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Abstract. The aim of this paper is to study the asymptotic behavior of the solution of a
transmission problem in some chemical reactive flows through periodically perforated domains, The

domain is considered to be a fixed bounded open subset £ < R”, in which identical and periodically

distributed perforations (holes) of size & are made. The asymptotic behavior of the solution of such a
problem is governed by a new elliptic boundary-value problem with an extra zero-order term that
captures the effect of the chemical reactions associated to the homogenized medium.
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1. INTRODUCTION

The aim of this paper is to study the asymptotic behavior of the solution of a
fransmission problem in some chemical reactive flows through periodically
perforated domains.

Let O be an open bounded set in R"and let us perforate it by holes. As a
result, we obtain an open set ¢, which will be referred to as being the perforated
domain; € represents a small parameter related to the characteristic size of the
perforations. We shall deal with the case in which the perforations (holes) are
identical and periodically distributed and their size is of the order of &. We shall
consider that a granular material fills the holes and we shall be interested in
studying the stationary reactive flow of a fluid confined in £2%, of conceniration #f,
assurning that the reactive fluid is allowed to penetrate inside the grains, where
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chemical reactions take place (for the case in which the chemical reactions take
place on the walls of the porous medium, see [4-6]). If we denote the concentration
inside the grains by V¥, a simplified setting of this kind of models is as follows:

—DfAu8 = f{u®) in QF,
—DPAVE'+ag(v‘;)=O in [I°

out _ ovE .
_Df v —Dp-é‘v— on Ss, (1)
u® =vt on S°%,
ut =0 on 0,

where v is the exterior unit normal to QF, @ > 0, T8 = Q\QOF, §¢ is the boundary of
the holes and &Q is the external boundary of £2. Dy and D, are constant
diffusion coefficients, characterizing the reactive fluid and, respectively, the
granular material filling the holes.

We shall consider that the function f in (1) is a continuously differentiable
function, monotonously non-decreasing and such that f(0) = 0.

The function in g is supposed to be given. We shall assume that g is
continuous, monotone increasing and such that g(0)=0. This general situation is

well illustrated by the following two important practical examples:

a) g(v)=r22

14+Bv
b) g(v)= M’H v, 0 < p<1 (Freundlich kinetics)
The exislence and uniqueness of a weak solution of (1) can be settled using

the classical theory of semilinear monotone problems (see [1] and [7]).
If we define ©° as being:

ae :{ug (x) xel2F,

vi(x) xell®,

, «, >0 (Langmuir kinetics)

(2
and we introduce
'Dfld in Y\T,
| Dd in T,

then our main result of convergence for this model shows that 8% converges
weakly in H}(Q) to the unique solution of the following homogenized problem:

il
N 0 8% 7 iy = O
i;lﬂail Ao, +G\Y\T gluy= f(u) in €,

(3)

=0 on JC
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Here, AY = ((af)) is the homogenized malrix, whose entries are defined as follows:

1

v ;
C!I-(} 21_1—/—\ jy((ﬂ'j()ﬁ‘*’%‘k (,V)“é:v—kj—)dy : (4)

in terms of the functions ¥, solutions of the so-called cell problems

~div, (A(XD(y; +y;) =0, in ¥, 5
x; 8 Y — periodic. )

The approach we used is the so-called energy method introduced by L. Tartar
[9] for studying homogenization problems. It consists of constructing suitable test
functions that are used in our variational problems. Also, let us mention that
another possible way to get the limit problem (3) could be to use the two-scale
convergence technique, coupled with periodic modulation (see [5] and the
references therein).

The structure of our paper is as follows: first, let us mention that we shall just
focus on the case n>3, which will be treated explicitly. The case n = 2 is much
simpler and we shall omit to treat it here. In Chapter 2 we introduce some useful
notations and assumptions and we give the main result. In Chapter 3 we give the
proof of the main convergence result of this paper.

Finally, notice that throughout the paper, by C we shall denote a generic
fixed strictly positive constant, whose value can change from line to line.

2. PRELIMINARIES AND THE MAIN RESULT

2.1. Notation and assumptions

Let O be a bounded connected open set in R%, with boundary €2 of class 2.
Let ¥ =1[0,4{x{0,hx..x[0,1,] be the representative cell in R and 7 an open

subset of ¥ with boundary 87 of class C?, such that T < Y. We shall refer to T as
being the elementary hole. We shall denote by T®F the translated image of el by
gkl, k eZn. Also, we shall denote by T° the set of all the holes contained in {2 and
by \7® . Hence, £ is a periodically perforated domain with holes of the same size
as the period. Let us remark that the holes do not intersect the boundary 0€).

We shall also use the following notations:

_ |y
Yr=Y\T, S¢=07% B=1—1
|

Also, we shall denote by %® the characteristic function of the domain L2
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2.2. Setting of the problem

As already mentioned, we are interested in studying the behavior of the
solution, in such a perforated domain, of the following problem:

~DAu® = f(u®) in OF,
=D, AvE +ag(v®)=0 in I

_p, 9 p : 6
Dy S-=D, %= on §°, (6)

u® =v* on 5%,

ut =0 on Q.

