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In this paper we show the existence of a continuous and unbounded connected
S-shaped set {(@, u}} where Q is the solar constant and « satisfies a quasilinear even-
tually multivalued stationary equation on a Riemannian manifold without boundary
arising as a stationary energy balance model for the earth surface temperature.  © 1998
Acudemic Press

Key Words: S-shaped bifurcation branch; degenerated multivalued equations;
Riemannian manifolds; climatolog.

I, INTRODUCTION

This work concerns with the study of the sensitivity of a nonlinear
stationary model arising in climatology with respect to variations in the
so-called solar constant, The model is obtained through an energy balance
on the whole surface of the earth leading to a nonlinear partial differential
equation on a Riemannian manifold .# for the earth surface temperature.
These models were introduced independently by M. 1. Budyko and W. D.
Sellers in 1969 (see [ 7, 20] respectively). The diffusion operator considered
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is, some times, nonlinear. The motivation of this fact is the work by Stone
[227 where it is suggested that the diffusion coefficient may depend on the
temperature gradient. Another characteristic of the model comes from the
term representing the feedback effect of the planetary coalbedo (the fraction
of the incident radiation absorbed). This is modelled by a nonlinearity f(i)
which can be a discontinuous function of the temperature {see [7]). We
shall treat it as a bounded multivalued graph of R% A starting simplified
evolution model is

ku,— div(|Vu|? 72 Vu) + G(u) e QS(x) f(u) +f  on (0, T) x .4,
(#) {“(0: x) = to(x) on

with initial data wye L™(.#). Here, /4 is a C™ two-dimensional connected
compact oriented Riemannian manifold without boundary (see [4]), % is
a strictly increasing function on u, S(x) is a strictly positive and bounded
regular function, and k and f are smooth bounded functions. The exponent
p is assumed to be p>22 (p=3 corresponds to the case considered by
Stone [22]). The case 1 < p <2 could be treated in a similar way. It is useful
to introduce the energy space V= {ve L(.#): Vue L?(T.#)}, where T.# is
the tangent space of .#. The general theory (existence and uniqueness of
weak solutions) for this class of problems was carried out in [8] for the
one-dimensional model and then generalized in [ 10, 11] to the two-dimen-
sional case. The existence of solutions was obtained in the space C([0, o0);
LX)y~ LE (0, co; V). Later, the stabilization of solutions of the evolution
model when time tends to infinity was analyzed in [9] (see also the previous
approach made in [13] and [ 14]).

This paper is a continuation of the previous paper [ 9], where the multi-
plicity of the solutions to the problem

(Pg)  —div(|Vul?~? Vu) + F(u) + Ce QS(x} fu) on .

was studied, according the values of the solar constant Q. In [ 97, the proof
of the existence of at least three solutions for a range of the solar parameter
Q was found. In the present work, we describe more precisely the bifurca-
tion diagram for Q and in particular, we shall prove that the principal
branch (emanating from (0, % '(—C)) e R* x L=(.#)) is S-shaped; i.c., it
contains at least one turning point to the left and another one to the right,
For a turning point to the left {respectively, to the right), we understand
a point (Q*, u*) in the principal branch such that in a neighbourhood in
R* x L®(.#) of it the principal branch is contained in {(Q, u)eR™ x
L*(#)/Q < Q*} (respectively, {(Q, u)e R* x L®(.#)/0 = Q*}). A previous
result is due to Hetzer [15] for the special case of p=2 and § a C' function.
He proves that the principal branch of the bifurcation diagram has an even
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number (including zero) of turning points. Our main result already improves
this information showing that indeed this number of turning points is greater
than or equal to two. Other references on this case are [16, 217. See also [18]
for the numerical aspects. Semilinear problems with discontinuous forcing
terms on an open bounded set and with Dirichlet boundary conditions
have been considered in [1-3, 17] and their references.

