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‘We prove the convergence of the solutions for the incompressible homogeneous magne-
tohydrodynamics (MHD) system to the solutions to ideal MHD one in the inviscid and
non-resistive limit, detailing the explicit convergence rates. For this study we consider a
fluid occupying the whole space B? and we assume that the viscosity effects in this Auid
can be described by two different operators: the usual Laplacian operator affected by the
inverse of the Reynolds number or by a viscosity operator introduced by 8. 1. Braginskii
in 1965.
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1. Introduction

The magnetohydrodynamic (MHD) equations govern the macroscopic behaviar
of electrically conducting fluids submitted to the influence of magnetic fields
and they are obtained by coupling the Navier-Stokes system for the Huid flow
and the quasi-stationary Maxwell’s equations (see, for instance, Cowling? or
Strohmer?¢).
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The nondimensional form of the one-Auid homogeneous incompressible MHD
system in the whole space R is given by

f du 1

Emt—-i—(u . V)u—F(u)+Vp+SV(§B2) ~8(B-V)B=f in (0,7)xR?,

oB

T (u-V)B — (B V)u + v, rot(rotB) = 0 in (0,T) x R®,

diva =0 in (0,7) xR3, (1.1)
divB =0 in (0,T) x R3,
u(0,x) = up(x) on R?,

B(0,x) = Bo(x) on B3,

for a fixed T > 0, where u = (u;), i = 1,2,3 is the fluid velocity, B = (B;),,
t = 1,2,3, the magnetic field, p the pressure of the fluid and f € R3 represents a
(nondimensional) volume density force. The two dimensionless numbers appearing
in (1.1) are the magnetic viscosity vy, 1= 2= (with Rm .= L,U,ou being the mag-
netic Reynolds number, which is proporticnal to the magnetic permeability u and
the electric conductivity of the fluid o, where L, and U, the characteristic magni-
tudes for length and velocity respectively) and the constant S which is proportional
to p1. We have denote by F(u) the viscosity forces acting on the flow which will be
specified later.

If in the above system we neglect the viscosity forces in the fluid and assume
it to be perfectly conductor, i.e. non-resistive, we are under the hypothesis of ideal
magnetohydrodynamics whose mathematical equations are given by

( Oud S
T (u? - V)ul+ —2—V(B“)2— S(B?-V)BU+Vp’=f in (0,7) x B3,
aBo
W+(u°-V)B°—(B0-V)uO=0 in (0,7) x R,
divu® =0 in (0,T)xR3, (1.2)
divB® = 0 in (0,7) x R?,
u?(0,x) = ud(x) on R?,

| BY(0,x) = BY(x) on R3.

The MHD systems appear in diverse areas of interest, being the base of many com-
plex models in astrophysics and nuclear fusion theory (see, for example, Biskamp?
and Freidberg!®). We are especially interested in this last application, where the
incompressible ideal MHD plays an important rale, providing the simplest model
for the detection and description of equilibrium and stability properties for a
magnetically confined plasma in fusion reactors as Tokamaks or Stellarators (see,
e.g., Braginskii,3 Freidberg!® or Hazeltine and Meiss!?). In these reactors, there
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are gases in plasma state, whose behavior is modelled by the ideal MHD model,
coexisting with other gases that are not under the hypothesis of ideality.

In the present paper we are concerned with the transition from MHD to ideal
MHD in the whole space R2. Mathematically, this study is equivalent to establish
the convergence of the solutions of the MHD system (1.1) to solutions of the ideal
one (1.2), in the limit to infinity of the electric conductivity ¢ and to zero of the
viscosity operator F {the rigorous meaning of this limit will be cleared up once
we have detailed F'). We point out the analogy between this convergence and the
passing from the Navier—-Stokes equations to the Fuler’s one in fluid dynamics,
for which an extensive bibliography can be found since the pioneering works of
Kato!” or Swann.?® In the study that we develop here, we will assume that the
viscosity effects in the fluid are described by the usual Laplacian operator affected
by the inverse of the Reynold’s number Re. But we shall also consider the case
where viscosity is described by the Braginskii’s operator, introduced by Braginskii in
1965,% which is widely used in the theory of fusion plasmas by magnetic confinement
(see, e.g., Hazeltine and Meiss!).

We have organized this article as follows: in Sec. 2 we introduce the functional
framework in which we shall work and present the operators that we shall use for
describing the viscosity forces in the fluid; in Sec. 3 we give a local in time existence
and uniqueness result for the MHD systems which we shall use for the setting of
the convergence of the solutions. Finally, in Sec. 4 we state the convergence for
both viscosity operators in the norms of the Lebesgue space L? and in the Sobolev
spaces W for s > 3/2, giving explicit convergence rates. In this direction, we
must mention the existence of two related papers due to Wu®! and Diaz,'! where
the authors study, by using independent arguments, the convergence of the solution
of the MHD system, with F = ﬁA, in the limit Re, Rm — +o00 and S — 0. This
last limit, which is explicitly used in their proofs, is related with the degree of
capacity of fluids flows to be shaped by using magnetic fields.

