Roniinear
Analysis

Real World Applications

PERGAMON Nonlinear Analysis: Real World Applications 3 (2002) 503-514 —
www.elsevier.com/locate/na

On a nonlocal quasilinear parabolic model related
to a current-carrying Stellarator

J.I. Diaz®!, M.B. Lerena®!, I.F. Padial®*!

s Dept. de Matemdiica Aplicada, Fac. de Matemdticas, Universidad Complutense de Madrid,
28040 Madrid, Spain

bDept. de Audlisis Econdmico, Fuc. de CC. Econdmicas, Universidud Autonoma de Madrid,
28049 Muadrid, Spain

Dept. de Matemitica Aplicuda, ET.S. de Arquitectura, Universidad Politéenica de Madrid,
28040 Madrid, Spain

Received 28 February 2001; received in revised form 28 March 2001; accepted 28 June 2001

Keywords: Quasilinear nonlocal elliptic—parabolic ~ equations; Current carrying Stellarators; Relative
rearrangement; Galerkin method

1. Imtroduction

We study the existence of weak solutions of the quasilinear parabolic problem
B — Au=GQu)(t,x)y+J(u)t,x) in 0:=]10,T[x &,
() u(t,x) =y on £:=10,T] x 0%,
Bu(0,x)) = fluo(x)) in 0,
where 2 is an open, bounded, and regular set in R? and T > 0. Moreover, ¥ is a neg-

ative constant, and the nonlinear functions f, G, and J satisfy the following structural
assumptions:

B(s) :=min(s,0) = —s5_, (1)

Gu)(t,x) = [A — duy(x)?
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J)(t,x) 1= j(u {6 x), (O o), [ (O, (Ju(t) > u(t,x)])), (3)

with 4 >0, >0, 1, = max(1,0), |E| the Lebesgue measure of the set £. So, for
example, [u(f) > 1. (£,x)] denotes the measure of the set {y € Q: u(s, y) > ur(t,x)},
for a given x € 2 and ¢ €10, T'[. The function u.(¢), ={u(¢)],, defined on the interval
Q,:=10,12|[, is the decreasing rearrangement of the function u,(¢) : £ — [0, +c0);
the latter is defined by w,(#)(x) = [u(z,x)],., for x€ Q2 and a fixed £ €10, 7] (see, e.g.
[107). By [u.(£)]. we denote the (weak) derivative of the decreasing rearrangement.
We assume that

g, jRT xRt xR~ — [ are bounded continuous functions, 4

and we fix a constant Cy such that

max (|G )(6,x)], ()6 x)]) < % (5)

for all admissible functions w, for all + €0, 7] and x € Q.

The above formulation is related to a problem arising in the study of the magnetic
confinement of a plasma in a Stellarator device, when the plasma is assumed to be a
perfect conductor but with a non-zero net current inside each flux magnetic surface (in
contrast with ideal Stellarators).

Taking into account Ohm’s and Faraday’s laws, the associated Grads—Hafranov equa-
tion, obtained after an averaging process from the three-dimensional physical problem,
can be formulated as a two-dimensional inverse problem of the form

Blu), — Au = F(u)+ F)F' (1) + Ay, in Q, (6)

where : R — R i3 an unknown function satisfying F(s)=+/4 (a given positive con-
stant} for any s < 0 (the set {# < 0} corresponds to the vacuum region, separating the
plasma from the walls of the device; (see, e.g. [2,6]). The case of an ideal Stellarator,
with zero net current within each flux magnetic surface, has been studied recently in
[6]. In practice, however, this ideal condition does not hold, and a known current arises
in the interior of each magnetic surface (see [4] for a physical modelling and [8] for a
mathematical treatment, both for the associated stationary problem). Using the change
of variables introduced in [8], the condition of a non-zero current inside each magnetic
surface can be expressed in terms of a family of integrals, involving a given function
hARY < RY — R

/ IR D)) + s (1)]
S{u(1y>s}

=h{s, g (D]pey), Vs€ ess{%nfu(t),esssupu(t) (7)
2 o

and for any +€[0,T]; this is known as the current-carrying condition. The present

paper generalizes the results of [6], which is concerned with the special case / = 0.
We point out that the physical model invelves some weight functions ¢ and b, which

herc are assumed to be equal to one, and the diffusion operator is a certain elliptic,
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second-order operator with variable coeflicients. Our problem () thus contains some
simplifications. A more general framework will be considered in [7].

