ON A QUASILINEAR DEGENERATE SYSTEM ARISING IN
SEMICONDUCTORS THEORY. PART I: EXISTENCE AND
UNIQUENESS OF SOLUTIONS”

J. ILDEFONSO DiAZ!, GONZALO GALIANO!, AND ANSGAR JUNGEL §

Abstract. A drift-diffusion mode! for semiconductors with nonlinear diffusion is considered.
The model consists of two quasilinear degenerate parabolic equations for carrier densities and the
Poisson equation for electric potential. We assume Lipschitz continuous nonlinearities in the drift
and generation-recombination terms.

Existence of weak solutions is proven by using a regularization technique. Uniqueness of solutions
is proven when either the diffusion term ¢ is strictly increasing and solutions have spatial derivatives
in LY{@7) or when g is non-decreasing and a suitable entropy condition is fullfilled by the electric
potential.
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1. Introduction. In solid state physics, drift-diffusion equations are today the
most widely used model to describe semiconductor devices. Drift-diffusion models de-
scribe the flow of electrons and holes in the conduction and valence band, respectively,
of semiconductor materials which are influenced by an electric field. Mathematically,
the problem is formulated in terms of a system of parabolic equations for the electron
and hole densities u, v, and the Poisson equation for the electric potential 1 which
together with physically motivated auxiliary conditions form the problem

uy — div (V(u) — Hu)Vw) = F(u,v)

vy — div (V(v) + b(v)Vw) = Flu,v) in Qr =0 x (0,T),
(1.1) ~Aw=v—-u+C

Vo) v==0 V) - v=0, Vw-rv=10, onXy:=Iyx(0,T),

p(u) = p(up), ©(v) =p(vp), w=wp, onXp:=1Ipx(0,T),

u(-,0) = ug, v(-,0) = vy, in €.

with @ ¢ RY, 1 < N < 3, the bounded domain occupied by the semiconductor
crystal. Here, function C' denotes the doping profile (fixed charged background ions)
characterizing the semiconductor under consideration,  the pressure function, b(s)/s
the mobility of the particles, and F' the recombination-generation rate. The boundary
81 splits into two disjoint subsets I'p and T'y. Carrier densities and potential are
fixed at the Ohmic contacts, I'p, whereas their fluxes are null on 'y, the union of
insulating boundary segments.

The standard drift-diffusion model corresponds to linear functions ¢ and b, and
F(u,v) = q(u,v)(u? — wv), with q(u,v) a positive function and u; = u;(x) > 0 the
so-called intrinsic density. The standard model can be derived from Boltzmann’s
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equation once assumed that the semiconductor device is in the low injection regime,
i.e. for small absolute values of the applied voltage. In [25] it is shown that in the high
injection regime diffusion terms are no longer linear. A useful choice for ¢ is then
w(s) = s for a = % and s > 0. With this pressure function the parabolic equations
in (1.1) become of degenerate type and existence of solutions does not follow from
standard theory. In this paper we present results including both the low and high
injection cases.

Function ¢ may be interpreted in the language of gas dynamics. Assuming that
particles behave, thermodynamically speaking, as an ideal gas satisfying the law ¢ =
uf , with 8 the particle temperature, we obtain in the isothermal case a linear pressure
term. However, in the isentropic case [10] temperature depends on concentrations as
f(u) = w*/® and therefore p(u) = u®/3,

The standard or low injection model has been mathematically and numerically
investigated in many papers, see [34], [35] and references therein. Existence and
uniqueness of weak solutions was shown.

The isentropic or high injection model for linear b and monotonic F, including the
non-Lipschitz continuous case, has been analyzed in [23]-[26] where existence of weak
solutions was proven. However, there is a lacking in results concerning the uniqueness
of solutions when the problem actually degenerates. Besides, there are no results for
general mobility functions.

Asin the question of existence, the main difficulty to prove uniqueness of solutions
relies in the simultaneous presence of a transport term and a nonlinear degenerate
diffusion term. This kind of difficulty has already received the attention of many
authors and has been solved for scalar equations of the type

(1.2) uy — div (Vip(u) -+ b(u)e) = F(u),

with e a prescribed vector field. The most successful technique developed to prove
uniqueness of solutions of (1.2) is based on the use of the test function sign, (u1 —ug)
in the weak formulation of (1.2), being w1 and uy two, a priori, possible solutions of
(1.2} in some sense. The core of the problem is to show that solutions have enough
regularity to define the sign function as an admissible test function. This justification
has been carried out by different means. One of them, introduced by Kruzhkov in
[29] to prove an L' contraction property of entropy solutions of hyperbolic equations,
is based in doubling the time variable and performing a passing to the limit in which
these variables collapse. This technique has been applied to parabolic scalar equations,
see, e.g., [30], [9], [181, [19], [36], and also to certain systems of parabolic equations
coupled through reaction terms, but not through transport terms, see [37]. Notice
that when applying succesfully this technique, uniqueness is always obtained as a
by-product of a comparison principle. However, systems coupled through transport
terms does not exhibit, in general, a comparison property. Therefore, other means
have to be applied in order to give criteria to ensure uniqueness of solutions.

The outline of the paper is as follows. In Section 2 we present the assumptions on
the data and the notion of weak solution. Then we prove Theorem 2.1 of existence of
weak solutions by means of a regularization technique which involves the consideration
of a non-degenerate problem for which existence of solutions is proven by a fixed
point argument, see Theorem 2.2, In Section 3 we study the uniqueness of solutions
and present three results, see Theorems 3.1, 3.3 and 3.4. The first result covers the
situation in which diffusion dominates both transport and reaction. In the case of
power-like nonlinearities p(s) = s™ and b(s) = §7¥, m,v > 1, the main assumption
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of Theorem 3.1 is m < 27 — 1. The second result only needs ¢ non-decreasing, but
an cntropy type condition must hold for the electric field. Therefore, there is no
restriction on m and v for the power-like situation. Finally, the third result uses the
assumption Vu, Vv € L1(Qr). We show that this regularity is achieved, at least,
for data smooth enough and in space dimension one. TFor the power-like case, as in
Theorem 3.3, we do not need any additional assumption on the exponents. Moreover,
neither an entropy type condition is required.

2. Existence of solutions. In this section we prove existence of weak solutions
of problem (1.1). The main result is Theorem 2.1 where we prove existence in the
most interesting case: when the parabolic equations of (1.1) are of degenerate type.
As we already mentioned, the transport terms div(b(u)Vw) and div(b(v)Vw) are the
main difficulty in the proof due to the fact that natural a priori estimates of problem
(1.1) are obtained in terms of ¢(u) (with ©'(0) = 0) and their spatial derivatives
meanwhile transport terms contain b(u) and b(v) which, in general, are not bounded
by the former.

This difficulty leads us to consider an auxiliar non-degenerate problem for which
we obtain existence of weak solutions, see Theorem 2.2, and which allows us, by means
of techniques of regularization and passing to the limit, to prove the result for the
general formulation.

Before stating the first result we introduce a set of assumptions on the data as
well as the definition of weak solution of (1.1).

ASSUMPTIONS ON THE DATA.

H;. Q ¢ RY, N <3, is an open, bounded and connected set. The boundary of Q,
99, is of class C'! and it splits in two disjoint components T'p, with positive measure,
and I'y, open in 8§). We assume that for any function ¢ satisfying

A e L1(Q),
(2.1) i =0o0nTIp,

Vir-v=0o0onTy,
we have the regularity ¥ € W24(Q), for ¢ € [1,00). Finally, we suppose T > 0 is
arbitrarily chosen.

DEFINITION. A function f: IR™ — JR is sublinear if there exists a positive constant
¢ such that

|f{s1,-,80)| S ¢ (1 + Z'S"l) v YV (s1,...,8,) € R™
i=1

H,. We assume

@ € C([0,00)) NCH(0,00)), ¢'(0}=0, ¢ non-decreasing,
(2.2) Fecdln,00); R),

loc

b € C'([0,00)) is sublinear and satisfies

(2.3) 10(s)

<c(l+¢'(s)), forallsel0, o),
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and for some constant ¢ > 0.
Hi. The auxiliary data satisfy

ug,v9 € L), wp >0, v9y>0 in 9,
e(up),e(vp) € L0, T; H1(Q)) N L>=(Qr) N HY (0, T; L)),
wp € L0, T; W ().

Although physically C' = C(z), we shall consider the more general case C' = C(x, {)

under the assumption C' € L*(Qr).

