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FINITE SPEED OF PROPAGATION AND WAITING TIME

FOR LOCAL SOLUTIONS OF DEGENERATE EQUATIONS IN

VISCOELASTIC MEDIA OR HEAT FLOWS WITH MEMORY

S.N. ANTONTSEV∗,1,2,3, J.I. DÍAZ #,4

Abstract. The finite speed of propagation (FSP) was established for certain materials
in the 70’s by the American school (Gurtin, Dafermos, Nohel, etc.) for the special case of

the presence of memory effects. A different approach can be applied by the construction
of suitable super and sub-solutions (Crandall, Nohel, Dı́az and Gomez, etc.). In this

paper we present an alternative method to prove (FSP) which only uses some energy

estimates and without any information coming from the characteristics analysis. The
waiting time property is proved for the first time in the literature for this class of non-

local equations.

Dedicated to Professor David Kinderlehrer on occasion of his 75th birthday.

1. Introduction

The main goal of this paper is to get some qualitative properties, such as finite speed of
propagation and waiting time effect, for local in space solutions (i.e. independently of any
possible boundary conditions) of some nonlinear evolution equations involving a nonlocal in
time term as in the following formulation:

(1.1)

{
∂u
∂t = ∂(σ1(ux))

∂x + ∂
∂x

(∫ t
0
γ(x, t, s)σ0(ux(x, s))ds

)
+ f̃(x, t),

u(x, 0) = u0(x).

Formulations as (1.1) arise in many different contexts after making some easy transfor-
mations. This, specially the case, when modelling different mechanical phenomena of vis-
coelastic media. Indeed, if we introduce the displacement vector, as usual in Continuum
Mechanics, by

u = x− ξ, x(0) = ξ,
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the spatial velocity v is given by v =
∂u

∂t
(v(x,t) and x(t; ξ) are respectively the Euler and

the Lagrangian coordinates). Calculating the acceleration as the material derivative of the
speed

Dtv =
∂v

∂t
+ v · ∇v

and assuming that the second term on the right-hand side is sufficiently small (because v
or |∇v| is small), we get

Dtv =
∂2u

∂t2
.

In the case of some one-dimensional motions with constant density (which can be re-scaled
as to be the unit) we can assume that

u(x, t) = (u(x, t), 0, 0), x = (x, 0, 0), f = (f(x, t), 0, 0),

and that the components of the stress tensor S have the form

S11 = σ, Sij = 0 for i = 1, 2, 3, j = 2, 3.

With the above simplifications, the momentum balance law takes the form

(1.2)
∂2u

∂t2
=
∂σ

∂x
+ f(x, t).

Now we make the constitutive assumption typical of viscous-elastic media: the stress tensor
S is a function of the deformation gradient of the displacement and the speed. In our case,
this constitutive law can be written as

(1.3) σ = σ(ux, uxt).

Then, from (1.2) and (1.3) we get the equation

(1.4)
∂2u

∂t2
=
∂σ(ux(x, t), uxt(x, t))

∂x
+ f(x, t).

Obviously some initial conditions must be given:

(1.5) u(x, 0) = u0(x), ut(x, 0) = ϕ(x).

Equations of the type of (1.4) occur in various problems concerning the motions of viscous-
elastic media and was intensively studied in the literature. For instance, in [1] it was proved
existence of solutions to the equation

utt = uxxt + σ(ux)x

and in [17] it was investigated the existence, uniqueness and stability of solutions of the
equation

ρ0utt = λuxxt + σ′(ux)uxx.

The mixed initial-boundary value problem for the equations of nonlinear one-dimensional
viscoelasticity were considered in [10],[19].