Here, v is the exterior unit normal to QFf, a>0, IT*=Q\Q% 55 is the
boundary of the holes and &€ is the external boundary of £2. Dy and D, are
constant diffusion coefficients, characterizing the reactive fluid and, respectively,
the granular material filling the holes. '

We shall consider that the function fin (6) is a continuously differentiable
function, monotonously non-decreasing and such that f(0)=0. We shall also

suppose that there exist a positive constant C and an exponent g, with
0<g<n/(n—2), such that

’% SC+fu|™. (7

The function g in (6) is assumed to be given. We shall assume that g is
continuous, monotone increasing and such that g(0)=0. This general situation is

well illustrated by the above mentioned important practical examples (Langmuir
and Freundlich kinetics). Moreover, we shall suppose that there exist a positive
constant C and an exponent ¢, with 0 <g <an/(n-2), such that

e Ca+ ™). (8)
Let us introduce the tunctional space
Ve ={veH1(QF’) | v=0 on 80},
with
e =19 ey
Also, let us consider the space

HE = {WE =(u®, vF)

ut e Ve, vé e HI(I1%), u® =v* on S‘f},
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with the norm
,

2
Ll (Qs: )

2

“WE .
Ll(nr.)

o

e = o]

The variational formulation of problem (6) is the following one:
Find w® e H® such that

Dy IQEV“E Vedx+ D, J’W VeV dy + 9)
;6 Iy = I . £
+a In,;g(‘ ydx Lﬁj(u ypdy, V(p,w)e H®.

Under the above structural hypotheses and the conditions fulfilled by A, it is
well-known by classical existence and uniqueness results (see [1] and [7]) that (9)
is a well-posed problem.

Let us introduce again

Dfld in Y\T,
o Dplci in 7T.

In order to describe the asymptotic behavior of the solution of problem (9),
let us recall the following well-known extension results (see [2]-{3]):

Lemmma 2.1. There exist a linear continuous extension operator £* € LI (Y,
LHON N LVE H(CY) and a positive constant C, independent of ¢, such that

o

LZ (Q) '<" C HVHL2 (QE)
and

192 .. o), SCI Ve

1)
forany veV®.

An immediate consequence of the previous lemma is the following
Poincaré’s inequality in V*:

Lemma 2.2. There exists a positive constant C, independent of ¢, such that
“VHE(Q“-) S C“V‘)“E(QE) >
for any ve V*.
Apart from these results, let us recall the following one (see (8.

Lemma 2.3. There exists a positive constant C, independent of g, such that

H"Hiﬁ(s“) < C(g“l v

izggc) + EHV"HZU(QC))’
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forany veVE. Also,

2 2
[ el R L

for every ve H'(IT%).

2.3. The main result

The main result of this paper is the following one:

Theorem 2.4. Let «f be the unique solution of the problem (6). Then, there
exists an extension Pfu® of uf into all Q, positive inside the holes, such that
PEuE — u weakly in H}(Q) and u is the unique solution of:

Zc,? ,Jaj +cz—|-—‘—g(u)m~ fluy in Q,
= i (10)

u=0 on OC.

Here, A” = ((aj)) is the homogenized matrix, whose entries are defined as follows:

a[-?- :ﬁ j‘ (a[j(y k(z,k(v) By, jdy an
in terms of the functions ¥ solutions of the so-called cell problems

~div, (ADD(; +y;) =0, in ¥, (12)
%; is Y —periodic.

The constant matrix AY is symmetric and positive-definite.

3. PROOF OF THE MAIN RESULT

In order to describe the effective behavior of u® and v% we need to prove
some a priori estimates tor them.

Proposition 3.1. Let 4® and v¢ be the solutions of the problem (6). There
exists a positive constant C, independent of £, such that
| Peuc]

A0 =C, (13)

oE

120 sC, (14)
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“Vw“ “U(Qr-)xﬁ(nﬁ) <G (13)

Proof. Let us take (u®,v¥) as a test function in (9). Using the properties of f
and g, Holder and Peincaré’s incqualities, the first three estimates come
immediately. In order to get the fourth one, we shall make use of Lemma 2.3:

PEpt — e

\|E(m) <Cs. (16)

[peur _Va\i?(n") < Clefut - Ez(s o *E HV(Pr“n "VE)HL 2010y
W +UW nL (1)) Te
< CSE(HVHE 2y ~+~“Vv ” (1) )? £ Ce?

and this concludes the proof.

Corollary 3.2. If u# and v¢ are the solutions of the problem (6), then, passing
to a subsequence, still denoted by €. there exist u e Hy(€) and ve L2(0Y) such that

Piyt — y weakly in  H}(Q), 17y .
7 v weakly in L2(0)), (18)
7| -
=20, 19
7" "

Proof. The convergence results (17)-(19) are direct consequences of the
estimates (13)—(16).

Finally, let us note that there exists a positive constant C, independent of &,
such that

Bh Tdx£C

and

jﬂ\vesf dx<C.