2. MAIN RESULTS

.In this section we study the bifurcation diagram of solutions of (P} for
different positive values of Q. In the sequel we denote by X the set of pairs
(Q, u)e R™ x ¥, where u verifies the equation (Pg), that is,

2={{0, u) @0>0 and u is solution of (Po)}.

Our goal is to describe qualitatively the solution set X in the space
R* x L=(.#). We assume that p>2,

(Hy,) 4 is a C*® two-dimensional connected compact oriented
Riemannian manifold without boundary,
(Hs) S:tt =R, Se L=(#), Sy > S(x) > S, >0 for some S, > S,

(Hy) % is a continuous increasing function such that %(0)=0 and
hmlsl—»ao |<ﬁ(s)} = + 00,

‘ (Hp) fis a bounded maximal monotone graph of R? such that there
exist two real numbers 0 <m <M and &> 0 such that g(r) = {m} for any
re(—oo, —10—¢) and f(r)={M} for any re(—10+¢, + o).

(He) %(—10-6)+ C>0and 9(—10+¢) + C/e9(—10—8)+ Cxg
Sy, M/S, m.

We remark that the above assumptions are fulfiled in the case of the
physical models. A function ue Vo L®(4#) is called 2 bounded weak solu-
tion of (Pg) if there exists z e L™(), z(x) € flu(x)) a.e. xe .# such that

j (IVul”*zVu)'Vvd/Hj se;f(u)vdA+J' CszAzj 0S(x) zv dA,
M S M /4

for any ve V.

We recall the multiplicity result of [9] specialized to problem (Pp)

Tueorem 1. Let (Hyg), (Hy), and (Hg) be satisfied. Then for any Q>0
there is a minimal solution y and a maximal solution i of problem (Py), ie,
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u and u are solutions of (Pp) and any other solution u of (Py) satisfies
usu<suace on H. Moreover, if (H ) holds then
(1) f0<Q<Q, then (Py) has a unique solution,
(i) if Q< Q< Qs, then (Py) has at least three solutions,
(i) if Q4 <Q, then (Py) has a unique solution,

where
G(—10—g)+C H(—10+8)+C
_ = Q= (D)
2, S M 2 S, M
G(—10—g)+C Y(—10+8)+C ,
0,= A== A DrHrC )

4
Sym Spm

Remark 1. Notice that if Q<0 the associated operator would be
monotone in L*(.#) and so the uniqueness of solution holds.

Remark 2. The assumption (H ) makes it possible to construct some
sub and super solutions in order to prove {ii}. In [9] it can be found that

if 0, <0< Q5 then

i =% {0S, M- C) and i, =% 0S;m—C)
are supersolutions of (Py) and that

u =%"YQS,M—C) and Uy =9 HOS,m—C)

are subsolutions of (Pg).

In order to get the bifurcation diagram we shall start by considering the
problem with # a Lipschitz function (as in the Sellers model). Later, we
shall extend our conclusions to the model where f§ can be multivalued (as
in the Budyko model).

THEOREM 2. Let (Hg), (Hy), and (H ) be satisfied. Let § be a Lipschitz
continuous function verifying (Hg). Then X contains an unbounded connected
component which is S-shaped containing (0,9 ~'(— C)) with at least one
turning point to the right contained in the region (Qy, Q,) x L=(#) and
another one to the left in (O, Q4) x L=(.4#). B

Proof, The proof consists in three steps. In the first step, we shall prove
that £ has an unbounded component containing (0, % '(~C)), the
principal component. In the second step we analyze the bifurcation diagrams
for two related zero - dimensional models, (P;) and (P,). Finally, by using
the comparison principle as done, for instance, in [12], for the problem

du+%(u)= fe LA H) on .#,
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we show that a subset of X' is limited by the bifurcation diagrams of (P))
and (P,) for some intervals of Q. The proof will end proving that
necessarily the principal component of X must be S-shaped.