Here, in this paper, we shall assume that the function σ(r, q) may include some (x, t)
dependence but always under the following growth conditions:
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(1.6)


σ ≡ σ(x, t, s, r, q) = γ(x, t, s)σ0(r) +

∂σ1(r)

∂r
q, for any s ≤ t, r, q ∈ R,

C2|r|p ≤ σ1(r)r ≤ C1|r|p, 2 < p <∞, for any r ∈ R,

|σ0(r)| ≤ C3|r|p−1 for any r ∈ R-

The above given function γ(x, t, s) (which we assume to be bounded) may contain many
diverse information (as, for instance, some memory effects, etc.). Notice that under (1.6)
equation (1.2) can be rewritten in the form

(1.7)
∂2u

∂t2
=
∂2(σ1(ux))

∂x∂t
+
∂(γ(x, t, s)σ0(ux))

∂x
+ f(x, t).

Hence, integrating in t we arrive to the formulation (1.1) with

(1.8) f̃(x, t) := ϕ(x)− ∂σ1(u0x(x))

∂x
+

∫ t

0

f(x, s)ds.

Problem (1.1) also arises in the study of heat flows with memory. In that case a very
general starting point is the balance

(1.9)
∂

∂t

(
u(t, x) +

∫ t

0

b(t− s)u(s, x)x

)
= d0σ(ux)x +

∫ t

0

a(t− s)Ψ(ux(s, x))xs

where the functions σ and Ψ are assumed to be increasing real-valued functions such that
σ(0) = Ψ(0) = 0. See, e.g., the expositions made in [29], [28] and [11] and their references.

We point out that in most of the papers in the previous literature it was assumed some
similar conditions to (1.6) but for an uniformly elliptic diffusion term, p = 2. Our main goal
in this paper is the consideration of the degenerate case p > 2. In the recent decades, the
evolution equations with memory terms for p > 2 have been also considered. For instance,
in [3], it was considered the Dirichlet problem for the evolution p-Laplace equation with a
nonlocal term

(1.10)

 ut −∆pu =
∫ t

0
g(t− s)∆pu(x, s) ds+ Θ(x, t, u) + f(x, t) in Q = Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),
u(x, 0) = u0(x) in Ω,

where Ω ⊂ Rn is a bounded domain with Lipschitz-continuous boundary, g(s) is a given
memory kernel, Θ is a given function and ∆p denotes the p-Laplace operator ∆pu :=

div
(
|∇u|p−2∇u

)
, 1 < p < ∞. Existence and uniqueness of solutions for this prob-

lem were proved. Also were established that the disturbances from the data propagate with
finite speed and the waiting time effect is possible. Once again, problem (1.10) appears in
the mathematical description of the heat propagation in materials with memory where the
heat flux may depend on the past history of the process.

The question of the solvability, and the long time behavior of solutions of the abstract
nonlinear Volterra equations of the type

ut(t)−Bu(t) +

∫ t

0

g(t− s)Au(s) ds = f(t),
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and nonlocal equations of similar structure, were studied in many papers of the past lit-
erature [5, 9, 13, 20, 23, 26, 31]. For instance, in [26, 27] the solution u(t) takes values
in a reflexive Banach space W , ut is an element of the dual space W ′, and A and B are
the operators given by the subdifferentials of two convex, lower semicontinuous and proper
functions. An example of such an equation is furnished by the problem

ut(x, t)− uxx(x, t) =

∫ t

0

g(t− s)(σ(ux(x, s)))x ds+ f(x, t)

with a sufficiently smooth function σ - see [9]. For the semilinear equation (1.10) with p = 2
and Θ 6= 0 the same questions were addressed by many authors, see, e.g., [6, 7, 8] and
references therein. Nonexistence of global solutions (a finite time blow-up) for semilinear
equations was studied in [22, 24, 25]. Similar results are also known for nonlocal parabolic
equations and boundary conditions of other types, see, e.g., [14, 16, 21]. Doubly nonlinear
nonlocal parabolic equations

∂tβ(u)− div σ(∇u) =

∫ t

0

g(t− s) div σ(∇u(s)) ds+ f(x, t, u)

were studied in [30] in an abstract setting. In [15] was investigated the existence of weak solu-
tions of a class of quasilinear hyperbolic integro-differential equations describing viscoelastic
materials.