Hence, there cxists 8 e Hy(£2) such that
0" — 0 weakly in H)(C)

and it is not difficult to see that 8 = . This proves, in fact, the following
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Corollary 3.3. Let 68 be defined by (2). Then, there exists Qe H(l)(Q) such
that

0° >0 weakly in HL(Q),

where 0 is the unique solution of

n 2 Tl .
[— 020 ol o)~ r) in
izl 4 axl' Ox i Y*

=0 on oQ.

and A is given by (11)—~(12), 1.e. 8 = u, due to the well-posedness of problem (9).
Proof of Theorem 2.4. Set

iﬁ - (&]SVE_:S) = (D[VMC !DPVVE)'
From (15) it follows that there exists a positive constant C such that
&f

L6
=Y

<
Qs —

. <C
L2(11%)

If we denote by ~ the zero extension to the whole of (2 of functions defined on ¢
or [I5, we see that E? and %E are bounded in (L*(£2))" and, hence, there exist

£,.&, & (LH(Y)" such that
Es &, weakly in (LR, i=12. 20)
Let us now see which is the equation satisfied by &, and &,. Let e CF{Q).
Taking ((b!nu%ﬁ;) as a test function in (9) we get

jﬂ&% Vidx + J.QEE Vodx+a .[n’- gvS)pdx = 'fﬂxm_f(u,‘")(bdx. (21)

Now, we can pass (o the limit, with & — 0, in all the terms of (21). For the
first two, we have

1 7$‘ Y = .. " .: ‘7
lim | £ -Vids jga; Vdr, i=1,2. (22)

E—0
In order to pass to the limii in the third term, let us notice that, exactly like in

[5], one can easily prove that for any de CF () and for any % — z weakly in
H(I)(Q) , we get
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hg(z8) —+ dg(z) strongly in II(QD), (23)
where

n

7= gn=2)+n’

In particular, we have
$g(0%) —> $g(B) strongly in LT(Q), (24)

Now, let us write a Inr g(v:idpdx as

a j‘m gO)pdx=a jﬁg(@"‘ Ypdx —a J-QC 2(6%)pdx.

Obviously
1 [ OF = 2 = c
i)i%a L),_g(() Yhdx=a IQS(S)‘MX a jﬂg(tt)(bdl.
Y '
On the other hand, we know that ¥ ->—m— weakly in any L°(Q) with c=1.1In
particular, defining ¢~ such that
Ly —1; =1,
q g
we see that ¢" =1 and, consequently,
Y , .
v =+ weakly in L7 ().
« 7
Hence, we obtain: '
7|
| I = »|-—-—
}Egz)a j.nﬁg(t Jopdx am JQ g(u)pdx. (25)

Tt is not difficult to pass to the limit in the right-hand side of (21). We get

lim j y f(u“)cl)dxzﬂj Flnbdx (26)
g0 Q7 ‘Yt Q )
Putting together (22), (25) and (26), we have
§ ) T .
L} £, - Vadx + j’gaz Vi + CLH jQ o()pdx =

y*

= jgf(mqudx, Ve Cr.
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Hence

&

7] A
—div(&; + &y )+ ar— () =—f(1) in Q.
It remains now to identify &, +&,. Introducing the auxiliary periodic
problem (12) and following a standard procedure (see [3]), one easily gets

Since e H)(Y) (ie. u=0o0n 8Q) and u is uniquely determined, the whole
sequence P®u® converges and Theorem 2.4, is proved.

Acknowledgements. The first author gratefully acknowledges the Chilean and French
Governments through the Scientific Committee Ecos-Conicyt and Fondap through its Programme on
Mathematical Mechanics. The rescarch of J. 1. Diaz was partially supported by project REN2000-
0766 of the DGES (Spain). The work of the third author is part of the European Research Training
Network HMS 2000, under contract HPRN-2000-00109.

REFERENCES

1. H. Brézis, Analyse fonctionelle. Théorie et applications, Masson, 1983,
. D. Cioranescu, P. Donato, An fntroduction to Homogenization, Oxtord Lecture Series in Mathematics
and its Applications, 17, The Clarendon Press, Oxford University Press, New York, 1999,
3. D. Cioranescy, J. Saint Jean Paulin, Homogenization in open sets with holes, J. Math, Anal. Appl.,
71, 590607 (1979).
4. C. Conca, 1. 1. Diaz, C. Timofte, Effective chemical processes in porous media, Math. Models
Methods Appl. Sci. (M3AS), 13 (10), 14371462 (2003).
5. C, Conca, 1. . Diaz, A, Litwin, C. Timofte, Homogenization in chemical reactive flows through porous
media, Preprint, Universidad Complutense de Madrid, 2003.
6. U. Hornung, Homogenization and Porous Media, Springer, New York, 1997,
7.1 L. Lions, G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math. 20, 493519 (1967).
. S. Monswrtd, Homogenization of a two-component composite with interfacial thermal barrier,
Preprint, Laboratoire J. L. Lions, Université Paris VI, 2002,
9. L. Tartar, Problemes d’homogénéisarion dans les éguations aux dérivées partielles, in Cours Peccot,
College de France, 1977,

[

8

3