Step 1. X has an unbounded component containing the point
(0, %Y~ C)).
We claim that the following result can be applied to our case:

TreOREM 3 (Rabinowitz, [19]). Let E be a Banach space. If F: R x E— E
is compact and F(0, u) =0, then X contains a pair of unbounded components C*
and C~ in R* x E, R~ x E respectively and C* ~ C~ = {{(0, 0)}.

In order to apply Theorem 3, we consider the translation of v given by
vi=u—%""(~C). Obviously, v is a solution of

— 4,0+ %(v) = 0S(x) f(v) on M, (3)

where 9(0)=%(c+% (—-C))+C and fo)=Plo+% (—C)). We
define 2 in a way analogous to X. Let us show that the hypotheses of
Theorem 3 hold.

(i) Let E= L™({.#) and define
F(Q,v)=(~4,+%) " (05(x) f(v)).

Then F is the composition of a continuous operator and a compact operator
(recall that p >2) so F is also compact on E.

(ii) If @=0, by Theorem ! the problem (3) has a unique solution
v=0. Then F(0,0)=0.

So by applying Theorem 3, we conclude that % contains two unbounded
components €+ and ¢~ on R+ x L=(#) and R~ x L®(.#) respectively
and C+ n ¢~ ={(0, 0)}. Since X is a translation of X then X contains two
unbounded components C* and C™ on R x L®(.#) and R~ x L®(.4)
respectively and that C* n €~ = {(0, ¥~!(—C))}. Since 0 >0 in the studied
model, we are interested in C ™. In order to establish the behaviour of C*, we
also recall that for every ¢ >0 there exists a constant L = L(g) such that if
0< Q=g then every solution u, of (P,) verifies g o) < L{g). Since
the principal component is unbounded its projection over Q-axis is [0, o).
On the other hand, if Q is big enough (Pg) has a unique solution u, and
this solution is greater than % ~'(QS, M — C). Since limy, _, ., [%(s)] = + 0
then C* should go to (o0, o).

Step 2. Bifurcation diagram for two auxiliary problems.
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We consider the auxiliary zero - dimensional models

(P) F(u)+ C= QS f(u) uelR,
(Py) F(u)+C=0S,0u) uelR.

The number of solutions at these problems depends clearly on the values
of 0. In fact, it is easy to obtain explicitly some of the solutions of {P,) and
(P,). Let vs call 2, and X, the bifurcation diagrams of (P,) and {P,),
respectively. By assumptions (H), (H,), and (H ) the principal components
of 2, and X, are S-shaped. We also remark that the sets

G(—10—g)+C

K= R2:0<0<
1 {(Qa “Q) € o S,m

L ug=%"10Sm— C)},

K. = {(Q, ug)e e g AT C ) gy os,m— C)}

sM e

are contained in X, i=1, 2 (notice that there exist values of § which are
in both sets K, and K, simultaneously).

Step 3. A comparison argument.

From Theorem 1, if @ < @,, there exists u, solution of (P,) such that
uy< —10 —e. Thus u,, satisfies

—dup+G(up) + C=QS(x)m on .#,
and so
QS,mE —d,ug+%(ug) + C< QS m on ..
Let ui, and uZ, be the solutions of the problems

G(u)+ C=0S;m on .4
G(u)+ C=QS,m on .4,

respectively. That is, (Q, up) and (Q, up) live in ) and X, respectively.
Now, if 0 <Q,,

—dup+G(us) < —dug+ Gug) < —dup+9(uly),

and so by the comparison principle for the monotone problem —4,u+ %(u)
= fe L*(.#) on 4, we have that

uZQ\<,uQ<ulQ.
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Therefore, the component of X starting in (0, % ~'( —C)) lives between X,
and X, to arrive at (@, ug,), where uy is the minimal solution of (Pg ).
Analogously, if we denote by u,_to the maximal solution of (P, ). We can
prove that the component of X which connects (O, ué) with (o0, o0) lives
between X, and X,. From O, < Q,, the branch containing (0, ¢ ~'(—C))
is unbounded and by the uniqueness of solution for {P,) when Q> 0, we
get that this branch is necessarily S-shaped. §

Our next result avoids the Lipschitz assumption made in Theorem 2.