In contrast to most of the previous studies on the derivation of the finite speed of pertur-
bation for viscoelastic media we shall not use any characteristic argument but purely some
suitable energy arguments in the spirit of the monograph [4]. Our arguments are of a differ-
ent nature to some other energy methods which need some information obtained trough the
characteristics (see, e.g. [33] and [32]). As far as we know, the waiting time property was
never before obtained in the literature for the class of nonlocal problems of the type (1.1)
(see Remark 1 below).

2. Finite speed of propagation and the waiting time effect

Given, Ω = (−L,L), we consider (local in space) weak solutions to the equation

(2.1)
∂u

∂t
=
∂(σ1(ux))

∂x
+
∂

∂x

(∫ t

0

γ(x, t, s)σ0(ux(x, s))ds

)
+ f̃(x, t),

in the class of functions

u ∈W ≡ C
(
[0, T ];L2

loc(Ω)
)
∩ Lp

(
0, T ;W 1,p

loc (Ω)
)

and satisfying the initial condition

(2.2) u(x, 0) = u0(x) x ∈ Ω.

Our main assumption on the initial condition u0 ∈ W 1,p
loc (Ω) is that it represents a finite

propagation in the sense that

(2.3) u0(x) ≡ 0, when |x| ≤ ρ0 < L.

As mentioned before, we assume that ∀ r ∈ R
(2.4) C2|r|p ≤ σ1(r)r ≤ C1|r|p, 2 < p <∞,

(2.5) |σ0(r)| ≤ C3|r|p−1.
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Thus, any local weak solution satisfies, for any ball Bρ ⊂ Ω, and for some M > 0,

(2.6) sup
0≤t≤T

∫
Bρ

u2dx+

∫ T

0

∫
Bρ

|ux|pdxdτ ≤M.

Results on the existence of solutions in this class of functions (once we specify the bound-
ary conditions) are well known in the literature (see for example [2, 4]). Our main result is
the following:

Theorem 1. Assume (2.4), (2.5) and also (2.3) and

f̃(x, t) ≡ 0, |x| ≤ ρ0 for a.e. t ∈ (0, T ).

Let u(x, t) be a local weak solution of problem (2.1), (2.2) satisfying (2.6). Then u(x, t)
possesses the finite speed of propagation property (FSP) in the following sense:
there exist t∗ ∈ (0, T ] and a function ρ(t), with 0 < ρ(t) < ρ0, ρ(0) = ρ0, such that

u(x, t) = 0 for |x| < ρ(t), 0 ≤ t ≤ t∗.
The function ρ(t) satisfies

(2.7) ρ1+α(t) = ρ1+α
0 − Ctκ

for some positive constants α, κ depending only on p, and C ≡ C(p, T,M). Moreover, if

(2.8)

∫
Bρ

u2
0dx+

∫ T

0

∫
Bρ

|f̃(x, τ)|2dxdτ ≤ C (ρ− ρ0)
1/(1−ν)
+

for any ρ ∈ (ρ0, L), with

ν = ν(p) =
2p

3p− 2
,

then u(x, t) possesses the waiting time property (WTP): there exists t∗ > 0 such that

u(x, t) = 0 for any |x| ≤ ρ0 and any t ∈ [0, t∗].

Remark 1. We point out that the growth estimate given by (2.7) is quite unusual in the
literature for this class of integro-differential equation. The main reason is that most of
the authors assume p = 2 and then the application of the characteristics method leads to
estimates on the interface involving expressions of the type σ′1(u0x(x±)), for the points x±
defining the boundary of the support of u0. Notice that if we assume conditions (1.6) then
we get σ′1(u0x(x±)) = 0 at least for initial data which are flat enough near x± (so that
u0x(x±) = 0) which explains (but it does not proves it!!) the possibility to get the waiting
time property.