The main goal of this paper is to prove the existence of a weak solution for (#).
The organization of the rest of the paper is as (ollows: In Section 2 we explain how
(6) and (7) lead to non-loca! terms of the kind involved in (#). In Section 3 we
introduce the notion of weak solution and prove some a priori estimates for any weak
solution. Finally, in Section 4, we state and prove the existence result. For the proof,
we shall use a Galerkin method as in [6]. Notice that the equation in (&) is elliptic—
parabolic, depending on the sign of u. So, we start by approximating (#) by a family of
regularized problems (£), (obtained by approximating f3 by suitable strictly increasing
functions f,). Next, we approximate (#), by a sequence of finite-dimensional problems
(#),.n and prove their solvability. Using a prioti estimates, we pass to the limit, first
in m, then in a.

2. On the non-local terms obtained from the inverse problem

The main goal of this section is to show how the family of conditions (7) allows us
to write the unknown function 7 in terms of a non-local expression in u. In order to do
so, we shall apply some technical results about decreasing and relative rearrangements.

Given a function b€ LY0, T; LY(£2)), we define the function

o () > u{t) ()]

wito) = | beydr+ | (B i o)+ () s
{u(ty=>u(t). (o)} S0

for ¢ €70,|Q|[, t€10,T{. The relative rearrangement of b(t) with respect to u(t) is
defined as the (weak) derivative (dw/do)(t,-), and we denote it by b(¢)su,) (5ee, e.8.
[10]). This function and the decreasing rearrangement have many useful properties,
some of which will be used here (see, for instance, [8,10,11], or [12]).

Assuming u to be regular enough, we can apply Theorem 1.1 of [12] in order to
obtain the derivative with respect to s of relation (7), for a fixed ¢ In fact,

WOF O @) + () ]y (D) = K512 (0(0)),

with u(s) = |u(¢) > s| the distribution function of u(r) and A} the derivative of A with
respect to its first variable (we used here that |u, (£){rs(0) = 14.(£)(0)). Now, from
Lemma 9 of [8], we get

1 GF @ty (u(0)e) + Ay (0 J(u()) = (s, 4 (0):(0)).

We also assume that x(t) has no flat region (ie., |{Vu(t) = 0} =0 for any ﬁxed
£). From this, u(t)«(u(s)) = u(t).(juft) > 5|} =s, and so we deduce that [n )™

[t (D] (|u(t) = 5]) Tor 5 = 0 (see, e.g. [8, Lemuna 2]). Thus, the last relation can be
written as

F()F'(s) + sy = K540, 14 () OD [ (D) (e} > 1), (8)

and so, (1F?Y(s) = —Asy -+ Bl(sy () (0)[uy (D], (Ju(t) > s]). (Note that (8) holds
also for 5 < 0, since F is constan{ on R™). Integrating the last equality on (0,04)
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with o € [essinf o u(t), essup, u(t)], we obtain that

o e 1/2
Flo)= [A — 24 / sds +2 / (st () (O e (15 (uele) > s|)ds]
J0 + 0 +
|ty > e 172
= [A — ot +2 / R (0(r7), 1 (000 ([t (D], ()) di“} ,
Ju(e)=0| n

where we used the change of variable s = 1, (¢).(r) (note that F(o) = F(a)).
Taking ¢ = u(t,x), we get

Flu(t,x)) = |4 — huy(t,x)?
Juley > u () , 172
+2 /l 20 B (£)2(8), ua (0):(0)([e1 (O]0(5))* ds} .
o (1) > .

which is a non-local expression in u, to be substituted for the first term on the right-hand
side of (6).
Also, setting s = u(4,x) in (8), we obtain

Fu(t, x)F'(u(t, x)) + Ty (4,x)
=hy (g (3,10 (0 (0 (O]Lu(e) > ut,x)]), 9

another non-local expression in u, which coincides with the sum of the second and third
terms on the right-hand side of (6). Note that for any s € [essinfg u(t), esssupg u(t)],

]{ . }/zg(u+(r,x>,u+(r>*(0))[u+(f)]1(|u(r)>u(r,x)\)dx=h(u,m(r)*(on,
u(l)>s

by means of (7). Thus, (6) is transformed into a non-local equation like the one
in (#). After a truncation argument (as used in [8]), we are led to the assumption
of globally bounded functions g and ;j as in (4). The justification of the truncation
argument (passing to the limit) is the main goal of [7].