2. The Viscosity Operators

Due to the homogeneous incompressible character of the fluids that we are dealing
with, the natural framework in which we shall work is that of the solenoidal vector
fields of L?(R3)3. We shall denote by H® the vectorial L°-type Sobolev spaces
Ho(R?)3 = W*2(R3)?, with s > 0 (not necessarily an integer) and we shall use (,)
and (, ), for the inner product in L? and H*® respectively; || |lp and || ||s will be used
for the associated norms in those spaces (throughout this paper we shall use this
notation indiscriminately for scalars and vectors).

Let P be the Leray operator, which maps vector-valued function into divergence
free vectors, given by Py, = djr — RjRk, j,k = 1,2,3, where R; are the Riesz
transforms. It is well known (see, e.g., Constantin and Foias® Kato and Ponce'® or
Cannone®) that this projection is a bounded operator acting on L*(R%)? and H?,
s > 0. Throughout this paper we shall denote by H? the image by P of the H*
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spaces with s > 0 and by H, = PL*(R%)3. That is,
H; ={uecH°: divu=0}.

Next, let us describe the viscosity force F that appears in (1.1). As we mentioned
in the Introduction, we shall consider viscosity effects described by two different
operators. Usually, in an incompressible liquid these effects are assumed to be given
by

1
Flu) = —REAU, (2.3)
where Re = (L.U.)/v is the Reynolds number and v the kinematic viscosity of
the fluid. In this paper we shall also contemplate the situation in which viscosity
is described by the Braginskii operator F(u) = Vu (see Braginskii®), that appears
very often in the study of fusion plasmas by magnetic confinement (see, for instance,
Freidberg,'® Hazeltine and Meiss'®). This operator is given by

~ —c')m- i
), = 2 4,7=1,2,3 2.4
(Vaj = 50, i (24
(summation under repeated index is understood), where 7;; is the stress tensor
defined by mean of five viscosity coefficients s, @ = 0, 1,...,4, as:
4
Ti; = Zya,uan'j(’Ya =-lifa=0,1,2and v, =1 for a = 3,4),

=0

with Wa,j = Ei,l:o Azt (0) Wiy and Wy = %ﬁ«l——?—i‘t — gcﬂgqu. The coefficients
Aqij ki are polynomials in h := B/|B| and are given on p. 250 of Braginskii,® while
the viscosity coefficients piq (@ = 0,1,...,4) are positive and Jjust depend on |B].
Nevertheless, in order to avoid this pathological situation, we shall use here the
approach already followed by Spada and Wobig?® (see also Ref. 3 for a slightly
different approach) where the coefficients in V result to be independent of the
magnetic field (i.e. Aqijki are constants). In particular, we shall assume that the
viscosity coefficients p, are approximated by positive constants.

It is well known (see, e.g., Constantin and Foias®) that, in the absence of bound-
aries, the Laplacian operator — A and the Stokes’s one —PA acting on the H*-spaces
are identical (i.e. —A and the projection P commute). It is easy to check, by using
the Fourier transform, that, under the above hypothesis on g, and A, this
commutation also holds for the Braginskii operator V. Furthermore, we have the
following property:

Lemma 2.1. (—V, H?) is o continuous and m-dissipative operator acting on H,.

Proof. In order to prove that (—V, H2) is a m-dissipative operator in H, we use
the bilinear form £ : H'(R*)* x H'(R®)® — R introduced by Spada and Wobig,2?

€(u,v) = ivana/

=0 R

' Juy 8'v7;
J(Aaijkl + Aaijlk)—"i

Ox; O%; dx
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This form is continuous and coercive and verifies (see Spada and Wobig??)
E(u,v) = (—=Vu,v), VYu,veH:.
Then, (—V, H?2) is dissipative in H,; in particular (see Ref. 23)
(=Vv.v) = £(v,v) 2 min(ue)||VV]§ > 0.

Thus, if we prove there exists Ag > 0 such that, Vg € H2 there exists v e H: =
D(V) being the unique solution to v — AgVv = g, we would have that (~V,H?) is
m-dissipative (see, e.g., Cazenave and Haraux”). Indeed, we consider the restriction
of £ to the divergence-free space H} x H! and we define a new bilinear form
ar H: x H — R

a(v,w) = E(v,w) -+ (v, w).
This bilinear form is again continuous and coercive, hence we can appeal to Lax—
Milgram’s theorem to conclude that there exists a unique v € L2(R*)3 such that
v—Vv=g.