H,4. If both F' and b are nonlinear then we assume ¢~! € C%%([0, o)), for some
€ (0,1).

We remark that the property assumed for problem (2.1) actually represents a
condition on the contact angles of the boundary segments I'p and I'y, see, e.g. [33].
In particular, if both components of the boundary are open and closed, so they do not
meet, then the assumption is a well known result, see, e.g. [22]. As stated in {2.2),
in this article we shall consider a Lipschitz continuous recombination-generation term
F. The case of a monotone F was already treated in [25] obtaining similar results on
the existence of weak solutions under somehow stronger conditions on ¢ and b. As
shown in [12], a monotone non-Lipschitz continuous recombination-generation term
may imply the formation of dead cores (sets where the components u, v of the solution
vanish even when the initial data are strictly positive) and play an important role in
applications through the phenomencn known as wacuum solutions, see [12].

We consider a notion of weak solution similar to that introduced in [1]:
DEFINITION OF WEAK SOLUTION. Set

Vi={ze H(2):2=0 on Tp},

and assume Hi-Hz. Then (u,v,w) is a weak solution of (1.1) if the following prop-
erties hold:

(1) w,v € L®(Qr), vlu) € elup) + L*0,T;V), p) € w(vp) + L2(0,7;V) and
w e wp + L0, T; V) N L2(Qr).

(i)

/ (s, ¢ /]Vgo (u) — bluw)Vw) - V( = fo;/S;F(u,v)C

(2.4) / (v, ) f /(w 2) = b(o) V) fﬂ /QF(u e
/ /Vw V¢ = / /U—u—

for any test function ¢ € L*(0,T; V) (notice that due to (2.2) F(u,v) € L*(Qr)).
(i) wp, v € L2(0,T; V') and the +nitiol date are verified in the following sense:

J i [} [
v (Mo [ [ o-wa=s

for any test function ( € L*(0,T;V)n WHY0,T5 L*(Q)) with ¢(T) = 0.
Next we state the main result of this section:
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THEOREM 2.1, Assume Hi-Hy and suppose that the auziliary data satisfy

(2.6) k>ug,vg=>m>0 inQl and
- w(ke*") > o(up), lvp) = wlme ) >0 inTp,

Jor some non-negative constants k,m, Ag, A1. Then there exists A > 0, independent of
©, such that preblem (1.1) has a weak solution verifying
(2.7) ke = u(t),u(t) > me™™ >0 inQ for ae t € (0,T),

w,v € C([0,77; V),

(28} oo R 2,8
we L0, T;W°(Q))  for all s € [1,00).

Moreover, if € C1([0, 00)) then

V' () Vu, Vo (1)V € LH(Qr).

The proof is based on the following previous result for the non-degenerate prob-
lem:

THEOREM 2.2, Assume H;-Hy and let ¢ be sublinear and strictly increasing.
Suppose ¢! Lipschitz continuous, F sublinear and auxziliary data satisfaying (2.6)
for some non-negative constants k,m, Ao, \1. Then there exists A > 0, independent of
©, such that problem (1.1) has a weak solution verifying (2.7), (2.8) and

u,v € C([0,T]; L ().

The proof of Theorem 2.2 is based on a fixed point technique. To define the
fixed point operator in LP spaces we need, due to the lack of regularity of the term
Vb(u} - Vw, to uncouple problem (1.1) and to consider two auxiliary problems, see
(2.13) and (2.14). First we apply a fixed point argument to obtain the existence
of solutions, (u,v), of (2.13) and we show that this solution satisfies (2.7). Then, we
solve problem (2.14) and use again a fixed point argument to couple the whole system,
obtaining in this way a weak solution of (1.1) with the property (2.7). The additional
regularity is obtained by applying general results on L? spaces, see [41].

Proof of Theorem 2.2
We start introducing some notation and an elementary consequence of Sobolev’s the-

orem: we shall write ||| o o= 'l Lo (yy + Illpocray = Il Lo (0. 7,00 )y 20d

A= 1 W oo ey + W 22 0,70y

Let 2* be the critical Sobolev exponent given by oo, s € [1,00) or 6 if N = 1,2,3
respectively. Then we have that for all f € L*°(0,T; L3(Q)) N L2(0, T; V) there exists
a positive constant ¢ = ¢() such that

! 1
(2.9) - <clllfIl, with 1<r <4(1- 5—*—)
Finally, ¢ shall denote a positive constant independent of the relevant quantities of
the problem, like lim,_.q¢'(s) or infg ug, but which shall vary along the proof.
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Step L. Let T > 0, 0 < p < ¢,, with ¢, a positive constant to be fixed, and fix r such
that

1
(2.10) I<r<4(l- *2—*)
Let p be an exponent satisfying the following restriction:

(211) r£—2'<3<p<7‘,

with r given by (2.10). Consider the set K < LP(0, T; W*P(Q))n L2(0, T; V) given by
(2.12) he K & Ahe L¥(Qr) and  [|AAY,, + ||VA]2 < p.

Clearly, K is convex. Morcover, since due to the choice of p we have 2 < TVI-!_EI;,
it follows that [[Aw] ;. + [Vw| 2 is & norm in LP(0,7; W2P(2)) N L*(0,T; V) and
therefore K is weally compact in this space. These properties of X will be used later

to apply a fixed point argument. Given h € K we introduce problems

g — div (Vio{u) — b(u)Vh) = Flu,v) in Qr,
vy — div (Ve(v) + b(v)Vh) = F(u,v) in Qr,

(2.13) Ve(u) =0, V() v=0, on Ly,
p(u) = p(up), ¢(v)=¢(vp), on Tp,
u(-,0) = uo, 2(-,0) = v, in 0
and

—Aw=v-—u—C inQr,
(2.14) W= 1wp on Xp,
Vw -v=0 on Xy,

with similar notions of weak solutions as for problem (1.1).
Step 2. Definition of the fized point operator for (2.13). Consider problems

ug — Ap(u) = in @,

¢(w) = plup)  onTp,
(2.15) Veoluw) -v =0 on Iy,
(-, 0) = ug in £,
and

v - Ap(v) =g inQr,

w(v) = wlvp) onlp,
(2.16) V(v) - v =0 on Iy,
u(+,0) = vy in §,

with f,g € L*(Qr). Since these problems are uniformly parabolic we deduce, see
e.g. [31], the existence of a unique weak solution of (2.15) and (2.16) with the
regularity w,v € L"(Qr) N C([0,T]; L), w(u) € olup) + L*0,T;V), ¢(v) €
@(vp) + L*(0,T; V), with r given by (2.10).

We introduce the set

K= {(f,9) € LQr-) x L(Qr-) | fll 2, Mol o < R}, O <T™ T,
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which is convex and weakly compact in L2(Qr-) x L?(Q¢-), and the mapping @ :
K* — L*(Qr-) x L*(Qr-) given by

QUf,9) = (F(u,v) — div(b{w)Vh), F(u,v) + div(b(v)Vh)),

with u,v solutions of (2.15), (2.16). It can be shown that, as a consequence of (2.3)
and the sublinearity of F' and b, the operator (} is well defined. Notice also that a
fixed point of () Is a weak local solution of (2.13). To prove the existence of such a
point we search for R and T such that

(1) Q(K*) C K*, and

(ii) @ is weakly-weakly sequentially continucus in L2(Qr-) x L2(Qp-),

which will allow us to apply the fixed point theorem of [4] to deduce the result.
Since problems (2.15) and (2.16) share the same structure we shall only work out the
properties satisfied by solutions of (2.15).

Step 3. A priori estimates for problems (2.15) and (2.16). Proof of Q(K™*) C K™,
This last condition reads as

(2.17) I = || F(u,v) — Vb(u) - Vh — b(u)Ah|| . <R.

Taking ¢ = @(u) — p(up) as a test function for problem (2.15) we get

Loy + [ 1ver = [ #6)- [ @-u)ptun)+ [ (u6) - ) pfun)

T ks 2
(2.18) + [ Tu) Veluo) + [ o) - plun)),
J Qe Qup
with @(s j w(a)da. Using p~! Lipschitz continuous and standard inequalities

we get flOI'ﬂ (2 8)

(2.19) ¢, (||u|12

7o) UR( oy + IV < A 71

with ¢, A constants depending on the Lipschitz continuity constant of ¢! and on
the auxiliary data, respectively. Using (2.9) and f € K* we deduce

(2.20) |}

o eyl < c(A+R).
Since 1 > 2 we have

(2.21) IIUHLz < Ao(T7) lull - < cAo(T*} (A + R),

with Ag(T*) = = . Finally, since ¢ is sublinear we deduce the existence of a
cantinuous non- decreasmg function 7 : (0, 0o) — (0, oo) such that

(2.22) [Veeu)

with n(T*) — 0 as T* — 0, see {16]. We are now ready to estimate the terms in
(2.17): F sublinear and (2.21) imply

2[;'*' < A+ 77(T*>?