3. On the notion of weak solution and some a priori estimates

Definition 3.1. Assume that wy € 4'(Q) N L(Q2). We say that a function u is a
weak solution of () if the function w = u — 7y satisfies the following conditions:
w e L2(0, T Hi(2)), Bov+y) € L2(0, T; H=H(Q)), B(w+7)i—Aw=G(w+y)+J(w+y)
in 2'(Q) for ae. t<]0,T[, and A{w -+ 7)|,=0 = Sto).

We note that if u is a weak solution of (), then f(u) € C([0,T]; L*(Q)). We have

Lemma 3.2. If u is any weak solution of (), then
1BGu(t)y — B o=y < Cot + |Bluo) — ¥y Ve €[0,T]
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Proof. For any integer m = 2, we define g,(o) = }o—|’”“za and denote by I the trun-
cation operator given by Ti(s)}=o if |o| <k and ksign(o) otherwise. Then we have
Wik = G © Tk(ﬂ(u) - /}(y)) € LOO(Q) N LZ(Ov T [-[()l (Q)) and

(Aw() + e Wik ()Y + /Q Vw(t) » Vwy ((¢)dx
- /Q [GOE) + 1)+ TOH(E) + 1w (0 (10)

where w —u — v and {-,-) denotes the duality between H~'(Q) and Hj(Q). By the
integration by parts formula (see, e.g. [1]), we have

d

aym,k(t) - (ﬁ(ﬂ/([} + ’)")ta Wm,k(l)): ' (ll)
where y,,;(1) = [, dx ‘[;f(w(”ﬂ)_ﬂ("’) gm © Ti(o)do. Since [, Vw(t) - Vw, 1 (t)dx = 0,
and using (5), we get

, . 1 =1/m
d _
a?y,,,k(t)écg / [Wa i ()|dx < Cyl€2]'™ ( / [ Wk ()] ”dx) . (12)
J o0

and so,
/ |Wm,/c([)|m/(m—l) dx=myye(t) — mk"=! / (18w (t) +7) — B(y)| — k) dx.
Q o
(13)
Then, relation (12) leads to y), {1} < Co|@|""m' =™y, (' =™, from which we

conclude that y,iu/,’;:(f) < Col@Vmm=1m¢ + 3™ (0. Using (13) and letting k — +oo and

m,k
m - -+00, we get the result. [

We point out that the above statement remains true if we replace by any non-
decreasing Lipschitz function, as in particular §,(s) = a5, —s.., for a given o« > 0. In
addition, we have

Lemma 3.3. Let f.(s) = as. —s_, with 0 < a < 1, and let u be a weak solution of
(P), but with [ replaced by f,. Then, for any t €{0,T],

I
|t ()]0 (@) < aCoLQI. (14)

Proof. First, let o=0. We have (Ju_/0t) € LX0, T; H~'(2)) and {(Bu_/de)(t), (u..(¢)—
0)+) =0 for all @ >0 and a.e. t€]0,T[. Thus, from the equation satisfied by u,

]l |Vu ()] dx = / [Gu()) + S ()W ue () — )4 dx.
{us (>0} Ja

Differentiating with respect to 6 and using (5), we get

d ~ 2
_Hé/{ . Ve () dx < Colua(t) = 0.
() >
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Then, the conclusion holds by standard arguments (see, e.g. [8]). Now assume that
0 <o < 1. We argue as in [10]. Taking (i, () — G)+ as a test function and differenti-
ating with respect to 0, we get

0 d
o —u (£)dx — - (Vuo()]*dx
./{,u(:)>()} a " do Jo >0y +0l

:/ G(u(t))der/ J(u(t)) dx,
J{ua () >0} J{u (>0}

for ae. @ > 0. Then arguing as in [5], we obtain that
é Y0
—das—uy (1)(s) < Cos ~ o / —u{t).{o)da, {15)
&S‘ Jo at

for all s €10,|82|[. If we introduce K(t,5)= [, u4.(t)«{c)do, then relation (15) leads to
oK K
ocg(t,s) o 4ns€§§«(r,s) < Cps,

K(£,0)=0, 0—K(t, |2))=0.
ds

We now define a function K(s), satisfying

L dk
' — Ay —— = — =
Cos S K(0)=0, ClS(|Q|) 0,
that is,
s Coa G
K(S)»— _ES +EE‘|Q|

Then, from the comparison principle (see [5]), we deduce that K(t,5) < K(s) for any
s€[0,|Q]] and any ¢ €[0,7]. In particular, we get (14). O