Moreover, by elliptic-regularity results (see, for example, Ref. 14) and using that
the projection P commutes with Braginskii’s operator, we deduce that v € H2,
For the continuity of V in H,, we use that Vv € H2,

&y, 4 8y
dz;dry  Ox;0y

4 .
(Vv)i = - Z’Yauu /ﬂa Agijrl ) dx, i=1,2,3.

ova={)

Hence, as |v.| = 1,

2
3 4 , )
. %y, &y,
oz = [ 4> [wzwaAW (ot e )| | o
B A gig=1L a=0 J
2
4 2o d 8y, N 2y i
5(4 oo Aaisual (mﬁi‘x”a) /R o 02500, Ba;0m
2 2 ¢
<& (maxpa) VI, (2.5)
x
with &' := (4 maxa,j ki |Aaijee])?- =

Remark 2.1. From the above proof, it follows that V can also be considered as
a continuous operator acting on H7 into H ™2 i.e. there exists &’ > 0 constant
such that

Hf/vnm_g < k" ( max 4;@) [vlm, ve H;“(Rg):;,m > 9. (2.6)

a=U,...,
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3. Existence Results

The existence and uniqueness of solutions for both the MHD and ideal MHD Sys-
tems have already been proved in previous papers, when the viscosity term in (1.1)
is taken to be (2.3). In particular, we shall mention the works by Duvaut and Lions?
and Sermange and Temam?®® for the MHD system in a bounded domain or in the
whole spaces R", n = 2, 3, with periodic boundary conditions; for the ideal case, we
mention the articles by Schmidt®! and Secchi®? where the existence and uniqueness
of local strong solutions is proved in a bounded domain, and the paper by Sulem?*®
for the whole 3D-space with analytic initial data. Concerning the viscosity operator
of Braginskii (2.4), Spada and Wobig?® proved the existence and unigueness of a
weak solution for the stationary MHD system in a bounded domain.

In this paper, we give a local existence and uniqueness result in the spaces HJ
above introduced, for the ideal MHD and MHD systems, for both (2. 3) and (2.4)
viscosity operators (for which, from now on, we shall use the notation F), whose
proof lies on some results for evolution abstracts equation due to Kato (see Refs. 16
and 19). In order to apply this theory to the MHD systems we shall introduce
some operators defined on the divergence-free spaces H,. We start with the linear
operator A; defined on H, x H, as

-F 0

A = ) 3.7
o - La (37)

with domain D(.Al) HZ % HZ 2 (when F = 1 iz A this is a well-known resuit and
in the case of F = V it can be easily checked by using standard elliptic regularity
arguments (see, e.g., Ref. 14)).

Let @ = (u,B) € Hy X Hy, r > 3/2, be fixed. We define another linear operator

on H, x H; by
Pu-V) ~SPB-V)
Ap(®) = (3.8)
~P(B-V) P(u-V)

with D(A2(2)) = H} x H] (notice that, from Sobolev’s imbedding HI —
(L®(R?))® when r > 3/2, and so (u- V)V € (L2(R%))3 for every v € HL).

Finally, let us denote by (A(®), D(A(®))) the operator sum of the two above-
mentioned, i.e.

A(®) = A1 + Ax(®), D(A(P)) = H2 x H2.
We get that

Lemma 3.1, Let ® € H}, x HY, r > 3/2, be fized. Then, (—A(®), D(A(®)))
generates a contraction semigroup in Hy x H,.

Proof. Let us first note that, as we are working with solenoidal vector fields, the
following identity holds:

(u-Viv,v)=0, YueH,, ¥YveH..

Imwiscid and Non-Resistive Limit of the MHD 1407
Thus, given ® € H? x HT,
(A2(®)F, ¥) =0, VTecH.xH

and so (—Ap(®), H! x H!) is dissipative. Moreover, using that P is a unitary
operator on the H°-spaces and from Sobolev’s imbedding, it follows the existence
of a positive constant ¢ such that

| A2(@)E (o = | P(u- V)v —SP(B - V)Clio + || P(u- V)C - P(B - V)v]o
< cllvlia(iulle + IBl-) + e[ Clir([[all + SIIB]|-)
< cmax(1,5)|| @)1 ®]2 = k| T2 V¥ =(v,C)e H2 x H?

which allows us to state that (A2(@), D(A2(®))) is .A;-bounded with relative bound
being 0.

Therefore, if we prove that (A1, D(A1)) generates a contraction semigroup in
H, x Hg, we can appeal to the theory of perturbed operators (see, for example,
Ref. 18 or 27) and conclude that (—A(®), HZ x H2) is the infinitesimal generator of
a contraction semigroup in H, X H,. But when F = Rl_eA’ it is a well-known result
(see, for instance, Ref. 7) that ( A1, D(A;)) generates a contraction semigroup
on Hy x H, given by §(t) = (eRa®t, e 24) where et is the heat semigroup. In
case that F = V, we use that (~V, Hg) is an m-dissipative operator on H, (see
Lemma 2.1) and from Hille-Yosida—Phillips's theorem (see, e.g., Ref. 7), we get
that this operator also generates a contraction semigroup on H,. |

Let S be the isometric isomorphism S := (I — A)Y/? : H" — H™1 r > 1,
that appears when defining the Sobolev spaces of exponent 2 via the Fourier trans-
form (see, e.g., Ref. 20). We can consider the restriction of this operator to the
divergence-free spaces, that we shall also denote by S, i.e.