(2.23) 1P, 0)]l g < ca(T),

with Ay (T*) .= Ag(T™) (A +2R) + |QT-|1/2. From (2.3), (2.22) and the regularity of

h we get

(2.24)  |[Vb(u) - VA L2 < e[ Vo)l e VAo < (A 40T V] Lo s
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and since b is sublinear

(2.25) |b(w)AR]

2 Sl 180] g < cA(T) [[AR] oo,

2

72
rn

with Ag(T*) o= |Qp-]¥ + Qg

obtain

(A+ R). Gathering (2.23), (2.24) and (2.25) we

I < 6ALT) + ¢ (A +q(T) | VRl o + cAa(T*) | AB] o
and since we want I, < R, it is suflicient to make
(2.26) cAL(T") +c(A+n(T* )NV peo + cAa(T"} AR peo < R

Since Aj, A2, n are non-decreasing continuous functions in IRy , we have that, fixing
R such that

R > cAy(T) + c{A(uo, o(up)) + (TN VAl oo (g + A2T) AR oo g,y

inequality (2.26) is satisfied for all T* € [0,T]. An identical argument allows us to get
I, < R. Therefore, we have proven the existence of R and T, which can be taken as
T* =T, such that Q(K™*) C K~

Step 4. Continuity of Q. Consider any sequence (f,g;) C K — (f,g) weakly in
LY Q) x L*(Q7) and let us show

div(b(u;)Vh) — div(b(u)Vh) weakly in L2(Q7),
Flug,vy) — F(u,v) weakly in L?(Qr),

with wuj, v, u, v solutions of (2.15), (2.16) corresponding to f;,g;, f,g, respec-
tively. By (2.20) we have ||u;||,. < c|||u;||| € const., and from (2.15) we also deduce
”“jL”Lz(o Ty S const. Passing to a subsequence, if necessary, we obtain

uj — wealdy in L"(Qr),
Uy — U strongly in L?*(Qr) and a.e. in Qp,
Vu; =+ Vu  weakly in L2(Q7),

Uje — Uy weakly in L2(0,T; V).

Since F' is sublinear and w;,v; are bounded in L™(Qr) it follows || F(uj, vy)|l,. <
const. and then F(uj,v;) — F in L7(Qr) for some F € L(Q). Continuity of F
together with pointwise convergence of u;, v; imply that F(u;,v;) — F(u,v) ae. in
Qr-~, and therefore F = F(u,v). Hence, F(u;,v;) — F(u,v) strongly in L™(Q7). A
similar argument shows that b(u;) — b(u) strongly in L"(Q). Finally, since » > 2 and
Vh € L=(Q7) we deduce div(b(x;)Vh) — div(b(u)Vh) weakly in L2(Qr). Hence, Q
is weakly-weakly sequentially continuous. By the fixed point theorem [4] we deduce
the existence of a weak solution (u, v) of {2.13) with the same regularity obtained for
the solutions of (2.15) and (2.16) when f,g € L?(Qr) is assumed. Notice that the
solution found is global in time.

Step 5. Lower bound and L™ regularity of «,v. We introduce in problem (2.13) the
change of unknowns U := ue™#* and V = ve™?* with 8 > 0. Then (U, V) satisfies

Up 4 BU — e~ Pt div (Vp(eP* 1) — b(e™1NVR) = F in Qr,
=F

Vi + BV — e Ptdiv (Vp(eP V) + b(ePV)VR) in Qr,
V(e U) v =0, Ve(e*V) v=0, on By,
p(e”U) = p(up), (V) = p(vp), on Xp,

U(-,0)=ug, V(-,0) =y, in ,
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with £ := e Pt F (e, eP'V). To obtain the lower bound we compare [/ and V with
z(t) = me~ (MO for a suitable A > A\;. By assumption, up > me™ Mt > me~M and
then we can take Z,, = min {U/ — 2,0} as test funciion obtaining

qu (U7 —2), —)\/zZu-l—ﬁj Zz-{-e_m/Vga(eBtU)-VZu
0 48 . Q 4]
(2.27) = e F! / Zy [VU(e*U) - Vi + b(e™U) AR]

+e=P | Z,F(eMU, V).
Q
Since b is Lipschitz continuous {with constant M) by estimating

/Zub’(e‘“U)VZu-VhSMb/ IV Za|* + M, |1Vh||im/ Z2
O JO 9]
and

/' Zub(eP U)AR = / Zu (0(e®°U) — b(e®'2) + b(eP2)) AR
J JQ

< P, AR Lo (/ Z: 4 / ziZﬂ)
Ja Ja

we obtain from (2.27)

d

(2.28) — | ZZ+ N [ z}Zu|+ﬁ’f z: ge—ﬁ“f Z F(ePU, PV,
at Jq Ja Q )

with N = A — cMy [|AR] o, B i= B — My | VA|2 o — cMy [|AR|| o, where we used
—AZ, = M|Z,|. Since F' is Lipschitz continuous we can use a similar argument to
show that

b

(2.29) ZuF (U, eV < cZy (Zu + Zy + F (P2, % 2))
with Z, = min {V — z,0}. Adding to (2.28) the similar estimate for V we get in the
right hand side of the resulting inequality the term

(2.30) e*ﬁt/F(eﬁtU,eﬁtV)(Zﬁzv).
Q

Using (2.29) and the similar estimate for Z,F (e, 'V} (2.30) may be estimated
as

e"ﬁtf F(eP U, e V) (2, + Z,) gc/ (Z2+ Z2 4+ 2| Zu| + 2|Z.]) .
9] 9]

Then, for § > M, ||V/1|]2Lm + eMy [[AL|| oo + ¢ and A > cMy {|Ah| ;o + ¢ we obtain

d
@ ) (Z2+2z2) <0,
from where the result follows. Notice that neither g nor A depend on . Finally, the

estimate «,v € L™((7) is obtained using a similar technigue and we omit therefore
the proof, see {20] for details.
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Step 6. End of proof of existence of local solutions of (1.1). Let T e (0, 7] to be
fixed, i defined by {2.12) with T replaced by T, h € I and u v be solutions of
(2 15) (2.16) corresponding to h. Consider problem (2.14) in Q4. Since u,v,C €
L®(Q4) (2.14) has a unique solution w € L>(0, T, WES(Q)NL*(0,T; V) with Aw €
L*(Qs). In particular, w € LF(0, T, W2P(Q)) N L0, T; V). We define P : B —
LP(0, T, W2P(Q)) N L*(0, T; V) by P(h) = w, being w such solution. Notice that if w
is a fixed point for P then (u,v,w) is a local solution of (1.1). To prove the existence
of a fixed point we use the same technique than before, which consists on showing
(i) P(K) C K, i.e., Aw € L=(Q7), and ||Aw],, -+ [|[Vw]|,. < p and
(i) P is weakly-weakly sequentially continuous in LP(0, T, W2E(Q)) N L0, T; V).
From (2.14):

(2.31) Aol < lul

o ollzs + 1IC]

1o, forall s €|l ool

Multiplying the equation in (2.14) by w — wp and using Hélder and Poincaré’s in-
equalities we obtain

(2.32) IVwll o < elfull gz + vl e

From (2.31), (2.32) and p > 2 we get

g HiVwpllpe).

@339 awl| Ly + IVl < e(liullp + vl + 1€ e + lwplle + I Vwpll.).

By (2.11) we have p < r and therefore

(2.34) lull e < AT lull e < cAT) ],
. o
with A(T) := {Q#|77. Assume that the estimate

(2.35) llulll < G(p, T)

holds, with G continuous, bounded as a function of 7' and increasing with respect to
p in an interval (0,c,), with ¢, > 0. We shall prove this estimate later on, see Step
7. Then, from (2.34} ||ul|,, < cA(T)G(p,T). A similar estimate holds for v. Since
C' e L™(Qz) and wp € L0, T; H'(2)) we have ||C| ., + |lwpll . + [|[Vwpl,z =
BO(T) for & non-decreasing continuous function By satisfying Bg(0) = 0. From (2.33)
we deduce

1awl|, + [Vl 2 < A(T)G(p, T) + Bo(T),
and since we want to make || Aw||,, + | Vw|l . < p, it suffices to find T > 0 such that
AT)G(p,T) + Bo(T) = p.

