligue if, at T' = 00« R x >, the following
inequality is satisfied:

x = {Gpm} >0, {18)
where G, denotes the (weak) partial derivative with respect to p when
G is expressed in dummy variables (z, z, p) € I'. Note that in the case of
the original Backus problem (1) G/{#, z, p) = |p| and then & is oblique
if and only if {p,n) > 0 (i.e. the condition depends on Ju/dn which is a
priori unknown; the same can be said for problem (3)).

Lemma 3.7 Problem (7) is oblique.

Proof. In these variables the boundary operator in (7) is given by

Glz,2,p) = 2+ (pm) = /{g2(x) — [pil )4 (19)

where p; = p — (pinyn is the tangential projection of p..Differentiating
G with respect to p we get that for any prescribed (=, 2)

n if |pi] > .g(2),

n
BV EE M!pl’

and this proves that vy = 1. g

Although & given by {19) is not regular enough as to may apply a
known existence theorem for oblique nonlinear boundary value problems
(see [18]), it seems possible to approach ' by more regular functions
(/¢ and to obtain an existence theorem for (7) by passing to the limit

(see [8]).

(i = .
v it [pi] < gle),
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Remark 3.5 It is interesting to note the following property of the op-
erator (19). Let A > 0. Observing that

(p+Ann) = (pn) + A,

and since the tangential projections of p and of p + An coincide, then
we have

Gle,z,p+An) — Gz, z,p) = A, (20)

for all (z,2,p) € T. From (20) we can conclude that the function
G(x, 7, p) is strictly increasing with respect to p in the normal direction
to 9§ at x. G.Barles ([5]) has recently proved that non-linear boundary
value problems with this property have, under some other additional
conditions, a unique viscosity solution (see [5, §1]) in C(). o
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