=l ~A2 H — H,, r>1

that it is also an isometry (note that the expression of S” in the Fourier variables
is (1 + |€[?) which commute with the unitary projection P). We denote by A" the
product operator of components A” = (S7,57), i.e. A" : H x H! — H, x H,,
which verifies the following lemmas

Lemma 3.2. Let ® ¢ H x H], r > 5/2 be fized. There exists a positive constant
A, just depending on ®, such that

AT AR)A ™| £, xrr,y < A

where [, denotes the commutator operator.



1408 J. I. D{az & M. B. Lerena

Remark 3.1. The above lemma is formally equivalent {see Ref. 16 or 19) to the
existence of a bounded linear operator B(®) € L(H, x H,) such that A’ A(®)A~* =
A(®) + B(®). We also note that the same result also holds when we consider not
the operator A(®) but Aa(P).

Proof. We recall the estimate

1T =AY, (a- V(I — A"y < ¢||Vullp—y, for a fixed u € H

obtained in Ref 16 for the study of the Navier-Stokes equations. Due to the
structure of the operator A(®) it suffices to show that an estimate of type

87, F1S™"]lo < A

holds for the viscosity operator F, where ) is a positive constant, For this purpose we
use that their expressions in the Fourier variables are F(F)(¢) = p(¢) for a.e. £ € R3
(we have denoted by F the Fourier transform), where p(€) = |£|? when F = A and
p is a suitable more complicated second-order polynomial in the variable € in the
case of the Braginskii operator (2.4). Thus, by using Parseval’s identity, we obtain
that

NCT = A2 )T = A)™Pvllo = | F(((I - A)/2 FI(I - A)2v)lq
= 112+ [€R)2p(EI(L + [€*)7/2% — p(€)(1 + |E2)72(1 + ¢[%) /2]l = 0
which gives the desired result. O
Finally, we can consider the operator A mapping H e X HI, r > 3/2, into the
set of generators of contraction semigroups on Hy x H,, (—A(®), D(A(®))). The

restriction of this operator to the space HS x HZ with 5 > 5/2 satisfies the following
Lipschitz property:

Lemma 3.3. There exists a positive constant L such that:
|A(®) — AP | cms xmre by xi1,) < L@~ T o,
for every ®,¥ € HS x HE with s > 5/2.
Proof. We first note that, as we are assuming s > 5/2, HS x H® — H2 x H?
and hence the above estimate makes sense. Due to the structure of the operator A

(notice that A; in the definition of A(®) does not depend on %), the proof of this
estimate reduces to show that

(- V)w —(v-V)wilo < Lllu—v|jo|w|s for every u,v,w € H? .

But this is a straightforward consequence of Holder’s inequality and the Sobolev
imbedding H*~! — L°(R*)? for s > 5/2. Indeed,

It V)w — (v - V)wllo < [lu—vo]| VW] < ¢lu—vlfo]|wl

where ¢ is the constant appearing in the Sobolev imbedding. o
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Remark 3.2. From the above lemma, we can deduce that for a given ® € H? xH",
r > 3/2, the restriction of the operator (A(®), D(A(®))) to the spaces HS x H? with
s > 5/2, is a linear bounded operator. That is, A(®) HexH: € LIHI < HS, Ho < Hy).

We are now in a position to state the existence and uniqueness result for the
MHD systems. We begin with the viscous case:

Theorem 3.1. Let T > 0 and (1g, Bo) € H*(R?)3 x H*(R*)3, s > 5/2, such that
V-ug=V-Bg = 0. Let us assume that £ € C([0,T]; L*(R)) N L0, T H: (RY)).
Then, there ezists a couple (u,B) being the unique solution to (1.1), with F given
by (2.3) or (2.4), satisfying

(u, B) € C([0,T"]; (H*(R)*)?) NCH([0, T H'*(R?)® x H*"*(R%)%)
where T € (0,T] just depends on the initial data and f. Moreover, there erists a

constant C > 0, independent of the viscosities, such that

flu@®ls +IB®Is <C, Vte[0,T. (3.9)

Proof. In order to prove this theorem, we project the MHD system into the space
of solenoidal vector fields of L*(R3)® by means of the Leray operator. Then, using
the operators that we have introduced all along this section, we can write the
projected system as the Cauchy problem

% + A()® = G(t)

®(0) = (uo, Bo),

(3.10)

where & takes value on the Hilbert space H, x H, and G(t) .= (*). Lemmas 3.1
3.3 allow us to appeal to the theory developed in Kato!® (see also Ref. 19) for
abstract evolution equations and conclude the existence of a unique ® = (u,B),
solution of (3.10) satisfying

® e C([0,T*); HE x H)NCY([0,T%]; Hy x Hy) (3.11)

for some T* € (0,T] which just depends on initial data (we note that the bounds
in Lemmas 3.2 and 3.3 do not depend on the viscosities vy, Re or pg).