Lemma 3.4. Assume the conditions of Lemma 3.3. Then, for any t€[0,T],

it g p(x)
/ [|Vu(a,x)|2dxda+/ dx] Bolo+y)do
0 Ja Ja o
o t
< [ Guolx) = 1)Bulito()) dx + C f [ (e, %) — 7] dx do.
Ja 0 Ja

Proof. By the integration by parts formula we have

d . .

o0+ [ [ dr= [ 1600+ )+ I+ Pwce)d, (16)

e Q
where w = u — y and
g d wltx)
y0= [ oo+ nds= [ @ [ pe e
Ja Q 0

Integrating relation (16) with respect to ¢, dropping some non-negative terms (y{z) = 0
since fi, is nondecreasing), and using (5), we get the result. U
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4. On the existence of a weak solution
The main result of this paper is the following:

Theorem 4.1. Asswme that ug—y € Hi(2)NL(Q). Then there exists a weak solution
u of (P). Moreover, ue L>(Q), u—y e L*0,T; HJ(QYNH*(Q)), and P(u) € LXO).

We will start by proving a similar result for (#),, that is, problem (%) with f
replaced by fi, (as defined in Lemma 3.3), for 0 <o < 1t

Theorem 4.2. Assume that ug —7y € H) (Q)NL®(Q) and 0 < o < 1. Then there exists
a weak solution u* of (P),. Moreover, u* € L}(0,T; H*(Q))NL®(Q) and u* € L} Q).

The proof of Theorem 4.2 will be obtained by means of a Galerkin method as in

[6]. First, we shall find solutions w, of some auxiliary, finite-dimensional problems
(y)a,m-

4.1. On the finite-dimensional problems (2 ), p

Let (A, ¢idrs1 be the eigenvalues and eigenfunctions associated with —A on @
with zero boundary conditions, ie., —A@; = Ao and ¢p € H)(Q). For m = 1, we
denote by ¥, the vector space spanned by {@,...,¢n}. For all v€ ¥, we shall use
the decomposition v =Y, ¥ ¢,

For a fixed o with 0 < « < 1, we consider the following finite-dimensicnal approxi-

mations to problem (#),: To find wy, € LYO, T V), wa(£)==3"1" | wi (£)e;, satisfying
" /0
/ (—ﬁa(wm(t)-k y)) i dx + / Vw,(t) - Vo dx
Jo \ ot Jo

(P )am _ . N . ' n _
= | Glwu, () + Ve dx + [ Jwe(t) +Popdx, k=1,...,m,
JQ JQ

W”,(O) - Pm(“O - Y);

where P, is the orthogonal projection operator from L*(Q) onto F,,.

Theorem 4.3, For each m 2 | there exists a solution wy, of problem (P )y, . Further-
more, there exists a number ky such that wy, = 0 for all m = k.

Problem (#),,, can be written as a nonlinear differential system for the functions

wh(£),...,w"(t). Indeed, these functions satisfy

n m

d ; X .
; ar'k(wm(t))agwﬁn([) + Zl: bil’m’“):”(t) = cﬁk(“’m(r))v

W,A;,(O) = the kth component of P, (e —7v), k=1,...,m, (17

where ay(v):= [, fL(v + V)oiopdx, by = [, Vi Vo dx, and Fe(v) = Jo Gl +
Do dx+ [,J(0+y)prdx, for eV, and i k=1,...,m.



510 J.A. Diaz et al. | Nonlinear Analysis: Real World Applications 3 {2002} 503-514

To prove the existence of a solution of this initial-value problem, we need the
following

Lemma 4.4. The functions 7.V, — R, k=1,...,m, are continuous.

Proof. This is a consequence of assumption {4) and of the following Lemma 4.5 (see
[8] for details).

Lemma 4.5. Let (0,)as1 be a sequence in V,,\{0} and let v be in V,,\{0}, such that
Uy — v in V. Then one has that

v, — v strongly in €°(Q) Yk e N U {0},

H=—CO

b — U strongly in 6(Q,),

= OO

Uppw — Uy, strongly in L(Q,) V1 < q < oo,
H—rCO
U (lUg > 0, )l) — UH(IU > v()))  strongly in LI(Q) V1 < g < co.