THEOREM 4. Let (Hy), (Hg), (Hy), and (H ) be satisfied. Then X has an
unbounded S-shaped component containing (0, % ~'(—C)) with at least one
turning point to the right contained in the region (Q, Q,)x L=(.#) and
another one to the left in (Q5, O4) x L={).

Our idea to prove Theorem 4 is based on [ 3] (see also [2]) and consists
in approximating the problem (P,) when fi is not Lipschitz continuous.
We only need to show the convergence of the principal branches C,, of these
approximating problems to a S-shaped unbounded connected set C of
solutions of (P}, For this reason, let us recall the notions of /im inf and
lim sup of a sequence of subsets C, of a metric space X:

liminf C, := { pe X: for any neighbourhood U(p)of p in X

Ange N: U(p) n C, # & Yn =y},
lim sup C,,:= { pe X: for any neighbourhood U(p)of p in X

R+ 00

U(p)n C, # @ for infinitely many »},

and the following topological lemma;

LemMa 1 (Whyburn, [23]). Ler {C,} be a sequence of connected sets in
a metric space X such that
(1) liminf, _  C,#
(i) U, C, is precompact.
Then jlim sup,,_, ., C, is a nonempty, precompact, closed and connected set.
Proof of Theorem 4. The method of super and sub solutions used in

[9] for (P,) proves that if Q> O, then there exists a solution of (Pg)
greater than — 10 + ¢ given by the unique solution

(PY) —dyu+%u)+C=0S(x)M  on.i.
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Analogously, we know that if 0 < Q0 < 0, then {Pg) has a solution smaller
than —10 — ¢ given by the unique solution of

(Pg) —d,u+%u)+C=0S(x)m on .

By Theorem 1, it is clear that these functions are not the unique solutions
of (Py) in those intervals and that the uniqueness holds at least in the
Q-intervals [0, Q,) and (Q,, oo). Since we can not apply directly Theorem 3
to our problem, we consider the family f,=n(I—(I—(1/n)f)~"), neN to
approximate £ in the sense of maximal monotone graphs when n - c«c. Notice
that since f# verifies (H,) then /3, is a Lipschitz bounded nondecreasing function
(see [6]) and that 3,(s)=f(s) for any s¢ [ —10—&, — 10 +¢&+ (M/n)], Vn.
Let u, be the solutions of the approximated problem

(Po) —dyu,+F(u,) + C=0S8(x) f(n,)  on.i

and let 2, be the bifurcation diagrams for (Pg). Let us denote by S, the
component of X, containing (0, ¢ ~'( — C)). By Theorem 2 every S, is an
unbounded, connected and S-shaped set. First of all, we are going to prove
that lim sup §, is a connected and closed set of solutions to the problem
(Po). In order to apply Lemma | we consider the sets C/ (j> Q,) defined
as S, ([0, j1xL*(4)), Vne N containing (0, 4~ —~C)). It is easy to
see that these sets are connected. Moreover

(i) liminf,_, , ¢/ +# . From (0,4 }(—~C))eC’ for all neN then
every neighbourhood U of (0, 4 (- C)) in X:=([0, j]x L=(R2)) verifies

UnCi#£@  VYneN.

Therefore (0, 4 ~'(—C)) eliminf,_, ., C7.

(i) Uy, C4 is precompact. Since X is a Banach space, it suffices to
prove that every sequence {(Q;, )} ;en = U™, C contains a subsequence
{(Q),u,)} converging in X. From Q,e[0, j] then there exists Q€ [0, ;]
and a subsequence of {Q,} which is still denoted by {Q,} such that 0, — Q.