These results by Kato'® prove the existence and uniqueness of local in time
solutions for quasi-linear equations of type (3.10), where ®(t) takes values in a
Banach space X; A(®) is a linear operator on X and there exists a subspace Y = X
dense, such that for every @ ¢ Y, (—A(®), D(A(®))) generates a C° semigroup
on X. Roughly speaking, the proof of this result lies in showing the existence of a
fixed point for the mapping @ — & where ® solves 42 + A(¥)@ = G(¢) with
®(0) = (ug, Byp), by means of the contraction mapping theorem. To this end, the
operator A must satisfy a Lipschitz condition similar to that of Lemma 3.3. In
the case of the MHD system, we have chosen H, x H, to play the role of X and
space Y is taken to be H x H}, where ¢ > 5/2 is the lowest exponent for which
Lemma 3.3 holds.
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The additional regularity on @, i.e. ® € C}([0,7*], H3™% x H3~?), is a conse-
quence of

do 5—2 §—2 *

E(t) = —A(®(t)2(1) + F(t) e H * x H)™?, Yte[0,T (3.12)
being a continuous function on [0, 7*]. Indeed, from the regularity in (3.11) we
know that A, ® € C([0, T*|; HE™? x H:~?); moreover, H3~! is a Banach algebra for
8> 5/2 (see, e.g., Ref. 1) and so Ax(®)® € C([0,T*]; H3~! x Hs~1).

Finally, let us prove (3.9). Given t € [0, T*], we multiply the equation in (3.10)
by ®(t) = (u(t),B(t)) in H® x H*:
1d
5120

By using the estimate

S (AR, B), = ~(A(B)B, B)u(t) + (G, B)s(t). (3.13)

5
(v - VIw, w)e| < c||v]]|w|? for all v,w € H, with r > 7 (3.14)

with ¢ > 0 a constant (proved in Ref. 8) and since the operator A; is dissipative,
we obtain

1d 9 3
el - < )] Py .
5 7 1 BN < cll@ll5 + 1E@)s 1]
Using Young’s inequality we find that ||®(¢)|[2 satisfies
d
=2l < cl@lls + (£, 12(0)]ls = |(uo, Bo)lls (3.15)
and thus, ||®(¢)||s < ¢(t), where ¢ is the solution to the scalar Cauchy problem
d
d—f(t) = ') +[fB)lls,  @(0) = ll(uo, Bo)ls - (3.16)

Since f € L'(0,T; HS), it is clear that (3.16) admits a unique solution ¢ defined in
an interval [0,7"], T > 0 and that T’, ¢ are independent of the viscosities Re™ !,
Rm~! and p,. |

For the ideal case we have:

Theorem 3.2. Let T > 0, (ug,Bf) € H*(R*)® x H*(R%)?, s > 5/2, such that
V-u§ =V-Bfj =0, and assume f € C([0, T|;L2(R?)) N L}(0, T; H:(R®)). Then,
there exists Ty € (0,7, just depending in the initial data, and a unique solution
(u®,BY) of (1.2) verifying

(u?, B%) € C(0, To) H*(B)® x H*(R%)®) N C*(0, Tols (B~ (R?)*)?)
and such that, YT < Ty the following estimate holds
-
f (IVa® ()| Lo + || VBO ()| poe )l < oo (3.17)
0

Moreover, if Ty < oo, then at least one of the above integrals blows-up for some
T < Tg.
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Proof. As in the previous theorem, we consider the projected ideal MHD system
into the divergence-free spaces. The resulting system can be regarded as the initial
value problem
de + Ay (898 = G (1)
dt (3.18)
(I’O(O) = (u87B8) ’

in Hy x Hy, with ®° = (1%, BY). Again, we appeal to the existence and unicueness
results of Kato'® which apply in this case, provided that, for a fixed ® < He x
H7, the operator (—Az(®), D(A2(®))) generates a C-semigroup on H, x H,. We
remark that this is the only point that remains to be proved for the Ay operator
(Lemmas 3.2 and 3.3 hold if we replace A by Asz). Due to the structure of Ay,
it suffices to show that, for a fixed v € HY, the operators (P(v - V), H,) and
(~=P(v - V), H,) are infinitesimal generators of (%-semigroups on H,.