Since G is bounded as a function of p and A(T), Bo(T) | 0as T | 0 it is straightforward
to see that such T exists, so (i) is satisfied.

To prove the continuity we consider a sequence h, € K such that h, — h
weakly in LP(0,T; W2P(Q)) N L2(0,T;V) and we show that w, — w weakly in
LP(O, T; W2P(Q) N L2(0,T; V), with w,, w solutions of (2.14) corresponding to Ay, b
Since hy, € K, || Ahp|| 0+ Vwll 2 € p < ¢, and then from (2.35) we get [[[un ||, [|[on]]
< Ge,,T) < const. Using (2.9) we also obtain lunllpe s l|vnl . < const. Then u, — u
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weakly in L7(Qy), and similarly for v,. Since p < 7 we find Aw, — Aw weakly in
LP(Q4). From r > 2 we also have w, — w wealkly in L?(0,T; V). We deduce from
the fixed point theorem [4] that P has a fixed point, (v, v, w), which is a weak local
solution of (1.1) in Q7 with the regularity inherited from problems (2.13) and (2.14).
Moreover, since the estimates do not blow up when T increases, see Step 7, we may
use a standard continuation argument to deduce that the solution is global in time.

Step 7. Bstimating |||u|||* + ||[v|||* of problem (2.13). Taking wlu) — wlup) as test
function for (2.13) and reasoning as in (2.18) with f := F(u,v) — div(b(u)Vh) we get

(236) D) gy + [ V(]2 < A+ /Q Flu,) (p(u) - ¢(up))

o

+ /Q D)V - V (p(u) = p(up)),

"
with A depending only ou the auxiliary data. Since F is sublinear we again obtain

(2.23). Defining B(s) = b(s)p(s) — fOS b (ohe(o)do and using the sublinearity of ¢
and b and (2.3) we get |B(s)] < ¢(1 + |s| + 52). Then

/ bu)Vh - (Vp(u) - Vlup)) = — / (B(u) — Blup)) Ah
QF Ja.

- / (b(w) — blup)) Vi - Vip(up).

Il

The first term is estimated as
[Q (B() — B(up)) Ak < [1B(w) — Blup)llw |AR]
< (1IQa" + il + luplfo ) AR,

Since h € K, and 2p' < 7 due to the choice of p, see (2.11), we deduce Juell o <
¢llull - <c|l|ull| and therefore

(2.37) fQ

The second term is estimated as follows:

(B(w) — Blup)) A < e (1@ + lup | + Nlulli®) o

o

fQ (b(u) — b{up)) Vh - Velup) < ||b(uw) — b(“D)”Lr(Lu)

T

th’“u(_::,w) 1Ve(un)llg: -

Since p > N we have ||VA| ,, pey < ¢[| Ak poo. Using b sublinear, r > 2 and (2.10)-
(2.11) we obtain

(2.38) /Q (b(u) — b{up)) Vh - Ve(up) < cl[Ve(up)| -

l ’
% (1Qz1" + llupll e + lull) o

We may obtain similar estimates from v—equation. Using ¢! Lipschitz continuous
as in (2.19) we get from (2.36)-(2.38)

el + ol < As() +ea (Full® + 1oll?) (o +5%),
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with Ay(p) := ci+cap, and ¢y, ¢z, ¢z depending on the norms of the auxiliary conditions
1 on 78, for some 8 > 0. Hence, definin [) = B0 i

and on 7%, for some . g G(p,T) T ith p € (0,¢,)
and c, == min {1, 5%} we finish. 0

Now we can afford the

Proof of Theorem £2.1. The proof uses a regularization technique and Theorem 2.2.
In view of the constructive method that we shall use in one of the uniqueness results,
we consider two different regularizations of problem (1.1) depending on whether ¢ is
strictly increasing or only non-decreasing. In the first case we consider the following
perturbation of the auxiliary data

w(upe) = @(up) + plee ') on Tp,
(2.39) w(vpe) = p(vp) + @lee™ ™) on Tp,
Uge = Ug + & Ve =Vp+e inl),

for some A; > 0, remaining the other auxiliary conditions the same, and we consider

plee ) exp {u(s —ee T} sis <ee T,
(2.40) we(8) =< pls) sis € [ee™ ™ K|,
W (k)s + (k) — ky' (k) si s >k,

with £ an L constant bound of the auxiliary data and g = i(%f—_ﬂT We have

w, € CH[0,00)), ¢(0) > 0 and ¢. > 0. It is straightforward to check that the
sequence of problems (1.1). corresponding to (2.39) and (2.40) satisfy the conditions
of Theorem 2.2. Finally, notice that ¢ and ¢, coincides in the range of u,, v,.

In the case in which  is non-decreasing we consider, for each £ > 0, the regular-
ization given by ¢.{s) := ¢(s) + £s and leave the auxiliary conditions unchanged. It
is easy to see that the requirements of Theorem 2.2 are satisfied, obtaining therefore
the existence of a sequence of solutions of (1.1). with the regularity and properties
stated in that theorem.

A priori estimates. In both cases we proceed in a similar way: we use @ (u.) —@(up:)
as a test function for the first equation in (1.1) and as in step 7 of the proof of Theorem
2.2, we obtain

(2.41) s [ @)+ [ Vet ve [ vl <c,
2 Qr Qr

0<t<T

with C independent of € (because the L® bounds of u., v, are independent of ¢, ).
Using now £ € L2(0,T; V) as a test function we get

T
/ (“et:f)vgv
0

from where we deduce

< || Vepe(ue)

2+ 0{ue)l poo Vel 2

+ [ (e, ve)i e |

‘SHL?:

(2.42) <c

ueeell 2 o, 7v0)

with ¢ independent of e. A similar estimate holds for v.. Trom the third equation of
(1.1) we get

(2.43) (AWl oo (gpy £ Ve = te + Clf oo,y < const.
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Therefore, using estimates (2.41)-(2.43) and standard compactness results we can
extract subsequences (labeled again by €) such that

Ue—U weakly * in L°(Q7T),
olus) — & weakly in @(up) + L0, T; V),
(2.44X e — U weakly in L2(0,T;V"),
ey, =0 weakly in L2(0, T V),
We—rW weakly * — weakly in L>(0,T; W2*(Q)), for all s < co.

From the compact imbedding L*(Q) ¢ H~*(f2) and Corollary 4 (p. 85) of [41] we
obtain,

ue —u in C([0,T], V).

Since  is continuous and non-decreasing we have that —A¢(+) is a maximal monotone
graph in L2(0,7; V') and, therefore, it is strongly-weakly closed in such space (see,
e.g. |8]), from where we deduce

(2.45) ¢ = p(u).

Assume, now, Hy. In order to pass to the limit on b(u.) and F'(u.,ve) we shall
prove that w. — w strongly in LY(@Qr) for all ¢ < co. To do this we use a modification
of the arguments given in [17], [32] or [19]. Defining the space

H={ue L0, T, W*2*(Q)),u € L*(0,T; V')}.
By (2.41) and (2.42) we have that u, is uniformly bounded in H. Then, from the

compact imbedding H € L “(Qr) we deduce the existence of a subsequence of u,
such that

ue — 1 strongly in LQ/“(QT) and a.e in Qr.

This fact together with the weak #* convergence of u, to w in L®({Jr) implies that
e — © strongly in L2 (Qr} for all ¢ < co. And similarly for v.

Identification of the limit. Let ¢ € L?(0,T; V) be a test function. By (2.44) and (2.45)
it is clear that

fOTmﬂ,c)a/Oth,o and /OT jg'zw(us)-vc—» /OT [ ot -ve

From the pointwise convergence of we, ve to u,v in Qr, we get Fue,v,) — F(u,v)
a.e. in G, and since F is Lipschitz continuous we obtain

1 (e, ve)ll 2 < e (lluell e + fvell - + 1) < const,

so there exists ' € L*(Q7) such that F(u,,v,) — [ weakly in L?(Qr). Lebesgue’s
theorem implies F = F(u,v), and therefore

/0' ) ]Q Pt vs)C — ]0 : fn Pu,v)C.