Proof. See [8, Lemma 22]. Regarding the notation, recall that Q. :=]0, |Q|[. Moreaver,
given a (measurable) function v on £ and a function ¢ on €,, we denote by
¢(|v > v(-)}) the function x — ¢(|v > v(x)|), defined on Q. [

Next, we will establish some a priori estimates.

Lemma 4.6. Let w,(1)= 31| wi()p:, where (wh(0), ..., wi(t)) is a (local) solution
of the initial-value problem (17), for some m = 1. Then we have

it . wy ()
/ in,,,(J)ﬁz(Q) do +2 / dx / fu(c+7y)de
Jo a Jo

oimt

<2 ‘/me(o)ﬁ (On(0) + 7+ Z2E

ane

1
iz(ﬂ) + ECSEQL

{
1
/ 1W:n(3)!i3(9) d.S' < E|VW“,(0)
J0 d

Jor all t in the solution’s interval of existence.

Proof, The first statement follows from an estimate similar to the one in Lemma 3.4
and from Poincaré’s inequality. To prove the second statement, we multiply the kth
equation in (17) by (d/domwt (o). Summing over k, we get

/ﬁq(w,,,(t)+y))|wm(t)| Ci{+ /]Vw,,,(t)l dx

= / {G(W”,(f) + }’) + J(Wm([) + 'V)]W,l”(f) dx.
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Since B, = «, it follows that

!
n

‘ 2
Eaiv""uz(t)llﬁ(g) = C_‘U|W:n(t)|l,‘(9)-
Applying Hélder’s and Young’s inequalities, we get

Gile|
L“(p) + .
20

1d
CChV,”(f)|L 2(82) + |VW,”(I)

oy = |“’m(f)

Integrating, we have

! 1 ) 1 1
/G W)l gy 85 + —IVwin(Olig) < = Vwn(O)lixg) + = Co

which proves the assertion. [

Proof of Theorem 4.3. Since {¢@y,...,¢,} is a basis for V,, and since f, € whe(R)
with 0 <o < f), <1, the matrix of coeflicients az(w,(¢)) in (17) is invertible. So,
by the Cauchy-Peano theorem, the initial-value problem (17) has a maximal solution
(wh(0),...,wl(£)), defined on some interval [0,7,]. From the a priori estimates given
in Lemm't 4.6, we have that, in fact, 7, = T; that is, w,{t) = Y 1, wi(t)p; is a
solution of (#)y . To finish the proof, we observe that there exists a number &y with
Jo 9k, (x) dx #0, since (@)1 is complete in L2(£2). Now suppose that m = Ky and
wy = 0. Then GOw,, + v) and J(w,, + 7) are constants, and the kpth equation in (17)
implies that [, g, (x)dx =0, Thus, w,, # 0 if m = k. O

Corollary 4.7. For m = 1, let w,, be a solution of (P), . Then we have:
(a) (Wodmz1 is bounded in 12(0,T; H(Q)).

(b) ((Bwy /) w1 is bounded in L*(Q).

(¢) (Wpdms is bounded in ¥ :=H'(0, T; L2(Q)) N LX0, T; HX(Q) N Hi ().

Preof. (a) and (b) follow from the estimates in Lemma 4.6. To prove (c), we note
that w,, satisfies

Pu(Ba(win(t) + 7)) — Aw() = Ppu(Gwn(8) +7) + T (wil) -+ 7)), (18)

for a.e. ¢€]0,7[, where P, is the orthogonal projection from L*(£2) onto V.
From (b) and the fact that o < B < 1, we get that S,(w, + 1), is bounded in L*(Q).
From (18), we then infer that Aw, remains in a bounded set of L*Q). The rest is
standard. O

4.2, Passing to the limit as m — oo

Proof of Theorem 4.2. For a fixed « with 0 <a < 1, let (wy),u=1 be a sequence of
solutions of (#), . By Corollary 4.7, (wy,)w> has a subsequence (still denoted by
(Wy w1 ) that converges, weakly in ¥, to a function w* € ¥. So, by compaciness results
(see [9,14]), we get {again for some subsegquence)

wa — w? strongly in L2(0, T; Hy ()N L0, T, whe(Q)) forall p=1
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As (¢ and J are bounded, there exist &,,J, € L®(Q) such that G{w,, +7) — G, and
J(w,, +9) — J, weakly-star in L7°(Q). Thus, w* is a solution of the limit problem

/)ja(w + ) - Aw* =Gy + Jy,
W (0)=uy—yand w*e¥.