Let v € Hy be fixed. It is a well-known result (see, e.g., Refs. 10 and 30) that the
transport operator (v - V) with domain H! < L?(R®)® generates a C%-isometries
group on L*(R%)? (note that the fixed vector v is solenoidal). Since H? is a closed
subset of H' and P is unitary, the operator P(v-V) acting on H! is also a generator
of a CC-isometries group on H,. Furthermore, this result also holds for (—P(v -
V), H}), which is possible since we are dealing with the generator of a group, and
so we can conclude the desired result.

Then, by Kato!® (Theorems 6 and 7), there exists Ty € (0,T] and a unique
®° = (u®, BY) solution of (3.18) such that

% € C([0, Tol; HE x HE) NCY((0, To); Hy x H,).

Furthermore, we can use that H*~' x H*"! is a Banach algebra for s > 5/2 and
hence, by the above regularity, we get that

d®° .

= ~A(S)B() + F(t) € C(0,To]; Hy ™' x H™),
Finally, the Beale-Kato-Majda’s type condition (3.17) for the ideal MHD equation
is a result due to Caflisch, Klapper and Steele.’ ]

4. Convergence of the MHD Solutions to the Ideal MHD Ones

In this section we prove the convergence of the solutions (u, B) of the MHD for a
viscous and resistive fluid found in Theorem 3.1, to the solutions {ug, Bq) of the
ideal MHD equations (1.2). We shall start by establishing this convergernce in the
L?-norm:

Theorem 4.1. Let (ug, Bo) € HJ x HE, 5 > 5/2. Assume that (1, B) and (u®, BY)
are the solutions to (1.1) with Braginske wiscosity (2.4) and to (1.2) respectively,
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both with initial date (ug,Bg), given in Theorems 3.1 and 3.2. Then,

lu(®) — u®(O§ + SIB() — B (¢

<o (¢35 [ aerds) [ [bwrIeoig +

where k is o positive comstant, p* = maxy fa, S = max(l,S) end n(t) =
VUl (@®)|ipe +[[VBO(E)| poo- Furthermore, Vi < T, with T' < 400 satisfying (3.17)
we have

12| ds, (4.19)

(u(t), B(2)) — (u°(¢), B%(t)) in L3*(R®)3 x L*(R3)3

when Rm — +oo and g — 0, = 0,1,...,4, with convergence rates o(,u*)—i—o(—ﬁ%).

Proof. Let us denate by (v, C) the difference between the solutions of the MHD
and ideal MHD systems with initial data (ug, Bg) stated in Theorems 3.1 and 3.2,
iLe. (v,C) = (u,B) — (u? BY); this couple satisfies

( Ov

T +(v- V)l +(u-V)v-S8(C-V)B? - §(B-V)C

+ gv(W —-BY) - Vu+V(p-p’) =0
aC L (4.20)

W%—(v V)B? + (u-V)C——(C-V)uO—(B-V)v—%ABzo

divv=0, divC=0
V|t=0 = Clt:O =0.

Let us fix t € (0,7"] and multiply in L?(R®)3 the first two equations in (4.20) by
v(t) and B(t) respectively. Then

1d 2 _(y —((v- W)l v
L4 v = (Fu(t), ve) (v - D)0
+S((C- V)B%,v)(£) + S((B- V)T, v)(t) (4.21)
and
L4601 = - (AB). C(0) — (v VB, )0

+((C-W(®, C)(¢t) + (B - V)v,C) (1), (4.22)

where we have used that the terms (V(p — p%), v(%)), ((u(t) - V)v(t),v(t)), and
—3(V(B2—(BY%?)(¢), v(t)) vanish since v(t) and u(t) are divergence-free (this can
be easily seen by integrating by parts). Similarly, —((u- V)C, C(¢)} vanish too.
We shall estimate the integrals in (4.21) and (4.22), in order to derive an energy
inequality for v(¢) and C(t) in L2(R®)3. Let us start with the terms containing the
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viscosity operators; we know (Lemma 2.1) that these operators are dissipative in
L? and continuous from H? to L2, hence we can appeal to Holder’s and Young’s
inequalities to obtain

(Vu(t), v(1)) = (Vv(t), v(t)) + (Vul (), v(1))

< = (minp ) [V + b (ma o ) 0 (2) s v

< — (min,ua) Vvl + g" (mgx/ia)z 1 @)13

+3IvOI3 (423)

in the case of the fluid viscosity (here, k is the continuity constant in Lemma 2.1).
Similarly, for the magnetic viscosity term we have

77 (BB, C) < ~ 2= [VOWE + 5 IABWIE + HICWIE. (429

—
2Rm?
We proceed now to estimate the transport terms in (4.21) and (4.22). For this

purpose, we apply again Cauchy-Schwarz’s and Young’s inequalities and we arrive
at

B (v - V), )l IV (@®)]wllvE)z,
(it) SH((C-V)B®v)| < S[VB(t)llo|[v{(t) o C(#)lo
< -g-HVB”(t)Iloo(IIV(t)H% +ICHI
(iii) |((v- VIB®, C)®)| < [VB @)l v(®)lo CE) o
< VBV + Ic@Is)
(iv) ((C-V)u’,C)t) < [V (@)= CE-