Similarly we obtain b{u.) — b(u) and b(v.) — b(v) strongly in L9(Qr) for all g < oco.
Due to the compact imbedding L?(0, T; W*2(Q)) < L*(0,T;V) we also have w, — w
strongly in L*(0,T; V). We, finally, deduce

(2.46) / bu)Vw, - V(¢ — b(u)Vw - VC.
Qr Qe
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So the limit, u, has been identified as the first component of a solution of (1.1). The
other components are handled in a very similar way and we skip therefore the proof.
In the case in which 4 does not hold, i.e., when both b and F are linear functions,
the passing to the limit is easler because we do not need to ensure the pointwise
convergence of ue,ve to u,v. In this situation the identification of the limit is just a
consequence of the weak convergences in (2.44) and (2.45). Finally, from [3], Theorem
2.2, we obtain the additional regularity

V' (u)Vu, ' (v) Ve € L(Qr).

To finish, notice that due to Theorem 2.2 we have that , for all € > 0, (2.7) holds. We
then deduce that this property also holds in the limit ¢ — 0. [0

The following regularity result will be used in the uniqueness section, see Theorem
3.4.
COROLLARY 2.3. Under the conditions of Theorem 2.1, let ¢ € C1([0,00)) be
strictly increasing with ' (0) = 0.
1. Assume

5 14 o 2 -5 e / o 2
(2.47) fo 1:;((3) do < oo and ]o %dv< o0

for all s € [0, 00). Then the solution of problem (1.1) given by Theorem 2.1
satisfies

b(u), b(v) € L0, T; V).
2. Let N =1 and assume the existence of positive constants ¢, 7 such that

(2.48) 1b(s) — b(n)lg <e|P(s) — (o) forall s,0 € [0, M],

with ®(s) = / V'(o)do and M > max{“uHLm(QT.) , "’U”Lm(qu)}' Then
0
the solution of problem (1.1) given by Theorem 2.1 salisfies

b(w), b(v) € L0, T; W).

Remark. Let ¢(s) := s™ and b(s) := ¢7 withm > I, v 2 1. Then, if m < 2v
condition (2.47) holds. On the other hand, using the inequality

la; —az|™ < cla§ —a§| for any ay,a > 0 and o > 1,

. m+ 1
we deduce that (2.48) holds with § = 5
v
Proof. 1. We consider the sequence of solutions (., v., w.) of problems (1.1),
constructed as in proof of Theorem 2.1, Since u, > ¢ we have that ¥(u:) — ¥{up.)
is an admissible test function for any £ > 0. For simplicity, we suppose up =01in ¥p

and therefore up, = ce ' We have for the diffusion term

[ et o)~ vtwwa) = [ EEEED 1w = [ ol
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with / ¥ (0)* /' (o)do. For the drift term we get

b(ug \WVWwe - V{t{us) — plupe)) = Vw, VDB (u,) = v — g + C)B(u,
/QT() W) = Ywnd) = [ Vo 9B = | (0ot 0B

-l—/ Blup: )V, - v,
b275)
&
with B(s) := / b(a )’ (a)do. For the time derivative term we obtain
0

/ ) et (Plue) — P(upe)) = A /

Qr

et (upe) +/ (G(u(T)) — Gluco))

(9]

- fn (e (TP (1 (T)) = ueo(upe(0)))

with G(s ] (e )da. We have then

/ LS * < [ Glu) + w7 + [ <qu~uE+c>B(ua).

Qv
—I—/ Blup:)Vw, -v -+ / Flug,ve)((ue) — t(ipe)).
p) SQp

Using the L®{Q) uniform bounds of u., v, and property (2.47) we deduce
/ |Vo(ue)|* <c foralle > 0.
-

We find then by (2.44) that b(uw.) — b{u) weakly in L%(0,T;V), with w the first
component of a solution of (1.1). We may follow the same argument to deduce the
property for v.

2. By Theorem 2.1 we have ®(u), = /' (u)ur, € L*(Qr). Sobolev’s imbed-
ding theorem implies ®(u) € L2(0,T;C%V2(Q)). Using (2.48) we deduce b(u) €
L2(0, T, CYY/28(Q0)). Finally, by results in [38] (Th. 7.18, p. 146), we have

L0, T; COV*P(0)) € L2(0,T5 AC(Q)) € L2(0, T; whH{(q)),

with AC denoting the set of absolutely continuous functions. The assertion follows.
o

Remark. The technigue we have used is also applicable when F(u,v) is a maximal
monotone graph, see [15] for a likely system but without transport terms. We also
point out that functions ¢(u) and ¢(v) as well as b(u) and b(v) may be different as
long as they fulfill the assumptions given on the data.

3. Uniqueness of solutions. We present in this section three theorems on the
uniqueness question for problem (1.1) which share a duality technique in their proofs,
i.e., the searching of suitable test functions which allow to deduce the uniqueness
property.

The first result is obtained by using a technique introduced by Antontsev, Diaz
and Domansky [2] for a system of two-phase filtration in porous medium. Here we



16 J.I. Diaz, G. GALIANO AND A, JUNGEL

assume (¥ (s))2 < cp/(s), which holds in the case when <iffusion and transport are
both linear or in the case in which they are degenerate in a suitable way. Notice that
this same technique could be applied to improve the uniqueness result given in [2] for
the two-phase filtration problem. It is worth noting that this type of condition alsc
arises as suflicient condition to ensure the existence of strong solutions of (1.2), see
[6].

The second result uses a technique introduced by Rulla [39] to study the Stefan
problem with prescribed convection. In this case we only assume ¢ non-decreasing,
but an entropy type condition for the electric field on the Dirichlet boundary must
be introduced: Vw -~ = 0 on Lp. Conditions of this type are already classical in the
literature of hyperbolic equations, see [29], and they arise as natural conditions which
allow to select a unique solution (the so-called entropy solution) when uniqueness fails
for weak solutions.

QOur last theorem applies to the case in which problem (1.1) has strong solutions
in the following sense: b(w),b(v) € LY(0,T; W), with

(3.1) Wi={he W"P(§):h=0onTp},

and with p > N if N > 2 and p = 1 if N = 1. To obtain this result we used a
method due to Kalashnikov [27] which consists of making a comparaison between an
arbitrary weak solution of (1.1} and the weak solution constructed as the limit of a
sequence of solutions of regularized problems, see proof of Theorem 2.1. Our result is
strongly based on the technique introduced by Diaz and Kersner [13] to study a one
dimensional scalar equation.

In the sequiel we shall assume that the component w of solutions is non-trivial in
the sense that || V| ;2(g,, # 0. On the contrary, the system reduces to the equation
ug—Op(u) = F(u, u—C), in fact simpler than (1.2) which is , as we already mentioned,
well understood.

THEOREM 3.1. Asswme H,-Hq and suppose that there exists o constant M > 0
such that

(3.2) ' (s))? < Me'(s) foralls >0
and
) 2
(3.3) (fiq.F(Sl’ Sg)) <M (s;), foralls;>0, i=1,2

Then problem (1.1) has a unique weak solution.

Proof. Suppose that (uq, vy, w;) and (ug, ve, wy) are two weak solutions of (1.1) and
define (u, v, w) := (w1 ~ug, v1 —vo, w1 —we), Fy 1= Flug,v),i=1,2 and F := F} — Fy.
Then (u,v,w) satisfies

ur — O (wlur) — wlug)) + div (b{u) Vw + (blug) — blug)) Vi) :nﬁ’,
(3.4) v — A (p(v) — @) — div (b(vy)Vw + (b(v1) — b(v2)) Vwe) = F,
—-Aw+u—v=0,

in @7, with auxiliary conditions

Vie(u) v=0, Vo) v=0 Vw-r=0 only,
(3.5) o(u) = o(up), @(v) =e(op), w=0  onZp,
u(-,0) =0, v(-,0)=0 in 0,
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i =1,2. Taking smooth test functions ¥, £, 7 with homogeneous mixed boundary con-
ditions for problem (3.4)-(3.5), integrating by parts and adding the resulting integral
identities we obtain

/Q PTYU(T) + E(T)u(T) = fQ w (@ + Ay + By - Vi 41+ Fy (4 )
+f 0 (€ + AAE — BLVE = 7+ F, (i +£))
Qr
(3.6) - ]Q wdiv (b(w YV — b(v)VE + V),

with A = fol (821 + (1 — 8)22)ds, B, 1= Vuwy fol V{sz1 + {1 — s)zp)ds for z = u,v
and £, = ;)l %%(sul + (1 —~ 8)usg, v1)ds with a similar definition for F,. Notice that
since b € C1([0, 00)), w4, v; € L°°(Q7), F is Lipschitz continuous and Vwy € L (Qr)
we have that B, F, are bounded in L= (Qr), for z = u,v. We define the differential
operators

Ll(’lrl’: 57 "7) = szt -+ AEAQJ) + Bu, ' qu) +n+ Fu (d) + 5) B

La(,§,m) =&+ ALAL =By - VE—n+ Fy (¥ + £,

La(,€,m) = div (b(w) Vi — b(v)VE + V),
with A% ;= A, +¢ and £ > 0, (and a similar definition for A%) and set the following
problem to choose the test functions:

[/1('[/’135777) = U in QTa
LQ(W:S,‘W) = in QT:
(37) CS(V": 51 77) =0 in QT|
Vip-v=VEv=Vn-v=0 on Iy,
Y=g=n=0 on Tp,
YT =& =0 in Q.