On the other hand, u, is a solution of the problem
—dyuy+%(u)) + C=08(x) B,(u)) on .#.

Taking u, as test function in this equation we obtain the estimate
[ 1vale da< (1S 4+ C) L) (4)
A

where [.#} is the Hausdorff measure of .4 and C* is an upper bound of
;1] . Then 2, is a bounded sequence in ¥. From the compact embedding
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Vo L®(.4) when p> 2, there exists ue L™(.4) and a subsequence {u,k} of
{u;} such that uy —u in L®(.#). If p=2 then {u;} is a bounded sequence
in the Sobolev space H*(.#). From the compact embedding H?*(.#)<
C(.4#) we deduce the existence of a subsequence {u,} and ue C(.#) such
that uy — u in L=(.#). Thus (., C/ is precompact.

4 n=

Then {C, } satisfies conditions (i) and (ii) of Lemma 1 and therefore

C’/=lim sup ¢/,

n— o0

is a connected and compact set in X. Moreover, since every S, is unbounded
and fixed Q the solutions u, are uniformly bounded in L*(.#) for @ < (), we
have that

ClaljyxL=(#)#@  forall jeN.

Now, we prove that the resulting set €7 is contained in Z. Let us see that
for every Qe[ Q,, Q,] we have that every (Q, u)e C’ verifies that u is a
solution of (Py) (notice that it is true for every Qe (0, @1 U [Qa, +00)
from CY = C7 in these intervals).

Let (Q, u)e ¢/ =lim sup,,_, ., C7, that is, let there exist a subsequence of
(0., u,) € C7 such that (Qny» ) = (O, 1) in R x L®(.#). From the estimate
(4) and the compact embedding H*(#) < L=(# ) (for p=2)and V< L=(#)
(for p>2), we deduce the existence of ue L®(.#) and a subsequence of
{(Q.,, u,)} which we call {(Q,,,u,)} such that

(Qp»tn) > (Q,u)  in RxLZ(AH).

Since £, — f# in the sense of maximal monotone graphs of R?, we have that
B (1) — z € Blu) weakly in  L*(#)

(see, e.g, [5]). Due to the coercivity of the p-laplacian operator when

p=2, we obtain the following inequality:

lim (|Vit, 1772 Vu,, — VP2 V) - (Vu—Vy) dA 20 Vyel.

=00 Vg
From this, taking y = u+ A V¢ € ¥, we obtain that

|Vu, |72 Vu,, = |Vu|?~*Vu  weakly in Lo(TH).

b2
|

So, passing to the limit in the equations that u,, satisfy, we deduce that u
is a solution of the problem (Py). Thus (Q, u)e 2 and ¢/ < 2.
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Since for all n and

Cln ({7} x L=(40)) # @,

then there exists {(/, u,)} e Such that (j, u,) e CZ; that is

— A, u, +%(u,) =7S(x) f(u,) — C in ..

Using that the operator (4,+%)~! is compact in L®(.#), there exists a
subsequence

u, —u in L=(.#).

Thus {j, u)e €/ and C/({j} x L=(#)) # . Since j> Q,, u, is the unique
solution of (P,) and also of (P’g), but we know that X (j, co) x L®(4) =
2y (J, co)x L™(#). So, we have obtained a connected unbounded set
which starts in (0, ¢ 7'(—C)). The proof ends with the argument used in
the proof of Theorem 2. The S-shaped remains after passing to the limit
since we have again @, < Q5.

Remark. We point out that our results remain true for the more realistic
equation ’

—div(k(x) |Vul? > Vu) + %(u) + Ce OS(x) flu) on .4

where k(x) is a given bounded function with k(x)2k,>0 ae. xe.#
representing the eddy diffusion coefficient. When # ="' it is usually
assumed that S{x)=S(1) and k(x) =k(4, ¢) with 1 the latitude and ¢ the
longitude. So, in that case, the corresponding solutions are not g-invariant.
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