Putting together the preceding estimates and (4.23), (4.24) we obtain:

(4.25)

5 5 VI + SICEIR) + (min ) 19vI + = | VC(R)

< 5 (3 (mmene) 19018 + 5118 ) + Lveols + sl
AV o lIVIE + SICID) + SIVB 1) (v (1E + O
FS((B-VIC, V1) + S(B- Vv, O(). (4.26)

(We have used here that 5 is a positive constant.)
Let us set S’ = max(1,5). By dropping the positive terms on the left-hand
side of (4.26) and using the identity ((B - V)C,v(t)) = —((B - V)v,C(t)) (see,
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e.g., Temam®), we can write

SUVIR + SICOIR) < (k (maxpa)” Iue)3 + RiQIIABO(t)iIE)
LA IveI3 + SICHIR)

where f(t) := 1+2|| VU (t)] 0o +25"(| VBO(t)||oo- We note that 7 is an integrable func-
tion on [0,#] for # < T” satisfying (3.17). Thus, we can apply Gronwall’s inequality
to

29)

%W) < (k (i) 100 + g ABSOIR) + )t

where () = [|[v(£)[I§ + S||C(t)]|§ and hence we obtain (4.19). The convergence in
the statement of the theorem follows from this inequality. O

When the viscosity in (1.1) is given by (2.3) we arrive at an analogous result:

Theorem 4.2. Let (ug, By) € H2 x HS, s > 5/2. Assume that F = Re™ A in (1.1)
and that (1, B) and (u®, B®) are the solutions to the MHD and ideal MHD systems
respectively, with initial data (ug, Bo), given by Theorems 3.1 and 3.2. Then,

[[(a = u®)(B)F + SII(B - B

t t 1 1 5
< exp (t+2S’ fo n(s)d3> fo [ﬁ?uwonm — VB ds,  (4.27)

where 8" = max(1, S) and n(t) = {|Vu®(@)| z= + [ VBO(#)| p=. In particular, Vt <
T’ with T' < +oo werifying (3.17) we conclude that

(u(t), B(t)) — (u’(t), BO(t)) in L2(R®)® x L*(R%)®

as Re, Rm — o0 with a convergence rate o(gz) -+ o ).

Proof. Let (v,C) = (u,B) — (ug, By) as before. The proof of this theorem is anal-
ogous to the previous one, being the dissipative term in (4.21) the only difference.
To estimate this term we proceed as in (4.24), i.e

1 1 1
= (Au(), v() <~ [TV + oo (Au,v)

1 o, 1 oz 4 Lospz 4.28
< g IVVOIE + g 1AWl + SV, (4.28)

and hence, repeating the calculus as in Theorem 4.2 we obtain the following energy
estimate:

FOVENE + SICENR) < (lantlp + 2ozl amlg

+AE)(Iv(®)E + SICHIE)
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with 7 as in the preceding proof. Then, we can apply Gronwall’s inequality to
Iv@)E + SIC(#)]|12 which yields to (4.27). i

Finally, we study the convergence in the H* norm. We have:

Theorem 4.8. Let us assume (ug, Bo) € HE x H? with s > 9/2. Then, if (u®,BY)
and (u,B) are as in Theorem 4.2, the following inequality holds

Ita—u®)(®)15, + SIB - B2,

¢ [
<o (2 [ etryir) [ [l + 2o or,

where k is a positive constant, p* := max, jio and & € C([0,T']) does not depend
on Bm or . Moreover, Vi < T' with T' < 400 satisfying (3.17) we have

(u(t), B(t)) — (u(),B°(t)) in H*"3(R®)3 x H*2(R3)3.strong
as Rm, Re ~ +oo with a convergence rate of o( ) + o(5e7)-
Proof. As in the previous cases, we consider the couple (v, C) := (u,B)—(u’ B

which satisfies the system (4.20). Multiplying (4.20) by v(¢) and C(2) with the inner
product of H*~2, for ¢ € (0, T"] fixed, we obtain

3V = (Va,v)ecz + S(C - V)B®, v),z + 5((B - V)C, v),_

= (v v)uo, V)s—2 — ((u Vv, V)s-2, (4.30)

and

57 1C0I2 e = £ (AB,C)oms +((C - V), Chuca + (B Vv, C), s

—((v-V)B®, C),n — (( V)C, C)y_s. (4.31)

As before, we have used that V - v(t) = C(t) = 0 and so the terms (V(p —
%), v(t))s—2 and —2(V(B? - (BY)2)(1), v(t) -~z vanish. Nevertheless, this is no
longer true for the products ((u(t) - V)v(t), v(t))s_a and ((u- V)C, C(%))s-2

The viscosity operators —V and —A are dissipative in the space H*~2. This is
well known for the Laplacian, while for the Braginskii’s operator it comes from the
fact that —V being dissipative in L2(IR3)3 and commuting with §%7% = (1-- A)FE
Thus,

(Vu;v)s—Q(t) = (Vv(t)a V(t))s_g + (Vuo(t)’ V(t))s—il
SNV @52l () l|o—2

.....