LeEMMA 3.2, Problem (3.7) has a unigue solution with the regularity of test
functions of (1.1), see (2.4) and (2.5). Moreover,

¥, &,n € H'0,T; LA(Q)) N L0, T5 () N L0, T; H*(Q)),

and there exists a positive constant C(T) independent of ¢ such that
(39 e[ (189 +1ag) < o)
-

Continuation of proof of Theorem 3.1. Introducing in (3.6) the test functions provided
by Lemma 3.2 we get

/ (u?® + vg) = Ef (uA1) + vAE).
Qu Qr
Young's inequality and (3.8) leads to

/Q (0? +97) < VE ( ]o (u? %) + C(T)) .

o
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Hence, taking the limit &€ — 0, we conclude that v = v = 0 a.e. in @y, which also
implies w =0 a.e. in @p. O

Proof of Lemma 3.2.

Step 1. A prori estimates. Multiplying the third equation of (3.7) by 5 and using the
regularity u;,v; € L°(Qr) and the continuity of b we get

(3.9) [ 1o < @ [ (19r 5 1vep)

with co(T) = 0. Thanks to (3.2) we can estimate
. s M f 9
(3.10) R OISRy FHINTEE- YA
Q Q 6 Q

for § > 0. A similar estimate holds, due to (3.3), for f F, (¢ + &) Ay, Multiplying

Q
the first equation of (3.7) by A1 and using (3.10), the analogous expression for the
F term we obtain, for a suitable 6

By —g [Vl [ Aziaef <o ( NGRS

(3.12) + /Q V[ + /Q uﬂ) .

From the second equation of (3.7) we obtain a similar inequality for £ which, being
added to (3.11} and taking into account that A%, A% > ¢ and (3.9) allows us to deduce

‘T

1 [ (jvur+1ve) + 5 / (18w +jag?) gc( ]Q (1wl + 1vel)

(3.13) + / (u2 +v2)> ,
2
with ¢(T") independent of . On one hand, we deduce from Gronwall's Lemma that
(3.14) [ (190 +1960F) < an)er=®,
SO

with ¢;(T) independent of €. Note that both ¢ and ¢, are increasing and uniformly
continuous functions of T. They just depend on norms of the data. On the other
hand, integrating (3.13) in {0, 7") and using (3.14) we obtain
(3.15) S [ (18P +1ag?) £ cafmpere,

Qr

with c3(7T") independent of €. So we deduced (3.8). Finally, from the third equation
of (3.7) we have that

Ap = V() - VE + b(v))AL — Vb{uy) - Vi — b(ug )AY,

and from (3.2} and the regularity /¢’ (v1)Vv; € L*(Q7), see Theorem 2.1, we obtain

{3.16) / IVo(u))]* = [ "(11)? |V |* < c] ©'(v1) |V * < const.
Q . )

b
Q
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Hence, using Hoélder and Young's inequalities and estimates (3.9) and (3.16) we obtain
the L2(0,T; H%(Q)) regularity of 7.

Step 2. Fxistence of solutions of (3.7). We use a fixed point argument. Consider the
set

K= {h € L*0,T% V) : Il 20 7y < R} :

where T* and R will be suitably chosen. K is convex and weakly compact in
L2(0,7%;V). We define @ : If' C L*0,7*; V) — L*(0,T*V) by Q%) := 5, where 5
is the unique solution of L£4(4y, £, ) = 0, being (1, &) the unique solution of

£1(1Z’) é: ﬁ) =1,
(317) { LQ(T];U é:ﬁ) =Y,

with the same auxiliary conditions as in (3.7). Since u,v, V4 € L?(Qs~) we can justify
the a priori estimates in Step 1 and deduce that any solution of {3.17) satisfies

(3.18) w5, & € HY(0, T L2(2)) N L(0, T H (1)) N L0, T*; H2(Q)).

Uniqueness of solutions of (3.17) follows from (3.18) and linearity of the differential
operators. Existence of solutions of (3.17) is proven by uncoupling the problem and
applying again a fixed point technique. Assume for the moment that such a solution
exists and, therefore, it is unique and satisfies (3.18). We easily deduce that the
solution of £3(1h, €, ) = 0 satisfies n € L2(0,T*; H*()). Notice that if 4 is a fixed
point of @ then (1, £,7) is a local solution of (3.7). To prove the existence of such a
fixed point we shall show

(1) Q(K) C K, for suitable B, T* > 0,

(i1) @ is weakly-weakly sequentially continuous in L%(0,7+; V),

and apply the fixed point theorem [4]. (i) follows from the previous a priori estimates.
From (3.9) we find

1

soir-n < o) (] e
(kI (0,75V) = co(1™) ( ¥ L0, T%:V) e

L“(D,T*;V))
and from (3.11) and the corresponding estimate for £ we obtain

|/

cT

< ey (T7) “ﬁHL“(O,T“:V) ¢

+|| <
L2(0,T™;V) L2(0,7*;V)

It follows that
”Q(ﬁ)”L”(O,T*;V) < CS(T*)ECT‘R_

Notice that, as we already mentioned, functions ¢;(T*) are uniformly continuous and
non.decreasing with ¢;{0) = 0 (they depend on the norms of the data in @) and
therefore we can take T* small enough to obtain ¢z(7*)esT" < 1, deducing Q(K) C K.
In fact, these properties of ¢; imply the global existence {once the local existence is
proven). (ii) is a direct consequence of the linearity and regularity and we omit the
proof. This finishes the proof of the existence of a fixed point and, therefore, of alocal
solution of (3.7). We already mentioned why, in fact, the solution is global. Finally,
the uniqueness of solutions is again a consequence of the linearity of the problem and
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the regularity of the solution. To finish, notice that the proof of existence of solutions
of (3.17) may be performed in a similar way. U

Following, we state the second result on uniqueness of solutions of (1.1}, The
main feature of this theorem is that it allows to consider a nonlinear diffusion, ¢,
not necessarily strictly increasing. However, we need to assume that an entropy type
condition on the electric field holds on the Dirichlet boundary.

THEOREM 3.3. Assume H;-Hj and let b(s) = s. If
(3.19) Vw-v=0 on T'px(0,T),
and
(3.20)  [F(s1,01) = Fis2,02)| < cl(p(s1) = p(52)) + (plo1) — p(o2))],

Jor all s;,00 2 0, i = 1,2, then problem (1.1) has o unigque solution in the class of
weak solutions such that

w € L0, T; W2>(Q)).

Remark. The equality in (3.19) is a consequence of the different sign that transport
terms have in w and v-equations. Indeed, suppose that there exist two solutions
(u1,,wy) and (ug,¥,we). Then, under the conditions of Theorem 3.3, with the
equality sign in (3.19) replaced by >, uniqueness follows.

Proof of Theorem 3.3. As in proof of Theorem 3.1 we obtain the following identity

/Q g = [ (plun) —plu2) A uVuy VYt um
+ [ (plon) = pl) A¢ = vV - V-
Qr

—/Q wcli'v(ulvw—v1V£+Vn)—/ (F1— Fy) (9 + &)

Qr
We choose the test functions as solutions of the problem
—AY(t) = u(E) in €2,
—AEL(t) = v(t) in £,
(3.21) —An(t) = div (v () VE(E) —ur(t)Vip(E)) in Q,
Vy - v=Virv=Vn-r=_0 on Xy,
Yp=E(=n=10 on Xp,

for a.e. t € (0,7). Existence, uniqueness and regularity of solutions is a consequence
of the theory of linear elliptic equations. In particular, since uw,v € C([0,T]; V') we
deduce 9,& € C([0,T];V). Then, u(-,0) = v(-,0) = 0 in © and the homogeneous
boundary conditions for ¢ and £ imply

(3.22) Vip(-,0) = VE(-,0) =0 in L*(Q).