Proof. We shall prove Theorem 1 by using an energy method similar to the ones presented
in the monographs [2, 4].

First of all we introduce the set Bρ and points Sρ by

Bρ = {x, x0 ∈ Ω : |x− x0| < ρ} ⊂ Ω, Sρ = ∂Bρ.

We define the energy functions

b(ρ, τ) =

∫
Bρ

|u(·, τ)|2dx, b(ρ, t) = sup0≤τ≤tb(ρ, τ),
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E(ρ, t) =

∫ t

0

∫
Bρ

σ1(ux(x, τ))ux(x, τ)dxdτ,

E(ρ, t) = sup0≤τ≤tE(ρ, τ).

Since

C1|r|p ≤ σ1(r)r ≤ C2|r|p,
we get

C1

∫ t

0

∫
Bρ

|ux|p ≤ E(ρ, t) ≤ C2

∫ t

0

∫
Bρ

|ux|p,

and according to (1.6)

(2.9) b(ρ, τ) + E(ρ, t) ≤ CM.

Notice the following important properties on the energy functions:

sup0≤τ≤t
∂E(ρ, τ)

∂ρ
=
∂E(ρ, t)

∂ρ
=

=

∫ t

0

∫
Sρ

σ1(ux(x, τ))ux(x, τ)dSdτ > 0,

Et =
∂E(ρ, t)

∂t
=

∫
Bρ

σ1(ux(x, τ))ux(x, τ)dx > 0.

Since we are in the one dimensional case, we have

Eρ =
∂E(ρ, t)

∂ρ
=

=

∫ t

0

(σ1(ux)ux(−ρ, τ) + σ1(ux)ux(ρ, τ)) dτ > 0.

Multiplying equation (2.1) by u,integrating over the cylinder Bρ × (0, t) and applying the
formula of integration by parts, we arrive to the energy relation

1

2

∫
Bρ

u2(·, τ)dx

∣∣∣∣∣
τ=t

τ=0

+

∫ t

0

∫
Bρ

σ1(ux)uxdxdτ = I,

or, in the notation of the energy functions,

(2.10) b(ρ, τ)|τ=t
τ=0 + E(ρ, t) =

4∑
i=1

Ii ≡ I,

where

I1 =

∫ t

0

u(ξ, τ)σ1(ux)|ξ=ρξ=−ρ dτ,

I2 =

∫ t

0

u(ξ, τ)

∫ τ

0

γ(x, t, s)σ0(ux(ξ, s))ds|ξ=ρξ=−ρ dτ,

I3 = −
∫ t

0

∫
Bρ

ux(x, τ)

∫ τ

0

γ(x, t, s)σ0(ux(x, s))dsdxdτ,
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I4 =

∫ t

0

∫
Bρ

uf̃dxdτ.

First we shall prove the FSP property. Without lost of generality we can assume that f ≡ 0.
In this case we use that b(ρ, 0) = 0 for ρ ≤ ρ0 since u0(x) = 0, if x ∈ [−ρ0, ρ0], and that

I4 =

∫ t

0

∫
Bρ

uf̃dxdτ = 0.

The energy relation (2.10) takes now the form

(2.11) b(ρ, t) + E(ρ, t) =

3∑
i=1

Ii ≡ I.

Next we use the multiplicative estimate (for any fixed t)

[u]
p

:= (|u(−ρ, t) + u(ρ, t)|)p

≤ C
(
E

1
p

t + ρ−δb
1
2

)pθ
b
p(1−θ)

2 ,

where δ and θ are some given positive parameters. We evaluate the terms Ii, i = 1, 2, 3 in
the following way:

|I1| ≤ C
(∫ t

0

[u]
p

) 1
p
(∫ t

0

(|ux(−ρ, ·)|p + ux(ρ, ·)|p)
) p−1

p

≤ C

(∫ t

0

(
E

1
p

t + ρ−δb
1
2

)pθ
b
p(1−θ)