A

/\,;/1 2 0 ) 1
. (E#) WP + 2O,
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where we have also used that V is a continuous operator from H$ into H52 being
k' the continuity constant (see Lemma 2.1). Also,

1
= (AB(D), C1)s—2 = 7 (AC(H), C(0)s- 2+—R—(AB°<>c<t))s_2

< %n—IIVC(t)l it B ()13 + “Q"HC(t)iI?_z

: 2Rm2
From the choice of s it follows that H*~?is a Banach algebra (note that s—2 > 3/2),

hence
(v - V), W) a (8] < 1990 foallvOIs
(C - V), Cla—a ()] < VU (@) -2 CO)IZ-
Analogously, Young’s inequality yields to
[(C- V)B®, v)s—2(t)] < [[VB(t)ls—2l| C(t) 52 v(t)]]s—2

SIVBE)s2(ICENEs + IVOIZ2),

IA

((C- VB, Vama®)] < S IVBYE) fo-2(| O s + IV(OIZ2)
For the remaining terms in (4.30) and (4.31) we use the estimate (3.14) to get
(- V), V)ecalO)] < elu®) o2l vz
(@ V)G, Caca(t)] < clult)—a| CEs
and also,
(B~ V)G, v)s-2(t) + (B - ¥)v, Cs a0t
< (B-V)(v +C),v + Clacalt) ~ (B V)v, v)yaft) - (B V), C), (1)
< 36 B fa-a(vI3s + 1COIZ-2).

where ¢ is the constant in (3.14). o
Collecting all the estimates that we have obtained for the terms appearing in

(4.30) and (4.31) we arrive at

2
ld 0 2 S 0y, 2
B SICEIE o+ VI < 3" max o ) [P0 + 5B

+Se(Iv(D) 13-z + ICONZ_2)(la()]ls—2 + 3B ) |s—2)
+(IVa® () s—2 + VB (®)ls—2) (Iv(DIZ -2 + 1 CHII;-2)

+ %uw(wug_ﬁ + SC®)]E-2)

B PO + 57 B2 + (VI3 2 + SICIE o)e(0),

o=
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where £(t) = K ([u(t) sz + [B#)]lo-2 + [ V0(6)]ls—2 + [VBO(®)]_s + 1/2) and
K = max(1, 8, 3¢) is a positive constant that just depend on § and on the exponent
s. Moreover, from the regularity of (u, B) and (u®, B), it follows that & : 0,7 —
R is continuous and uniformly bounded with respect to fe and Rm, o = 0,...,4,
in [0,T"] (see Theorem 3.1, (3.9)).

Thus, we can apply Gronwall’s inequality to ||v]|2_, + S[|C(¢)||2_, and using
that (v(0), C(0)) = (0,0), we get

IV(OI-2 + SICE;-,

ot t 2 S
<emn (2 [ ear) [ {A( ox ) 2+ o B2

which concludes the proof of the theorem. (]

Arguing in a similar way, for F = RieA, we obtain

Theorem 4.4. Assume (ug,Bo) € HS x H? with s > 9/2, and let (u% B and
(u,B) as in Theorem 4.2. Then

1w —u®)B)II5-z + SI(B - BO)()]|2_2

<exp( / ¢(r) ) [ [ L QHVB"ui_J dar,  (432)

where §" € C([0,1"]) does not depend on Rm or Re. Moreover, ¥t < T' with
T’ < +oo verifying (3.17), (4.32) yields to

(u(t), B()) — (u’(t), BY(t)) in H2(R%)® x H*2(R?)?

as Re, Rm — +oco with a convergence rate o{ ) + o( 7).

Remark 4.1. In order to simplify the exposition, we have considered the same
initial data for both, the MHD and the ideal MHD systems. Nevertheless, the
convergences and convergence rates obtained in Theorems 4.1 (resp. 4.2) and 4.3
(resp. 4.4) remain true if we consider different initial data (u¥®® B¥i) and (ud,BY)
for (1.1) and (1.2) respectively, verifying

. 1
vis .0 Bws_BO - <
g™ — uBllo + B3 ~ Bl =0 as o) +o( =

when Rm — oo and pu, — 0, @ = 0,1,...,4 (resp. as o(gz) + o( ) when Re,
Rm — 400), for the first case, or

vi is 1
lug™ — uglls—2 + | B = BYlsma = 0 as o(u*) +0 (Rm)
in the second case.

Remark 4.2. The same remark holds if we consider different force terms f for the
MHD system and for the ideal MHD one.
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