Using these test functions we get
% /Q (|VUJ(T)[2 + |VE(T)!2> - / ) [ ((u1) — @(ua)) + v (p{v1) — wlve))]
(3.23) = ]; Yws - (uVY - vVE)

T

+f V(% —€)- Vi — (Fy — Fa) (44 ).
Q."



ON A QUASILINEAR DEGENERATE SYSTEM IN SEMICONDUCTORS THEORY 21

Now we perform the arguments to handle the terms involving ¢. The terms involving
v are similarly treated after a change of sign. Due to the choice of the test functions

f uVwg - Vi = — AV wsy - Vb,
Qr Q1
As in [39], let us show that (3.19) implies
1
(3.24) — [ AYPVwy - Vi < < [wall oo (s.coy f |V .
o 2 o

Integrating formally by parts the left hand side of (3.24) we get
(3.25) f A (Vs - V) = f ViV (Viog - Vi) — f (Vg - Vi) (Ve - v)
Q Q o0

See [39] for a rigorous derivation of this identity. Using that ¢ = 0 on I'p implies
that V1 has the same direction as v on I'p we obtain

(3.26) f (Vws - V) (Vif - 1) = / |Vipl* Vs - v,
asn Tp
Denoting by H(-} the Hessian matrix we get after integrating by parts
1
/ Vi - ¥V (Vws - Vip) = / Vi o H(ws) : Vip — wf A W’w[z
Ja o 2 Ja
17
(3.27) += / |V Vg - v.
2 Tp
Substituting (3.26) and (3.27) in (3.25) leads to

__/QAL/)(VU)Z.Vq,/)):/QVQ/J:H(wg):wa%/QAUJﬂVWE

1
-3 [ v vu, v,
2 I'n

and using Vws- = 0 on I'p (as a particular case of (3.19)) and the regularity assumed
on wy we deduce (3.24). For problem (3.21) estimate (3.9) holds and then we have

(3.8 [ opvn-vevmse [ (1o +ver).

Qr

Finally, Hélder’s, Young's and Poincaré’s inequalities together with (3.20) gives

- (Fl—Fz)(%[)'}-f)EEC/

4 Qr Qr

() = pwa))? + (p(o1) ~ 0(v2))’]
(3.29) +2 [ (1wl + ver?),

Qr

for all £ > 0. Then, using ¢ Lipschitz continuous and non-decreasing, substituting
estimates (3.24) {and the corresponding for v), (3.28) and (3.29) in (3.23) and choosing
£,6 small enough we obtain

(3.30) [ (vee s ey <e [ (vir+ver).

o
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Gronwall’s inequality and (3.22) imply Vi = V€ = 0 a.e. in @y, from where the
assertion follows. O

We finally present our third result. The main assumption is on the regularity of
the solution constructed in Theorem 2.1: we suppose Vb(u), Vb(v) € L(0, T; LP(Q)),

with p given in (3.1). As a consequence of Corollary 2.3 this regularity property is
satisified in the following example:

w(s):=38", bls):=58" withm>1andy>1,

in space dimension one.

_ TuporeM 3.4. Assume Hi—Hjz and suppose that there_ewists an open set
B c T'p such that the (N —1)—dimensional Houssdorf measure of B and I'p coincides.
Suppose

0 € C*((0,00)), with (p_’(O) =0

and assume the existence of a positive constant ¢ and a convex function p € C°([0, o0))
N C2%((0, 00)) such that 1(0) = 0,

(3.31) D<) €' (r) and o(r) Lculr) for r>0.
Then problem (1.1) has a unique solution in the class of weak solutions satisfying
b(w), b(v) € L0, T; W),

with W given by (3.1).

Proof. Consider, as in proof of Theorem 2.1, the sequence of regularized problems
(1.1)¢ in which we approximate sclutions of the degenerate preblem (1.1) by taking
the perturbed auxiliary conditions given by (2.39), remaining the other conditions
unchanged. We know from Theorem 2.2 that for each £ > 0 problem (1.1), has, at
least, a weak solution (u.,ve,w.) with the additional regularity stated in the men-
tioned theorem and converging to a weak solution (u,v,w) of (1.1) (Theorem 2.1).
Moreaver, there exist positive constants A and ¢, independent of ¢ and &, such that

(3.32) € U, Ve > e~ ™M ae. in Qp
and
(3.33) IVwell ooy < €

Suppose that (ug, vg, wy) is another weak solution of (1.1) and define (U, Vi, W) :=
(ue — U2, Ve — V2, We — wa) and Fy 1= F(ug,ve) — F(ug, v2). Then (Ue, Vi, We) satisfy

Ut — A (p(ue) — @lug)) + div (b(ue) Ve + (b(ue) — b(uz)) Vo) = F,
(3.34] Vet — A (p(ve) — w(v2)) — div (b(ve) VW, 4 (0(ve) — blva)) V) = I,
—-AW.+ U, -V, =0,

in @7, and the auxiliary conditions

o(upe) = @up) +plee™™),  o(vp.) = ¢(vp) +p(ee™™) on Tp,

e(upz) = p(up), @vp2)=w(vp), Wpe=0 on Lp,
(3.35% Volune) - v=Veloy:) v=VW,.- v =0 on Ly,
V(ug) - v =Ve(vg) v =0 on Ty,

Ue(,0) = Ve(,0) = ¢ in Q.
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Taking smooth test functions v, &, 7 with homogeneous mixed boundary conditions
for problem (3.34)-(3.35) we get

/M)U T) + E(T)V, _—e/w o Lw( &MY (Vo 1 VE) -
fQ e (1 + Aim/wal VY +n+F (v +&))

+ o Ve (& + ALAL = BIVE — 0+ F (Y + £))

(3.36) - fQ | Wediv (5(ue) V% — b(oe) V€ + V1),

with AS : fol @' (52 + (1 — 8)z2)ds, BE 1= Vun fol b{sze + (1 — s)z)ds for z = u,v
and Ff = 01 8E (su. + (1 — s)ug, ve)ds with a similar definition for F¢, where here

and in the sequel we denote by z any of the functions u or v. Due to b € C}{[0, ),
F Lipschitz continuous, (3.32) and (3.33) we have

(3.37) E|BS||Lm(QI) ' ”FE”LDo y < ka,

with ko independent of €. In addition, using (3.31) we deduce the existence of a
constant

(3.38) k(g) = e te*M plee 1)
such that
(3.39) 0<kle) AS <ky inQr.

We consider sequences of C*°((}7) functions such that
ATt — AL, BOT B, It FL oy b - b(ze)

strongly in L?(Q7) when n — co. We choose AS™ monotone decreasing on n and BE™,
F2™ and b} monotone increasing on n. Because of (3.39), (3.37) and the L*(Qy)
regularity of solutions of {1.1) we deduce

(346 k(e) < A2™ < ko, and ”Bg’n“Lm(QT) ) |§F§’"|{Lm(QT) MNOZ ] ooy S Ko

in Q7. We rewrite identity (3.36) as

[w JUL(T) + E(T)Va(T) = efw ) 480 = [ plee™) (Th+vE) v
Zp
+ Ue [(45 — AZ™) Ay + (B, — BY™) - Vi
Qr
+ Ve [(45 — A™) AE — (Bf —~ BY™) VE]
Qr
+ Ue (B — g™ (b + &) + Ve (Fy — F3™) (¥ +€)

Qr

o+ Q”vw ((b{ug) — b)Y Vb — (b(ve) — b)Y VE)
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- Wediv (b, Vi — 0, VE+ V)
QT

+ /Q Ue (e + AT AY +BI™ - VY + 4+ Fo (¢ +£))

+ Ve (G + AJTAL = BY™ - VE—n+ F77 (¥ + )
Qr
(3.41) =T+ 4 Iy,

and set the following problem to choose the test functions:

Yo+ ASTAY +BEY VY £+ FEU (4+€) =0 in Qr,
L+ APAE B - VE—n+FS(p 48 =0 inQr,

An + div (02V) — b2VE) =10 in Qr,
(342) p=g=n=0 on Tp,

Vip . v=Ve&-v=Vn-v=20 on Xy,

%b(»T) = ng &(»T) = Xg in Q;

with xi € C§°(82) satisfying dist(Zp, supp(xi)) > 6 and x§ uniformly bounded in
LY(Q) for all § > 0.