2

) 1
p (
Eρ
) p−1

p

≤ Cb
(1−θ)

2

(∫ t

0

(
Et + ρ−δpb

p
2

)θ) 1
p (
Eρ
) p−1

p

≤ C max

(
1, b

p−2
2

)
b

(1−θ)
2 t1−θρ−δθ

(
E + b

) θ
p
(
Eρ
) p−1

p

≤ Ct1−θρ−δθ
(
E + b

) θ
p+

(1−θ)
2
(
Eρ
) p−1

p ,

|I2| ≤ Ct1−θρ−δθ
(
E + b

) θ
p+

(1−θ)
2
(
Eρ
) p−1

p ,

|I3| ≤ CtκE(ρ, t).

Substituting last estimates to (2.11), taking the maximum with respect to t and applying
the Young inequality, we arrive to the ordinary differential inequality, with respect to ρ,

E(ρ, t) ≤ b(ρ, t) + E(ρ, t) ≤ Cρ−αν t
χ
ν

(
Eρ(ρ, t)

) 1
ν ,

or equivalently

(2.12) E
ν
(ρ, t) ≤ Cρ−αtχEρ(ρ, t).

Here the time t is considered as a fixed parameter. Integrating the last inequality with
respect to ρ, over (ρ, ρ0), we obtain

E
1−ν

(ρ, t) ≤ E1−ν
(ρ0, t)− C

1− ν
1 + α

(
ρ1+α

0 − ρ1+α
)
t−χ.
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Then defining ρ(t) by the formula

ρ1+α(t) = ρ1+α
0 − E1−ν

(ρ0, t)
1 + α

C(1− ν)
tχ,

and assuming that

E
1−ν

(ρ0, t) ≤ CM,

we arrive to the desired expression

ρ1+α(t) = ρ1+α
0 − Ctκ,

and the first assertion of the theorem is proved.
To prove the waiting time property we use the energy relation for ρ > ρ0 and evaluate

the additional terms in the following way:

I4 =

∫ t

0

∫
Bρ

uf̃dxdτ

=

∫ t

0

∫
Bρ

(
ut(x, 0)− ∂σ1(u0x(x))

∂x
+

∫ τ

0

f(x, s)ds

)
u(x, τ)dxdτ,

and

I5 =

∫
Bρ

u2
0dx,

which implies

|I4|+ |I5| ≤ δb(ρ, t) + C(δ)tη
∫ t

0

∫
Bρ

∣∣∣f̃ ∣∣∣ dxdτ.
Finally under conditions (1.6) we arrive to the ordinary non-homogeneous differential in-
equality

(2.13) E
ν
(ρ, t) ≤ Ctχ

(
ρ−αEρ(ρ, t) + (ρ− ρ0)

ν
1−ν
+

)
.

As in ([4]) we can prove that for a sufficiently small t∗ > 0 and 0 < t ≤ t∗ all solutions of
the above inequality must satisfy

(2.14) E(ρ, t) ≤ C (ρ− ρ0)
1

1−ν
+ ,

and the result holds. �

Remark 2. The localization properties can also be studied in a more general class of data
in which the function σ = σ(r, q) is not subject to conditions (1.6). The study is performed
in terms of the function

w(x, t) = ut(x, t), u(x, t) =

∫ t

0

w(x, τ)dτ + u0(x),

which satisfies the equation

∂w

∂t
=

∂

∂x

(
σ

(∫ t

0

wx(x, τ)dτ + u0x(x), wx(x, t)

))
+ f(x, t).

The energy methods of [4] still apply and we can get similar properties to the (FSP) and
(WTP) for the function w(x, t), but we shall not develop it here.

Remark 3. Some other qualitative properties, such as the finite extinction time, for many
other nonlocal problems can be obtained trough energy methods (see, e.g., [4] and [12] and
its references).
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