To verify that G, = G(w* + y) and J, =J(w* + y), we argue as in the proof of the
continuity of the maps I (see Lemma 4.4) and use the fact that w,, — w" strongly
in L2(0,T; whP(Q)) for all p= 1 and Lemma 7 of [8]. So, u* =w* 4+ 7 is a weak '
solution of (2),; moreover, u* —y € L*(0, T; H*(Q) N H(2)) and u? € L*(Q). Finally,
by Lemmas 3.2 and 3.3, u* € L>™(Q). I

4.3, Passing to the limit as o — 0

Let (u")g<s<1 be a family of solutions of (#),, according to Theorem 4.2, and let
wh=u* -y,

Lemma 4.8. We have

Id ¢ a2 ;|
5y “dx= | —ut (H)Aw(t)dx.
2 d: ‘/QWLLU)f dx /Qatu,(t) w*(t)dx

Movreover, the family (4% )g<x<1 is bounded in L=(0,T; H(Q2)) N H'(0,T; L2{Q)).
Proof. The desired equality follows from an integration by parts. To obtain an estimate

for (8/d™, we multiply the differential equation in (#), by (8/0f)u® and integrate
over {2. Using the equality stated in the lemma and (5), we find that

2
-aa—[ui(t)

From this we deduce, after integration with respect to ¢ and a simple estimate, that

ot 2
/0 12(@)

The last assertion of the lemma now follows.

1d / o 3.
+ —— | |[Vur ()" dx € Co|=u= ()10
oy 240 g at @

do + |Vu* (1)

EZ(Q) & |V(l£0)_

ad
Elli(d} il(g) + TIQ|C§

With similar reasoning as in the proof of Corollary 4.7(c), we infer
Lemma 4.9. The family (4" Yo<ax1 is bounded in L*(0, T; HX(2)).

Proof of Theorem 4.1. Due to the boundedness properties of u* = w* + v (see Lem-
mas 3.2-3.4), there exists w & L*(0, T;H(}(Q)) N L>(Q) such that w* — w weakly
in L2(0,T; H}(Q)) and weakly-star in L°°(Q). Also, there exists z € L2(Q) such that
(w* 4 y)_ — z strongly in £2(Q). To verify that z = (w <4 y)_, consider the maximal-
monotone operator 4 : L*(Q) — L*(Q), defined by Av:= — (v + 7)— = min(0,v + y)
for any v & L*(Q). By the previous arguments, w* +y — w + 7 weakly in L2(Q)
and —Aw* — z strongly in L*(Q). Thus, by the theory of maximal-monctone opera-
tors (see [3]), we conclude that z = —Aw?*, that is, z = (w -+ y)—. As a consequence
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of Lemmas 4.8 and 4.9, we have (w -+ y)_ € L%(0, T; H'(Q)) N HY(0, T; L*(R2)) and
we L0, T: H*(2)). To identify the nonlinear terms in the equations, after passing to
the limit as « — 0, we apply a compactness resuit due to Rakotoson and Temam (see
[13]). We deduce that w* — w strongly in £*(Q). Then, from Lemma 4.8 and the
boundedness of w* in L%(Q), we have

3111\1;% ‘/O wag(w“ + 7). dxdt:](;w%(w+y), dxds

and

C("\,O

d .
lima[w“—(vv”‘—t—y)+ dxdr =0
o O

Furthermore, (G +J)(w* - 7) converges, weakly in L>(Q), to some function #; thus,

1im] w (G + JYw* +9) :fwh.
™D S 7]

Multiplying the differential equation in (£2), by w*, integrating over @, and letting
o — 0, we deduce

lim/ VW dxdt = wg(w—i—?)_ dxdt—|~/ hwdxdt:/ |Vw|* dxde.
#\0Jp o o 0 /g

From the weak convergence of w* to w in L*(0,T; H,(Q)) and from the last equality,
we get that w* — w strongly in L2(0, T; Hy(€2)). Thus, we may assume that w*(¢) —
w(t) strongly in Hy(Q) for ae. t€]0,7[. In fact, as w* remains in a bounded set of
L0, T; H*(£2)), Gagliardo-Nirenberg interpolation shows that

w(t) — w(t) strongly in WhP(Q) forae. t€]0,T[and 1 € p < 0.

Finally, we argue as in the proof of Theorem 4.2 to show that ~=G(w+7p)+J(w-+7).
We conclude that u=w + 7 is a weak solution of () with the properties claimed in
the theorem. [
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