LeMMA 3.5. Problem (3.42) has a unique solution with the regularity of test
functions of (1.1), see (2.4) and (2.5). Moreover,

(3.43) P, &€ HY0,T; L2(Q)) n L=(0, T; HH(Q) N L0, T; H*(Q)),
n e HY(0,T; L*(Q)) N L=(0,T; H()),

and their norms in these spaces are uniformily bounded with respect to n. Finally,
there exists a positive constant C'(T) independent of & and § such that

(3.44) 1l Lo @y » €1l Lo 0y < CULT)-

Continvation of proof of Theorem 8.4. With the test functions of Lemma 3.5 we have
I; = I = Ig = 0in (3.41). Using in the resulting identity the uniform estimates with
respect to n provided by Lemma 3.5 we deduce that I3, I4, I5 and Ig tend to zero
when n — oo, Therefore, identity (3.41) is reduced to

(3"*% UL(T) + x2VelT) = € [Q ((0) + £(0)) - /E plee™ ) (Vi + VE) - v

The treatment of the boundary integral deserves the following
LeEMMA 3.6. Let A, B, g. € L™ (Qr) with

(3.46) k(e) < Ae,

where k(e) is gwen by (3.38). Consider the problem
Y+ AcDY+Be - Vi 4 9. =0 in Qr,
Pv=10 on Xp,

Vi -v=10 on Ly,
'¢(1T) = X8 ) Q,
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with § > 0. Then, there exist a 8{c) > 0 and a positive constant ¢, independent of ¢,
such that if § < 6(g) then

”Bs”z,m(QT) H‘/’HLw(QT)
k(e)

(3.47) —Vy-v<e ae in  Lp.

End of proof of Theorem 3.4. Now we are in a position to pass to the limits £,6 —
0. First note that Lemma 3.5 ensures the existence of uniformn in g,6 estimates of
Hw”["x’(Q’() y ”g“LW(Qr) . Therefore

(3.48) E/ (p(0) +£0)) =0 as €,6 -0
Q

Applying Lemma 3.6 to the two first equations of problem {3.42) and considering the
uniform bounds in € of || B || ;e (g, se€ (3.37), and in €, 6 of HIE/IHLDO(Q-I-)’ see Lemma
3.5, we obtain

—Art w(e)
(3.49) —LD plee™ )V v < “HE)

where we used that ¢ is non-negative and increasing. Using (3.31) and (3.38) we
obtain ¢(e) < cek(e) and from (3.49) we deduce

(3.50) —/ elee™ V- v <0 as g6 —0.
Lp

A similar argument may be applied to the term involving £. To finish, we choose
function x¥ as follows: set Qs = {x € Q : dist [0Q, supp (U.(x,T))] > 6} and define

« | sign{u(z,t) —ug(z, T)} if z € s,
x5(z,t) = { 0 if z € O\ Q5.

Then
(3.51) /ﬂngE(T)—a/S;[u(T)—ug(Tﬂ as €,0 — 0,

and a similar property holds for the term involving V.. Gathering (3.48)-(3.51) we
deduce from (3.45)

fﬂ (T — un(T)| + [o(T) — wa(T)] <0,

and the assertion follows. 00

Proof of Lemma 3.5. The proof follows the same scheme than the proof of Lemma
3.2, Therefore, we shall only show how to obtain property {3.44). Set

K = {h € L%(0, T V) N IO, T L)) : Il o ey + el o e e () < R} ,

and define Q : K — L2(0,T*;V)NLY0,T*; L=()) by Q(A) = n, being n the solution
of

An + div (bEVTL - bgvé) =0 in Qp,
(3.52) n=0 on 2p,

Vn-v=10 on Xy,
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with (1,71,5) solution of

Py + ASTAG + BES -V 4+ 7+ FEn(h+8) =0 in Qr,
£ 4+ AAE B VE— 4+ FEr(h+6) =0 in Qr,
(3.53) ‘Z’:é:(} on Xp,
V1ZJ-U=V5-U=0 on Ly,
P, T)=x% T =x3 in Q.

By Alexandrov’s maximum principle, see [28], the solution of (3.53) satisfy

; 3 < eT™ |14 .o
(3.54) |l¢‘|L°‘°(Q,I.-) + Hgl}Lm(QT.) < e llp o)

with ¢ depending on a bound of ||FS™| ;.. which we know independent of £,n, see
(3.40). Now define

(3.55) 8 1= 57 + bgp — BTE.

From (3.52) we have that @ satisfies

AB = div (wb: ~ ng;}) in Qp,
=0 on Lp,
V8-v=20 on M.

LNQ)) '

||vz»:i|L..(m) -

Recalling the definition of # and using the assumption b(u), b(v) € L1(0,T; W) we
obtain

(3.56) “”“Ll(O,T‘;L""(Q)) = o(17) (“q’LHLm(QT..) + “éHLm(Q.‘,.)> ’

with c(t) depending only on [|[Vb(z)|[ 1 (0,¢,0(q)) 209 {[8(2)]| oo,y 2 = u,v. Gather-
ing (3.54) and (3.56) we find

By well known results, see [42], we have

AvEil

u

1Ol ooy < € (”éw:} ey T I

for p given in (3.1). Then

16l ooy = € (HSHLDQ(Q) Vel ey + de HLm(Q)

||71“L1(0,T~;Lw(n)) < o(T*)e” Wl £ o, roo () < (T R,

and to obtain Q(K) C K we only have to choose T* small enough. The rest of the
proof of existence of a fixed point is similar as that in Lemma 3.2. Finally, notice
that a continuation argument allows to extend the solution to any T > 0. Indeed,
estimates (3.54) and (3.56) do not blow up for any finite 7. O

Proof of Lemma 3.6, Since 982 is regular,  satisfies the exterior sphere condition,
i.e, for all zg € 002 there exists B; > 0 and z; € IRN\Q such that

B(:L‘l,Rg) nQo = {1130},
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where B(z1, Ry) = {'L‘ e RV :|z—z1]| < Rl}. Let us fix zg € Interior(Tp). This
set is non empty because, by hypothesis, there exists an open set B such that B C I'p.
Therefore, there exists a small enough 6 > 0 such that, by defining Ry := § + R;,
we have B(xq, H2) N 0Q C I'p. Moreover, since dist(d€), supp(xs)) > §, we also have
xs =0 in w = QN B(xy, Ry). We shall use the notation ko(e) = ||g|}Lm(

Qr)?
ki(g) == (NR—_ll + 1) Bl pooqpy and ka(e} = |¥[| poo (g, - We define
L{yP) =t + AAY+B -V and  w(z,t) == ¥(z,t) +o(r),
with (z,t) € w x (0,%) and r := {& — x¢|. Function ¢ € C*([R;, Ry]) will be chosen
such that ¢”(r) > 0, ¢/(r) < 0 and the maximum of w in @ x [0, 7] is attained in
{20} % [0,T]. Assuming these properties we get, due to (3.46)
L(w) = —g+ A:Ac + B Vo > k(e)o"(r) + ki(e)a'(r) — ko(e).

'l : N .— ko(e) "‘%('E—)'" 3 : . : o]
wosing o(r) = e Coe” ", with Cy an arbitrary constant, we obtain

k(e)o" (r) + ki(e)o'(r) — ko{e) =0, o”(r) >0 and

k k1 (g)
(3.57) if Cs> k(s)wgﬂe—*kﬁﬂ“’ then o'(r) <0.
ki(e)
Taking Cy with this restriction we have that L{w) > 0 in @ x [0,7T] and therefore,

by the maximum principle, we deduce that w attains its maximum on the parabolic
boundary of w x [0, 7] . On this boundary the values of w may be estimated as follows:

wlz,t) =o(r) < o(R;) on (I'p Néw) x 0,77,

wia, 1) = P(s,6) + 0{r) < kale) + o(Ra) on (8B (a1, Ra) N 6w) x (0,71,
w(zg,t) = o(Rq) on [0,77,

w(z, T) = a(r) + xs(z) < o(Ry) in w,

where we have used that x5 = 0 in w. It is a straightforward computation to see
that,by making & small enough, we can choose Cy such that (3.57) and o(R;) =
ks(e) + o(Ro) hold. As a consequence we obtain that Vw(zg,t) - v > 0 and by the
definition of w and taking & suitably we obtain

—Vih(zg, t) - v < c&z)(%-(—i)- inf0,7].
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